1932

Abstract

This article reports on the state of the art of artificial hands, discussing some of the field's most important trends and suggesting directions for future research. We review and group the most important application domains of robotic hands, extracting the set of requirements that ultimately led to the use of simplified actuation schemes and soft materials and structures—two themes that clearly emerge from our examination of developments over the past century. We provide a comprehensive analysis of novel technologies for the design of joints, transmissions, and actuators that enabled these trends. We conclude by discussing some important new perspectives generated by simpler and softer hands and their interaction with other aspects of hand design and robotics in general.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-060117-105003
2019-05-03
2024-09-09
Loading full text...

Full text loading...

/deliver/fulltext/control/2/1/annurev-control-060117-105003.html?itemId=/content/journals/10.1146/annurev-control-060117-105003&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Alpenfels EJ 1955. The anthropology and social significance of the human hand. Artif. Limbs 2:4–21
    [Google Scholar]
  2. 2.  Zuo KJ, Olson JL 2014. The evolution of functional hand replacement: from iron prostheses to hand transplantation. Plast. Surg. 22:44–51
    [Google Scholar]
  3. 3.  Bicchi A 2000. Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Trans. Robot. Autom. 16:652–62
    [Google Scholar]
  4. 4.  Biagiotti L, Lotti F, Melchiorri C, Vassura G 2004. How far is the human hand? A review on anthropomorphic robotic end-effectors Rev. Pap., Univ. Bologna, Bologna, Italy. http://www-lar.deis.unibo.it/woda/data/deis-lar-publications/3cbd.Document.pdf
    [Google Scholar]
  5. 5.  Jacobsen S, Iversen E, Knutti D, Johnson R, Biggers K 1986. Design of the Utah/M.I.T. dextrous hand. 1986 IEEE International Conference on Robotics and Automation 31520–32 New York: IEEE
    [Google Scholar]
  6. 6.  Lovchik C, Diftler MA 1999. The Robonaut hand: a dexterous robot hand for space. 1999 IEEE International Conference on Robotics and Automation 2907–12 New York: IEEE
    [Google Scholar]
  7. 7.  Butterfaß J, Grebenstein M, Liu H, Hirzinger G 2001. DLR-Hand II: next generation of a dextrous robot hand. 2001 ICRA: IEEE International Conference on Robotics and Automation 1109–14 New York: IEEE
    [Google Scholar]
  8. 8.  Kawasaki H, Komatsu T, Uchiyama K 2002. Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu Hand II. IEEE/ASME Trans. Mechatron. 7:296–303
    [Google Scholar]
  9. 9. Shadow Robot Co 2018. Shadow Dexterous Hand. Shadow Robot Company https://www.shadowrobot.com/products/dexterous-hand
    [Google Scholar]
  10. 10.  Gama Melo EN, Aviles Sanchez OF, Amaya Hurtado D 2014. Anthropomorphic robotic hands: a review. Ing. Desarro. 32:279–313
    [Google Scholar]
  11. 11.  Tai K, El-Sayed AR, Shahriari M, Biglarbegian M, Mahmud S 2016. State of the art robotic grippers and applications. Robotics 5:11
    [Google Scholar]
  12. 12.  Mattar E 2013. A survey of bio-inspired robotics hands implementation: new directions in dexterous manipulation. Robot. Auton. Syst. 61:517–44
    [Google Scholar]
  13. 13.  Kirori AK, Dua RL 2012. Review of control mechanism of multi-fingered robotic arm and proposal of new design. IOSR J. Eng. 2:1251–54
    [Google Scholar]
  14. 14.  Belter JT, Segil JL, SM B 2013. Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review. J. Rehabil. Res. Dev. 50:599–618
    [Google Scholar]
  15. 15.  Vujaklija I, Farina D, Aszmann O 2016. New developments in prosthetic arm systems. Orthop. Res. Rev 8:31–39
    [Google Scholar]
  16. 16.  Correll N, Bekris KE, Berenson D, Brock O, Causo A et al. 2018. Analysis and observations from the first Amazon Picking Challenge. IEEE Trans. Autom. Sci. Eng. 15:172–88
    [Google Scholar]
  17. 17.  Eppner C, Höfer S, Jonschkowski R, Martín-Martín R, Sieverling A et al. 2016. Lessons from the Amazon Picking Challenge: four aspects of building robotic systems. Robotics: Science and Systems XII D Hsu, N Amato, S Berman, S Jacobs chap. 36. N.p.: Robot. Sci. Syst. Found.
    [Google Scholar]
  18. 18.  Pratt G, Manzo J 2013. The DARPA Robotics Challenge. IEEE Robot. Autom. Mag. 20:10–12
    [Google Scholar]
  19. 19.  Riener R 2016. The Cybathlon promotes the development of assistive technology for people with physical disabilities. J. Neuroeng. Rehabil. 13:49
    [Google Scholar]
  20. 20. IEEE Tech. Comm. Robot. Hand Grasping Manip. 2016. Robotic Grasping and Manipulation Competition. IEEE Technical Committee on Robotic Hand Grasping and Manipulation http://www.rhgm.org/activities/competition_iros2016
    [Google Scholar]
  21. 21. Dipo Power 2018. Dipo Power website. http://dipo-power.com
  22. 22.  Catalano MG, Grioli G, Farnioli E, Serio A, Piazza C, Bicchi A 2014. Adaptive synergies for the design and control of the Pisa/IIT SoftHand. Int. J. Robot. Res. 33:768–82
    [Google Scholar]
  23. 23.  Kontoudis GP, Liarokapis MV, Zisimatos AG, Mavrogiannis CI, Kyriakopoulos KJ 2015. Open-source, anthropomorphic, underactuated robot hands with a selectively lockable differential mechanism: towards affordable prostheses. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)5857–62 New York: IEEE
    [Google Scholar]
  24. 24.  Smit G, Plettenburg DH, van der Helm FC 2015. The lightweight Delft Cylinder Hand: first multi-articulating hand that meets the basic user requirements. IEEE Trans. Neural Syst. Rehabil. Eng. 23:431–40
    [Google Scholar]
  25. 25.  Belter JT, Dollar AM, Leddy M 2016. Multi-grasp prosthetic hand US Patent Appl. 15/240819
    [Google Scholar]
  26. 26.  Deimel R, Brock O 2016. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 35:161–85
    [Google Scholar]
  27. 27.  Pons J, Ceres R, Pfeiffer F 1999. Multifingered dextrous robotics hand design and control: a review. Robotica 17:661–74
    [Google Scholar]
  28. 28.  Saudabayev A, Varol HA 2015. Sensors for robotic hands: a survey of state of the art. IEEE Access 3:1765–82
    [Google Scholar]
  29. 29.  Dorrance DW 1912. Artificial hand US Patent 1,042,413
    [Google Scholar]
  30. 30.  Schlesinger G 1919. Der mechanische Aufbau der künstlichen Glieder. Ersatzglieder und Arbeitshilfen für Kriegsbeschädigte und Unfallverletzte M Borchardt, K Hartmann, H Leymann, R Radike, G Schlesinger, H Schwiening321–661 Berlin: Springer
    [Google Scholar]
  31. 31.  Pringle A 1919. Artificial hand US Patent 1,324,564
    [Google Scholar]
  32. 32. Becker Mech. Hand Co. 2018. Products. Becker Mechanical Hand Company http://www.beckermechanicalhand.com/products
    [Google Scholar]
  33. 33.  Reiter R 1948. Eine neue Electrokunsthand. Grenzgebiete Med. 4:133–35
    [Google Scholar]
  34. 34.  Dale FL 1948. Artificial hand US Patent 2,457,305
    [Google Scholar]
  35. 35.  Tomovic R, Boni G 1962. An adaptive artificial hand. IRE Trans. Autom. Control 7:3–10
    [Google Scholar]
  36. 36.  Sherman ED 1964. A Russian bioelectric-controlled prosthesis: report of a research team from the Rehabilitation Institute of Montreal. Can. Med. Assoc. J. 91:1268–70
    [Google Scholar]
  37. 37.  Rakić M 1964. An automatic hand prosthesis. Med. Electron. Biol. Eng. 2:47–55
    [Google Scholar]
  38. 38.  Moiseevich B, Pinkhasovich P, Savelievich Y 1970. Artificial hand for prostheses with bioelectrical control US Patent 3,521,303
    [Google Scholar]
  39. 39. Ottobock. 2018. Solution overview: upper limb prosthetics. Ottobock http://www.ottobockus.com/prosthetics/upper-limb-prosthetics/solution-overview/
    [Google Scholar]
  40. 40.  Crossley FE, Umholtz F 1977. Design for a three-fingered hand. Mech. Mach. Theory 12:85–93
    [Google Scholar]
  41. 41.  Hirose S, Umetani Y 1978. The development of soft gripper for the versatile robot hand. Mech. Mach. Theory 13:351–59
    [Google Scholar]
  42. 42. TRS. 2018. About TRS. TRS http://www.trsprosthetics.com/about-trs
    [Google Scholar]
  43. 43.  Okada T 1982. Computer control of multijointed finger system for precise object-handling. IEEE Trans. Syst. Man Cybernet. 12:289–99
    [Google Scholar]
  44. 44.  Rovetta A, Franchetti I, Vicentini P 1982. Multi-purpose mechanical hand US Patent 4,351,553
    [Google Scholar]
  45. 45.  Salisbury JK, Craig JJ 1982. Articulated hands: force control and kinematic issues. Int. J. Robot. Res. 1:4–17
    [Google Scholar]
  46. 46. SCHUNK. 1983. Milestones of innovation. SCHUNK https://schunk.com/fi_en/company/about-schunk/innovation-milestones
    [Google Scholar]
  47. 47.  Hanafusa H, Kobayashi H, Terasaki N 1983. Fine control of the object with articulated multi-finger robot hands. 1983 International Conference on Advanced Robotics245–52 Tokyo: Jpn. Ind. Robot Assoc.
    [Google Scholar]
  48. 48.  Kim J, Blythe D, Penny D, Goldenberg A 1987. Computer architecture and low level control of the PUMA/RAL hand system: work in progress. 1987 IEEE International Conference on Robotics and Automation 41590–94 New York: IEEE
    [Google Scholar]
  49. 49.  Ulrich N, Paul R, Bajcsy R 1988. A medium-complexity compliant end effector. 1988 IEEE International Conference on Robotics and Automation434–36 New York: IEEE
    [Google Scholar]
  50. 50.  Rakić M 1989. Multifingered robot hand with selfadaptability. Robot. Comput.-Integr. Manuf. 5:269–76
    [Google Scholar]
  51. 51.  Vanbrussel H, Santoso B, Reynaerts D 1989. Design and control of a multi-fingered robot hand provided with tactile feedback. Proceedings of the NASA Conference on Space Telerobotics 389–101 Washington, DC: NASA
    [Google Scholar]
  52. 52.  Paetsch W, Kaneko M 1990. A three fingered, multijointed gripper for experimental use. IEEE International Workshop on Intelligent Robots and Systems: Towards a New Frontier of Applications 2853–58 New York: IEEE
    [Google Scholar]
  53. 53.  Suzumori K, Iikura S, Tanaka H 1991. Development of flexible microactuator and its applications to robotic mechanisms. 1991 IEEE International Conference on Robotics and Automation1622–27 New York: IEEE
    [Google Scholar]
  54. 54.  Jau BM 1992. Man-equivalent telepresence through four fingered human-like hand system. 1992 IEEE International Conference on Robotics and Automation843–48 New York: IEEE
    [Google Scholar]
  55. 55.  Melchiorri C, Vassura G 1992. Mechanical and control features of the University of Bologna hand version 2. Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems 1187–93 New York: IEEE
    [Google Scholar]
  56. 56.  Kyberd P, Tregidgo R, Sachetti R, Schmidl H, Snaith M et al. 1993. The Marcus intelligent hand prosthesis. Rehabilitation Technology: Strategies for the European Union E Ballabio, I Palencia-Porrero, R Puig de la Bellacasa98–102 Amsterdam: IOS
    [Google Scholar]
  57. 57.  Okuno R, Yoshida M, Akazawa K 1996. Development of biomimetic prosthetic hand controlled by electromyogram. 1996 4th International Workshop on Advanced Motion Control 1103–8 New York: IEEE
    [Google Scholar]
  58. 58.  Crisman JD, Kanojia C, Zeid I 1996. Graspar: a flexible, easily controllable robotic hand. IEEE Robot. Autom. Mag. 3:32–38
    [Google Scholar]
  59. 59.  Lane DM, Davies JBC, Casalino G, Bartolini G, Cannata G et al. 1997. AMADEUS: advanced manipulation for deep underwater sampling. IEEE Robot. Autom. Mag. 4:34–45
    [Google Scholar]
  60. 60.  Butterfass J, Hirzinger G, Knoch S, Liu H 1998. DLR's multisensory articulated hand. I. Hard- and software architecture. 1998 IEEE International Conference on Robotics and Automation 32081–86 New York: IEEE
    [Google Scholar]
  61. 61.  Caffaz A, Cannata G 1998. The design and development of the DIST-hand dextrous gripper. 1998 IEEE International Conference on Robotics and Automation 32075–80 New York: IEEE
    [Google Scholar]
  62. 62.  Lin LR, Huang HP 1998. NTU hand: a new design of dexterous hands. ASME J. Mech. Des. 120:282–92
    [Google Scholar]
  63. 63.  Kawasaki H 1999. Mechanism design of anthropomorphic robot hand: Gifu Hand I. J. Robot. Mechatron. 11:269–73
    [Google Scholar]
  64. 64.  Fukaya N, Toyama S, Asfour T, Dillmann R 2000. Design of the TUAT/Karlsruhe humanoid hand. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems 31754–59 New York: IEEE
    [Google Scholar]
  65. 65.  Light C, Chappell P 2000. Development of a lightweight and adaptable multiple-axis hand prosthesis. Med. Eng. Phys. 22:679–84
    [Google Scholar]
  66. 66.  Kolluru R, Valavanis KP, Smith S, Tsourveloudis N 2000. Design fundamentals of a reconfigurable robotic gripper system. IEEE Trans. Syst. Man Cybernet. A 30:181–87
    [Google Scholar]
  67. 67.  Keymeulen D, Assad C 2001. Investigation of the Harada robot hand for space Paper presented at the 2nd IEEE-RAS International Conference on Humanoid Robots, Tokyo, Nov. 22–24
    [Google Scholar]
  68. 68.  Gazeau JP, Zehloul S, Arsicault M, Lallemand JP 2001. The LMS hand: force and position controls in the aim of the fine manipulation of objects. 2001 IEEE International Conference on Robotics and Automation 32642–48 New York: IEEE
    [Google Scholar]
  69. 69.  Schulz S, Pylatiuk C, Bretthauer G 2001. A new ultralight anthropomorphic hand. 2001 IEEE International Conference on Robotics and Automation 32437–41 New York: IEEE
    [Google Scholar]
  70. 70.  Zhang Y, Han Z, Zhang H, Shang X, Wang T et al. 2001. Design and control of the BUAA four-fingered hand. 2001 IEEE International Conference on Robotics and Automation 32517–22 New York: IEEE
    [Google Scholar]
  71. 71.  Dechev N, Cleghorn W, Naumann S 2001. Multiple finger, passive adaptive grasp prosthetic hand. Mech. Mach. Theory 36:1157–73
    [Google Scholar]
  72. 72.  Laliberté T, Birglen L, Gosselin C 2002. Underactuation in robotic grasping hands. Mach. Intell. Robot. Control 4:1–11
    [Google Scholar]
  73. 73.  Massa B, Roccella S, Carrozza MC, Dario P 2002. Design and development of an underactuated prosthetic hand. 2002 IEEE International Conference on Robotics and Automation 43374–79 New York: IEEE
    [Google Scholar]
  74. 74.  Yamano I, Takemura K, Maeno T 2003. Development of a robot finger for five-fingered hand using ultrasonic motors. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems 32648–53 New York: IEEE
    [Google Scholar]
  75. 75.  Gao X, Jin M, Jiang L, Xie Z, He P et al. 2003. The HIT/DLR dexterous hand: work in progress. 2003 IEEE International Conference on Robotics and Automation 33164–68 New York: IEEE
    [Google Scholar]
  76. 76.  Namiki A, Imai Y, Ishikawa M, Kaneko M 2003. Development of a high-speed multifingered hand system and its application to catching. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems 32666–71 New York: IEEE
    [Google Scholar]
  77. 77.  Pons J, Rocon E, Ceres R, Reynaerts D, Saro B et al. 2004. The MANUS-HAND dextrous robotics upper limb prosthesis: mechanical and manipulation aspects. Auton. Robots 16:143–63
    [Google Scholar]
  78. 78.  Carrozza MC, Suppo C, Sebastiani F, Massa B, Vecchi F et al. 2004. The SPRING hand: development of a self-adaptive prosthesis for restoring natural grasping. Auton. Robots 16:125–41
    [Google Scholar]
  79. 79.  Yokoi H, Arieta AH, Katoh R, Yu W, Watanabe I, Maruishi M 2004. Mutual adaptation in a prosthetics application. Embodied Artificial Intelligence F Iida, R Pfeifer, L Steels, Y Kuniyoshi146–59 Berlin: Springer
    [Google Scholar]
  80. 80.  Boblan I, Bannasch R, Schwenk H, Prietzel F, Miertsch L, Schulz A 2004. A human-like robot hand and arm with fluidic muscles: biologically inspired construction and functionality. Embodied Artificial Intelligence F Iida, R Pfeifer, L Steels, Y Kuniyoshi160–79 Berlin: Springer
    [Google Scholar]
  81. 81.  Matsuda H 2004. Multi-finger hand device. EP Patent Appl. EP20020758875
  82. 82.  Yang J, Abdel-Malek K, Pitarch EP 2004. Design and analysis of a cable actuated hand prosthesis. ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2273–80 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  83. 83.  Roccella S, Carrozza MC, Cappiello G, Dario P, Cabibihan JJ et al. 2004. Design, fabrication and preliminary results of a novel anthropomorphic hand for humanoid robotics: RCH-1. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems 1266–71 New York: IEEE
    [Google Scholar]
  84. 84.  Schulz S, Pylatiuk C, Kargov A, Oberle R, Bretthauer G 2004. Progress in the development of anthropomorphic fluidic hands for a humanoid robot. 2004 4th IEEE/RAS International Conference on Humanoid Robots 2566–75 New York: IEEE
    [Google Scholar]
  85. 85.  Schulz S, Pylatiuk C, Reischl M, Martin J, Mikut R, Bretthauer G 2005. A hydraulically driven multifunctional prosthetic hand. Robotica 23:293–99
    [Google Scholar]
  86. 86.  Ueda J, Ishida Y, Kondo M, Ogasawara T 2005. Development of the NAIST-Hand with vision-based tactile fingertip sensor. Proceedings of the 2005 IEEE International Conference on Robotics and Automation2332–37 New York: IEEE
    [Google Scholar]
  87. 87.  Kargov A, Asfour T, Pylatiuk C, Oberle R, Klosek H et al. 2005. Development of an anthropomorphic hand for a mobile assistive robot. 9th International Conference on Rehabilitation Robotics182–86 New York: IEEE
    [Google Scholar]
  88. 88.  Carrozza MC, Cappiello G, Stellin G, Zaccone F, Vecchi F et al. 2005. A cosmetic prosthetic hand with tendon driven under-actuated mechanism and compliant joints: ongoing research and preliminary results. Proceedings of the 2005 IEEE International Conference on Robotics and Automation2661–66 New York: IEEE
    [Google Scholar]
  89. 89.  Lotti F, Tiezzi P, Vassura G, Biagiotti L, Palli G, Melchiorri C 2005. Development of UB Hand 3: early results. Proceedings of the 2005 IEEE International Conference on Robotics and Automation4488–93 New York: IEEE
    [Google Scholar]
  90. 90.  Choi B, Lee S, Choi HR, Kang S 2006. Development of anthropomorphic robot hand with tactile sensor: SKKU Hand II. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems3779–84 New York: IEEE
    [Google Scholar]
  91. 91.  Maeno T, Hino T 2006. Miniature five-fingered robot hand driven by shape memory alloy actuators. Proceedings of the 12th IASTED International Conference on Robotics and Applications MH Hamza174–79 Calgary, Can.: ACTA Press
    [Google Scholar]
  92. 92.  Zhao D, Jiang L, Huang H, Jin M, Cai H, Liu H 2006. Development of a multi-DOF anthropomorphic prosthetic hand. 2006 IEEE International Conference on Robotics and Biomimetics878–83 New York: IEEE
    [Google Scholar]
  93. 93.  Touch Bionics 2018. History. Touch Bionics http://www.touchbionics.com/about/history
    [Google Scholar]
  94. 94. Elumotion. 2018. Elumotion website. http://elumotion.com
  95. 95.  Brown CY, Asada HH 2007. Inter-finger coordination and postural synergies in robot hands via mechanical implementation of principal components analysis. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems2877–82 New York: IEEE
    [Google Scholar]
  96. 96.  Zollo L, Roccella S, Guglielmelli E, Carrozza MC, Dario P 2007. Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications. IEEE/ASME Trans. Mechatron. 12:418–29
    [Google Scholar]
  97. 97.  Mouri T, Kawasaki H 2007. A novel anthropomorphic robot hand and its master slave system. Humanoid Robots, Human-Like Machines M Hackel29–42 Rijeka, Croatia: InTech
    [Google Scholar]
  98. 98. Robotiq. 2008. Robotiq 3-Finger Adaptive Robot Gripper Instruction Manual Lévis, Can.: Robotiq. http://support.robotiq.com/display/IMB/Home
    [Google Scholar]
  99. 99.  Takamuku S, Fukuda A, Hosoda K 2008. Repetitive grasping with anthropomorphic skin-covered hand enables robust haptic recognition. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems3212–17 New York: IEEE
    [Google Scholar]
  100. 100.  Gaiser I, Schulz S, Kargov A, Klosek H, Bierbaum A et al. 2008. A new anthropomorphic robotic hand. 8th IEEE-RAS International Conference on Humanoid Robots418–22 New York: IEEE
    [Google Scholar]
  101. 101.  Gosselin C, Pelletier F, Laliberte T 2008. An anthropomorphic underactuated robotic hand with 15 dofs and a single actuator. 2008 IEEE International Conference on Robotics and Automation749–54 New York: IEEE
    [Google Scholar]
  102. 102.  Controzzi M, Cipriani C, Carrozza MC 2008. Mechatronic design of a transradial cybernetic hand. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems576–81 New York: IEEE
    [Google Scholar]
  103. 103.  Liu H, Wu K, Meusel P, Seitz N, Hirzinger G et al. 2008. Multisensory five-finger dexterous hand: the DLR/HIT Hand II. IEEE/RSJ International Conference on Intelligent Robots and Systems3692–97 New York: IEEE
    [Google Scholar]
  104. 104.  Hong D, Smith C, McCraw A, Guevara C, Cothern K 2009. RAPHaEL: Robotic Air-Powered Hand with Elastic Ligaments Paper presented at the 6th International Conference on Ubiquitous Robots and Ambient Intelligence, Gwangju, South Korea, Oct. 29–31
    [Google Scholar]
  105. 105.  Kurita Y, Ono Y, Ikeda A, Ogasawara T 2009. NAIST Hand 2: human-sized anthropomorphic robot hand with detachable mechanism at the wrist. IEEE/RSJ International Conference on Intelligent Robots and Systems2271–76 New York: IEEE
    [Google Scholar]
  106. 106.  Dalley SA, Wiste TE, Withrow TJ, Goldfarb M 2009. Design of a multifunctional anthropomorphic prosthetic hand with extrinsic actuation. IEEE/ASME Trans. Mechatron. 14:699–706
    [Google Scholar]
  107. 107.  Honda Y, Miyazaki F, Nishikawa A 2010. Control of pneumatic five-fingered robot hand using antagonistic muscle ratio and antagonistic muscle activity. 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics337–42 New York: IEEE
    [Google Scholar]
  108. 108.  Brown E, Rodenberg N, Amend J, Mozeika A, Steltz E et al. 2010. Universal robotic gripper based on the jamming of granular material. PNAS 107:18809–14
    [Google Scholar]
  109. 109.  Dollar AM, Howe RD 2010. The highly adaptive SDM hand: design and performance evaluation. Int. J. Robot. Res. 29:585–97
    [Google Scholar]
  110. 110. Prensilia. 2010. IH1 Azzurra series Data Sheet, Prensilia, Pontedera, Italy. http://mindtrans.narod.ru/pdfs/H1_Azzurra_Hand.pdf
    [Google Scholar]
  111. 111.  Schmitz A, Pattacini U, Nori F, Natale L, Metta G, Sandini G 2010. Design, realization and sensorization of the dexterous iCub hand. 2010 10th IEEE-RAS International Conference on Humanoid Robots186–91 New York: IEEE
    [Google Scholar]
  112. 112.  Grebenstein M, Chalon M, Hirzinger G, Siegwart R 2010. Antagonistically driven finger design for the anthropomorphic DLR Hand Arm System. 2010 10th IEEE-RAS International Conference on Humanoid Robots609–16 New York: IEEE
    [Google Scholar]
  113. 113. PAL Robot. 2018. Products. PAL Robotics https://www.pal-robotics.com/en/products
    [Google Scholar]
  114. 114.  Kaneko K, Kanehiro F, Morisawa M, Tsuji T, Miura K et al. 2011. Hardware improvement of cybernetic human HRP-4C for entertainment use. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems4392–99 New York: IEEE
    [Google Scholar]
  115. [Google Scholar]
  116. 116.  Losier Y, Clawson A, Wilson A, Scheme E, Englehart K et al. 2011. An overview of the UNB hand system. MEC ’11: Raising the Standard: University of New Brunswick's International Conference on Advanced Limb Prosthetics251–54 Fredericton, Can.: Univ. N.B.
    [Google Scholar]
  117. 117.  Medynski C, Rattray B 2011. BeBionic prosthetic design. MEC ’11: Raising the Standard: University of New Brunswick's International Conference on Advanced Limb Prosthetics279–82 Fredericton, Can.: Univ. N.B.
    [Google Scholar]
  118. 118.  Chalon M, Wedler A, Baumann A, Bertleff W, Beyer A et al. 2011. Dexhand: a space qualified multi-fingered robotic hand. 2011 IEEE International Conference on Robotics and Automation2204–10 New York: IEEE
    [Google Scholar]
  119. 119.  Altobelli DE, Coulter S, Perry NC 2011. Design considerations in upper extremity prostheses. MEC ’11: Raising the Standard: University of New Brunswick's International Conference on Advanced Limb Prosthetics255–58 Fredericton, Can.: Univ. N.B.
    [Google Scholar]
  120. 120.  Thayer N, Priya S 2011. Design and implementation of a dexterous anthropomorphic robotic typing (DART) hand. Smart Mater. Struct. 20:035010
    [Google Scholar]
  121. 121.  Yamaguchi A, Takemura K, Yokota S, Edamura K 2011. A robot hand using electro-conjugate fluid. Sens. Actuators A 170:139–46
    [Google Scholar]
  122. 122.  Tincani V, Catalano MG, Farnioli E, Garabini M, Grioli G et al. 2012. Velvet Fingers: a dexterous gripper with active surfaces. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems1257–63 New York: IEEE
    [Google Scholar]
  123. 123. ITK. 2011. The “Handroid”. ITK http://www.itk-pro.com/en/pro/kindengisyu.htm
    [Google Scholar]
  124. 124. Wonik Robot 2018. History. Wonik Robotics http://www.simlab.co.kr/History.htm
    [Google Scholar]
  125. 125.  Baril M, Laliberté T, Gosselin C, Routhier F 2013. On the design of a mechanically programmable underactuated anthropomorphic prosthetic gripper. J. Mech. Des. 135:121008
    [Google Scholar]
  126. 126. Sandia Natl. Lab. 2012. The Sandia Hand Handout, Sandia Natl. Lab., Albuquerque, NM. http://www.sandia.gov/research/robotics/_assets/documents/SandiaHand_Handout_Final.pdf
    [Google Scholar]
  127. 127.  Grioli G, Catalano M, Silvestro E, Tono S, Bicchi A 2012. Adaptive synergies: an approach to the design of under-actuated robotic hands. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems1251–56 New York: IEEE
    [Google Scholar]
  128. 128.  Deimel R, Brock O 2013. A compliant hand based on a novel pneumatic actuator. 2013 IEEE International Conference on Robotics and Automation2047–53 New York: IEEE
    [Google Scholar]
  129. 129.  Ueno S, Takemura K, Yokota S, Edamura K 2013. Micro flexible robot hand using electro-conjugate fluid. Micro/Nano Materials, Devices, and Applications J Friend, HH Tan chap. 89234U. Proc. SPIE Vol. 8923. Bellingham, WA: Soc. Photo-Opt. Instrum. Eng.
    [Google Scholar]
  130. 130. Robotiq. 2015. Robotiq product list Prod. List, Robotiq, Lévis, Can. https://www.shopcross.com/sites/default/files/data-sheets/Robotiq-Product-List-Catalog.pdf
    [Google Scholar]
  131. 131.  Melchiorri C, Palli G, Berselli G, Vassura G 2013. Development of the UB Hand IV: overview of design solutions and enabling technologies. IEEE Robot. Autom. Mag. 20:72–81
    [Google Scholar]
  132. 132. Vincent Syst 2018. VINCENTevolution 3. Vincent Systems https://vincentsystems.de/en/prosthetics/vincent-evolution-3
    [Google Scholar]
  133. 133.  Deshpande AD, Xu Z, Weghe MJV, Brown BH, Ko J et al. 2013. Mechanisms of the anatomically correct testbed hand. IEEE/ASME Trans. Mechatron. 18:238–50
    [Google Scholar]
  134. 134.  Tavakoli M, de Almeida AT 2014. Adaptive under-actuated anthropomorphic hand: ISR-SoftHand. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems1629–34 New York: IEEE
    [Google Scholar]
  135. 135.  Odhner LU, Jentoft LP, Claffee MR, Corson N, Tenzer Y et al. 2014. A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res. 33:736–52
    [Google Scholar]
  136. 136.  Sensinger J, Lipsey J, Sharkey T, Thomas A, Miller L et al. 2014. Initial experiences with the RIC arm. MEC ’14: Redefining the Norm: University of New Brunswick's Myoelectric Controls/Powered Prosthetics Symposium223–25 Fredericton, Can.: Univ. N.B.
    [Google Scholar]
  137. 137.  Stuart H, Wang S, Gardineer B, Christensen DL, Aukes DM, Cutkosky MR 2014. A compliant underactuated hand with suction flow for underwater mobile manipulation. 2014 IEEE International Conference on Robotics and Automation6691–97 New York: IEEE
    [Google Scholar]
  138. 138.  Ciocarlie M, Hicks FM, Holmberg R, Hawke J, Schlicht M et al. 2014. The Velo gripper: a versatile single-actuator design for enveloping, parallel and fingertip grasps. Int. J. Robot. Res. 33:753–67
    [Google Scholar]
  139. 139.  Hassan T, Manti M, Passetti G, d'Elia N, Cianchetti M, Laschi C 2015. Design and development of a bio-inspired, under-actuated soft gripper. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society3619–22 New York: IEEE
    [Google Scholar]
  140. 140.  Della Santina C, Grioli G, Catalano M, Brando A, Bicchi A 2015. Dexterity augmentation on a synergistic hand: the Pisa/IIT SoftHand+. 2015 IEEE-RAS 15th International Conference on Humanoid Robots497–503 New York: IEEE
    [Google Scholar]
  141. 141.  Chen W, Xiong C, Yue S 2015. Mechanical implementation of kinematic synergy for continual grasping generation of anthropomorphic hand. IEEE/ASME Trans. Mechatron. 20:1249–63
    [Google Scholar]
  142. 142.  Radford NA, Strawser P, Hambuchen K, Mehling JS, Verdeyen WK et al. 2015. Valkyrie: NASA's first bipedal humanoid robot. J. Field Robot. 32:397–419
    [Google Scholar]
  143. 143.  Simone F, York A, Seelecke S 2015. Design and fabrication of a three-finger prosthetic hand using SMA muscle wires. Bioinspiration, Biomimetics, and Bioreplication 2015 A Lakhtakia, M Knez, RJ Martín-Palma chap. 94290T. Proc. SPIE Vol. 9429. Bellingham, WA: Soc. Photo-Opt. Instrum. Eng.
    [Google Scholar]
  144. 144.  Ceccarelli M, Zottola M 2017. Design and simulation of an underactuated finger mechanism for LARM hand. Robotica 35:483–97
    [Google Scholar]
  145. 145.  Homberg BS, Katzschmann RK, Dogar MR, Rus D 2015. Haptic identification of objects using a modular soft robotic gripper. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems1698–705 New York: IEEE
    [Google Scholar]
  146. 146.  van der Riet D, Stopforth R, Bright G, Diegel O 2015. The low cost design of a 3D printed multi-fingered myoelectric prosthetic hand. Mechatronics: Principles, Technologies and Applications E Brusa85–117 New York: Nova Sci.
    [Google Scholar]
  147. 147.  Wu FY, Asada HH 2015. “Hold-and-manipulate” with a single hand being assisted by wearable extra fingers. 2015 IEEE International Conference on Robotics and Automation6205–12 New York: IEEE
    [Google Scholar]
  148. 148.  Niiyama R, Sun X, Sung C, An B, Rus D, Kim S 2015. Pouch motors: printable soft actuators integrated with computational design. Soft Robot. 2:59–70
    [Google Scholar]
  149. 149.  Tavakoli M, Lopes P, Lourenço J, Rocha RP, Giliberto L et al. 2017. Autonomous selection of closing posture of a robotic hand through embodied soft matter capacitive sensors. IEEE Sens. J. 17:5669–77
    [Google Scholar]
  150. 150.  Hawkes EW, Christensen DL, Han AK, Jiang H, Cutkosky MR 2015. Grasping without squeezing: shear adhesion gripper with fibrillar thin film. 2015 IEEE International Conference on Robotics and Automation2305–12 New York: IEEE
    [Google Scholar]
  151. 151.  Franchi G, ten Pas A, Platt R, Panzieri S 2015. The Baxter Easyhand: a robot hand that costs $150 US in parts. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems2917–22 New York: IEEE
    [Google Scholar]
  152. 152.  Xu Z, Todorov E 2016. Design of a highly biomimetic anthropomorphic robotic hand towards artificial limb regeneration. 2016 IEEE International Conference on Robotics and Automation3485–92 New York: IEEE
    [Google Scholar]
  153. 153.  Cerruti G, Chablat D, Gouaillier D, Sakka S 2016. Alpha: a hybrid self-adaptable hand for a social humanoid robot. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems900–6 New York: IEEE
    [Google Scholar]
  154. 154.  Piazza C, Della Santina C, Catalano M, Grioli G, Garabini M, Bicchi A 2016. SoftHand Pro-D: matching dynamic content of natural user commands with hand embodiment for enhanced prosthesis control. 2016 IEEE International Conference on Robotics and Automation3516–23 New York: IEEE
    [Google Scholar]
  155. 155.  Backus SB, Dollar AM 2016. An adaptive three-fingered prismatic gripper with passive rotational joints. IEEE Robot. Autom. Lett. 1:668–75
    [Google Scholar]
  156. 156.  Godfrey SB, Bianchi M, Zhao K, Catalano MG, Breighner R et al. 2016. The SoftHand Pro: translation from robotic hand to prosthetic prototype. Converging Clinical and Engineering Research on Neurorehabilitation II: Biosystems and Biorobotics J Ibáñez, J Gonzàlez-Vargas, J Azorìn, M Akay, J Pons469–73 Cham, Switz.: Springer
    [Google Scholar]
  157. 157.  Galloway KC, Becker KP, Phillips B, Kirby J, Licht S et al. 2016. Soft robotic grippers for biological sampling on deep reefs. Soft Robot. 3:23–33
    [Google Scholar]
  158. 158.  Open Bionics 2016. ADA V1.1 Data Sheet, Open Bionics, Bristol, UK. https://openbionicslabs.com/s/Ada_v1_1_Datasheet.pdf
    [Google Scholar]
  159. 159.  Zhao H, O'Brien K, Li S, Shepherd RF 2016. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 1:eaai7529
    [Google Scholar]
  160. 160.  Kim HI, Han MW, Song SH, Ahn SH 2016. Soft morphing hand driven by SMA tendon wire. Composites B 105:138–48
    [Google Scholar]
  161. 161.  Atasoy A, Kaya E, Toptas E, Kuchimov S, Kaplanoglu E, Ozkan M 2016. 24 DOF EMG controlled hybrid actuated prosthetic hand. 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society5059–62 New York: IEEE
    [Google Scholar]
  162. 162.  She Y, Chen J, Shi H, Su HJ 2016. Modeling and validation of a novel bending actuator for soft robotics applications. Soft Robot. 3:71–81
    [Google Scholar]
  163. 163.  Shintake J, Rosset S, Schubert B, Floreano D, Shea H 2016. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv. Mater. 28:231–38
    [Google Scholar]
  164. 164.  Wise M, Ferguson M, King D, Diehr E, Dymesich D 2016. Fetch and Freight: standard platforms for service robot applications Paper presented at the 25th International Joint Conference on Artificial Intelligence, New York, July 9–15
    [Google Scholar]
  165. 165.  Wang Z, Torigoe Y, Hirai S 2017. A prestressed soft gripper: design, modeling, fabrication, and tests for food handling. IEEE Robot. Autom. Lett. 2:1909–16
    [Google Scholar]
  166. 166.  Zhou J, Chen S, Wang Z 2017. A soft-robotic gripper with enhanced object adaptation and grasping reliability. IEEE Robot. Autom. Lett. 2:2287–93
    [Google Scholar]
  167. 167.  Mottard A, Laliberté T, Gosselin C 2017. Underactuated tendon-driven robotic/prosthetic hands: design issues. Robotics: Science and Systems XIII N Amato, S Srinivasa, N Ayanian, S Kuindersma chap. 19. N.p.: Robot. Sci. Syst. Found.
    [Google Scholar]
  168. 168.  Controzzi M, Clemente F, Barone D, Ghionzoli A, Cipriani C 2017. The SSSA-MyHand: a dexterous lightweight myoelectric hand prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 25:459–68
    [Google Scholar]
  169. 169.  Zappatore GA, Reina G, Messina A 2017. Adam's hand: an underactuated robotic end-effector. Advances in Italian Mechanism Science G Boschetti, A Gasparetto239–46 Cham, Switz.: Springer
    [Google Scholar]
  170. 170.  Amend J, Lipson H 2017. The JamHand: dexterous manipulation with minimal actuation. Soft Robot. 4:70–80
    [Google Scholar]
  171. 171.  Lee DH, Park JH, Park SW, Baeg MH, Bae JH 2017. KITECH-Hand: a highly dexterous and modularized robotic hand. IEEE/ASME Trans. Mechatron. 22:876–87
    [Google Scholar]
  172. 172.  Gopura R, Bandara D, Gunasekera N, Hapuarachchi V, Ariyarathna B 2017. A prosthetic hand with self-adaptive fingers. 2017 3rd International Conference on Control, Automation and Robotics269–74 New York: IEEE
    [Google Scholar]
  173. 173.  Li Y, Chen Y, Yang Y, Wei Y 2017. Passive particle jamming and its stiffening of soft robotic grippers. IEEE Trans. Robot. 33:446–55
    [Google Scholar]
  174. 174.  Tian M, Xiao Y, Wang X, Chen J, Zhao W 2017. Design and experimental research of pneumatic soft humanoid robot hand. Robot Intelligence Technology and Applications 4 JH Kim, F Karray, J Jo, P Sincak, H Myung469–78 Cham, Switz.: Springer
    [Google Scholar]
  175. 175.  Mio R, Villegas B, Ccorimanya L, Flores KM, Salazar G, Elías D 2017. Development and assessment of a powered 3D-printed prosthetic hand for transmetacarpal amputees. 2017 3rd International Conference on Control, Automation and Robotics85–90 New York: IEEE
    [Google Scholar]
  176. 176.  Wen L, Li Y, Cong M, Lang H, Du Y 2017. Design and optimization of a tendon-driven robotic hand. 2017 IEEE International Conference on Industrial Technology767–72 New York: IEEE
    [Google Scholar]
  177. 177.  Wiste T, Goldfarb M 2017. Design of a simplified compliant anthropomorphic robot hand. 2017 IEEE International Conference on Robotics and Automation3433–38 New York: IEEE
    [Google Scholar]
  178. 178.  Mishra AK, Del Dottore E, Sadeghi A, Mondini A, Mazzolai B 2017. SIMBA: tendon-driven modular continuum arm with soft reconfigurable gripper. Front. Robot. AI 4:4
    [Google Scholar]
  179. 179.  Nishimura T, Mizushima K, Suzuki Y, Tsuji T, Watanabe T 2017. Variable-grasping-mode underactuated soft gripper with environmental contact-based operation. IEEE Robot. Autom. Lett. 2:1164–71
    [Google Scholar]
  180. 180.  Hao Y, Wang T, Ren Z, Gong Z, Wang H et al. 2017. Modeling and experiments of a soft robotic gripper in amphibious environments. Int. J. Adv. Robot. Syst. 14:4 https://doi.org/10.1177/1729881417724191
    [Crossref] [Google Scholar]
  181. 181.  Wu L, de Andrade MJ, Saharan LK, Rome RS, Baughman RH, Tadesse Y 2017. Compact and low-cost humanoid hand powered by nylon artificial muscles. Bioinspirat. Biomimet. 12:026004
    [Google Scholar]
  182. 182.  Bircher WG, Dollar AM, Rojas N 2017. A two-fingered robot gripper with large object reorientation range. 2017 IEEE International Conference on Robotics and Automation3453–60 New York: IEEE
    [Google Scholar]
  183. 183.  McCann CM, Dollar AM 2017. Design of a Stewart platform-inspired dexterous hand for 6-DOF within-hand manipulation. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems1158–63 New York: IEEE
    [Google Scholar]
  184. 184.  Ren Z, Zhou C, Xin S, Tsagarakis N 2017. HERI hand: a quasi dexterous and powerful hand with asymmetrical finger dimensions and under actuation. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems322–28 New York: IEEE
    [Google Scholar]
  185. 185.  Ho V, Hirai S 2017. Design and analysis of a soft-fingered hand with contact feedback. IEEE Robot. Autom. Lett. 2:491–98
    [Google Scholar]
  186. 186.  Jeong SH, Kim KS, Kim S 2017. Designing anthropomorphic robot hand with active dual-mode twisted string actuation mechanism and tiny tension sensors. IEEE Robot. Autom. Lett. 2:1571–78
    [Google Scholar]
  187. 187.  Ko T, Kaminaga H, Nakamura Y 2017. Underactuated four-fingered hand with five electro hydrostatic actuators in cluster. 2017 IEEE International Conference on Robotics and Automation620–25 New York: IEEE
    [Google Scholar]
  188. 188.  Piazza C, Catalano MG, Godfrey SB, Rossi M, Grioli G et al. 2017. The SoftHand Pro-H: a hybrid body-controlled, electrically powered hand prosthesis for daily living and working. IEEE Robot. Autom. Mag. 24:87–101
    [Google Scholar]
  189. 189.  Liu Y, Jiang L, Fan S, Yang D, Zhao J, Liu H 2017. A novel actuation configuration of robotic hand and the mechanical implementation via postural synergies. 2017 IEEE International Conference on Robotics and Automation2215–22 New York: IEEE
    [Google Scholar]
  190. 190.  Choi KY, Akhtar A, Bretl T 2017. A compliant four-bar linkage mechanism that makes the fingers of a prosthetic hand more impact resistant. 2017 IEEE International Conference on Robotics and Automation6694–99 New York: IEEE
    [Google Scholar]
  191. 191.  Low JH, Lee WW, Khin PM, Thakor NV, Kukreja SL et al. 2017. Hybrid tele-manipulation system using a sensorized 3-D-printed soft robotic gripper and a soft fabric-based haptic glove. IEEE Robot. Autom. Lett. 2:880–87
    [Google Scholar]
  192. 192.  Hasegawa S, Wada K, Niitani Y, Okada K, Inaba M 2017. A three-fingered hand with a suction gripping system for picking various objects in cluttered narrow space. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems1164–71 New York: IEEE
    [Google Scholar]
  193. 193.  Schaler EW, Ruffatto D, Glick P, White V, Parness A 2017. An electrostatic gripper for flexible objects. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems1172–79 New York: IEEE
    [Google Scholar]
  194. 194.  Arns M, Laliberté T, Gosselin C 2017. Design, control and experimental validation of a haptic robotic hand performing human-robot handshake with human-like agility. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems4626–33 New York: IEEE
    [Google Scholar]
  195. 195.  Low J, Cheng N, Khin P, Thakor N, Kukreja S et al. 2017. A bidirectional soft pneumatic fabric-based actuator for grasping applications. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems1180–86 New York: IEEE
    [Google Scholar]
  196. 196.  Makino S, Kawaharazuka K, Kawamura M, Asano Y, Okada K, Inaba M 2017. High-power, flexible, robust hand: development of musculoskeletal hand using machined springs and realization of self-weight supporting motion with humanoid. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems1187–92 New York: IEEE
    [Google Scholar]
  197. 197.  Stavenuiter RA, Birglen L, Herder JL 2017. A planar underactuated grasper with adjustable compliance. Mech. Mach. Theory 112:295–306
    [Google Scholar]
  198. 198.  Wang N, Lao K, Zhang X 2017. Design and myoelectric control of an anthropomorphic prosthetic hand. J. Bionic Eng. 14:47–59
    [Google Scholar]
  199. 199.  Scharff RB, Doubrovski EL, Poelman WA, Jonker PP, Wang CC, Geraedts JM 2017. Towards behavior design of a 3D-printed soft robotic hand. Soft Robotics: Trends, Applications and Challenges C Laschi, J Rossiter, F Iida, M Cianchetti, L Margheri23–29 Cham, Switz.: Springer
    [Google Scholar]
  200. 200.  Yang Y, Zhang W, Xu X, Hu H, Hu J 2017. LIPSA hand: a novel underactuated hand with linearly parallel and self-adaptive grasp. Mechanism and Machine Science X Zhang, N Wang, Y Huang111–19 Singapore: Springer
    [Google Scholar]
  201. 201. Taska Prosthet 2018. Taska Prosthetics website. http://www.taskaprosthetics.com
  202. 202.  Terryn S, Brancart J, Lefeber D, Van Assche G, Vanderborght B 2017. Self-healing soft pneumatic robots. Sci. Robot. 2:eaan4268
    [Google Scholar]
  203. 203.  Ma R, Dollar A 2017. Yale OpenHand project: optimizing open-source hand designs for ease of fabrication and adoption. IEEE Robot. Autom. Mag. 24:32–40
    [Google Scholar]
  204. 204.  Glick P, Suresh S, Ruffatto D, Cutkosky M, Tolley MT, Parness A 2018. A soft robotic gripper with gecko-inspired adhesive. IEEE Robot. Autom. Lett. 3:903–10
    [Google Scholar]
  205. 205.  Faudzi AAM, Ooga J, Goto T, Takeichi M, Suzumori K 2018. Index finger of a human-like robotic hand using thin soft muscles. IEEE Robot. Autom. Lett. 3:92–99
    [Google Scholar]
  206. 206.  Jianshu Z, Xiaojiao C, Jing L, Yinan T, Zheng W 2018. A soft robotic approach to robust and dexterous grasping. 2018 IEEE International Conference on Soft Robotics (RoboSoft)412–17 New York: IEEE
    [Google Scholar]
  207. 207.  Hongying Z, Kumar AS, Fuh JYH, Wang MY 2018. Topology optimized design, fabrication and evaluation of a multimaterial soft gripper. 2018 IEEE International Conference on Soft Robotics (RoboSoft)424–30 New York: IEEE
    [Google Scholar]
  208. 208.  Nassour J, Ghadiya V, Hugel V, Hamker FH 2018. Design of new sensory soft hand: combining air-pump actuation with superimposed curvature and pressure sensors. 2018 IEEE International Conference on Soft Robotics (RoboSoft)164–69 New York: IEEE
    [Google Scholar]
  209. 209.  Yuen MCS, Lear TR, Tonoyan H, Telleria M, Kramer-Bottiglio R 2018. Toward closed-loop control of pneumatic grippers during pack-and-deploy operations. IEEE Robot. Autom. Lett. 3:1402–9
    [Google Scholar]
  210. 210. Rehab Technol. Lab. 2018. Sviluppo dispositivi medici. Rehab Technologies Lab http://rehab.iit.it/sviluppo-dispositivi
    [Google Scholar]
  211. 211.  Pedro P, Ananda C, Rafael PB, Carlos AR, Alexandre BC 2018. Closed structure soft robotic gripper. 2018 IEEE International Conference on Soft Robotics (RoboSoft)66–70 New York: IEEE
    [Google Scholar]
  212. 212.  Chen F, Xu W, Zhang H, Wang Y, Cao J et al. 2018. Topology optimized design, fabrication, and characterization of a soft cable-driven gripper. IEEE Robot. Autom. Lett. 3:2463–70
    [Google Scholar]
  213. 213.  Mizushima K, Oku T, Suzuki Y, Tsuji T, Watanabe T 2018. Multi-fingered robotic hand based on hybrid mechanism of tendon-driven and jamming transition. 2018 IEEE International Conference on Soft Robotics (RoboSoft)376–81 New York: IEEE
    [Google Scholar]
  214. 214.  Tianjian C, Maximilian HH, Matei C 2018. Underactuated hand design using mechanically realizable manifolds. 2018 IEEE International Conference on Robotics and Automation New York: IEEE. Forthcoming
    [Google Scholar]
  215. 215.  Morrison D, Tow A, McTaggart M, Smith R, Kelly-Boxall N et al. 2018. Cartman: the low-cost Cartesian manipulator that won the Amazon Robotics Challenge. 2018 IEEE International Conference on Robotics and Automation New York: IEEE. Forthcoming
    [Google Scholar]
  216. 216.  Alspach A, Kim J, Yamane K 2018. Design and fabrication of a soft robotic hand and arm system. 2018 IEEE International Conference on Soft Robotics (RoboSoft)369–95 New York: IEEE
    [Google Scholar]
  217. 217.  Nagamanikandan G, Sai SVK, Karthik C, Thondiyath A 2018. GraspMan: a novel robotic platform with grasping, manipulation, and multimodal locomotion capability. 2018 IEEE International Conference on Robotics and Automation New York: IEEE. Forthcoming
    [Google Scholar]
  218. 218.  Castellini C, Van Der Smagt P, Sandini G, Hirzinger G 2008. Surface EMG for force control of mechanical hands. 2008 IEEE International Conference on Robotics and Automation725–30 New York: IEEE
    [Google Scholar]
  219. 219.  Belter JT, Leddy MT, Gemmell KD, Dollar AM 2016. Comparative clinical evaluation of the Yale Multigrasp Hand. 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics528–35 New York: IEEE
    [Google Scholar]
  220. 220.  Kargov A, Ivlev O, Pylatiuk C, Asfour T, Schulz S et al. 2007. Applications of a fluidic artificial hand in the field of rehabilitation. Rehabilitation Robotics SS Kommu261–86 Rijeka, Croatia: InTech
    [Google Scholar]
  221. 221.  Vogel J, Haddadin S, Jarosiewicz B, Simeral JD, Bacher D et al. 2015. An assistive decision-and-control architecture for force-sensitive hand–arm systems driven by human–machine interfaces. Int. J. Robot. Res. 34:763–80
    [Google Scholar]
  222. 222.  Leidner D, Borst C, Dietrich A, Beetz M, Albu-Schäffer A 2015. Classifying compliant manipulation tasks for automated planning in robotics. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems1769–76 New York: IEEE
    [Google Scholar]
  223. 223.  Romay A, Kohlbrecher S, Conner DC, Stumpf A, von Stryk O 2014. Template-based manipulation in unstructured environments for supervised semi-autonomous humanoid robots. 2014 14th IEEE-RAS International Conference on Humanoid Robots979–86 New York: IEEE
    [Google Scholar]
  224. 224.  Cerulo I, Ficuciello F, Lippiello V, Siciliano B 2017. Teleoperation of the SCHUNK S5FH under-actuated anthropomorphic hand using human hand motion tracking. Robot. Auton. Syst. 89:75–84
    [Google Scholar]
  225. 225.  Ambrose RO, Aldridge H, Askew RS, Burridge RR, Bluethmann W et al. 2000. Robonaut: NASA's space humanoid. IEEE Intell. Syst. Their Appl. 15:57–63
    [Google Scholar]
  226. 226.  Knoop E, Bächer M, Wall V, Deimel R, Brock O, Beardsley P 2017. Handshakiness: benchmarking for human-robot hand interactions. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems4982–89 New York: IEEE
    [Google Scholar]
  227. 227.  Asfour T, Regenstein K, Azad P, Schroder J, Bierbaum A et al. 2006. ARMAR-III: an integrated humanoid platform for sensory-motor control. 2006 6th IEEE-RAS International Conference on Humanoid Robots169–75 New York: IEEE
    [Google Scholar]
  228. 228.  Albu-Schäffer A, Haddadin S, Ott C, Stemmer A, Wimböck T, Hirzinger G 2007. The DLR lightweight robot: design and control concepts for robots in human environments. Ind. Robot 34:376–85
    [Google Scholar]
  229. 229.  Johnson M, Shrewsbury B, Bertrand S, Wu T, Duran D et al. 2015. Team IHMC's lessons learned from the DARPA Robotics Challenge Trials. J. Field Robot. 32:192–208
    [Google Scholar]
  230. 230.  Borst C, Fischer M, Haidacher S, Liu H, Hirzinger G 2003. DLR Hand II: experiments and experience with an anthropomorphic hand. 2003 IEEE International Conference on Robotics and Automation 1702–7 New York: IEEE
    [Google Scholar]
  231. 231. Nat. Mach. Motion Init. 2017. Natural Machine Motion Initiative website. https://www.naturalmachinemotioninitiative.com
  232. 232. Tech. Univ. Berlin. 2016. Soft Hands. Technische Universität Berlin Department of Computer Engineering and Microelectronics http://www.robotics.tu-berlin.de/menue/research/soft_hands
    [Google Scholar]
  233. 233. e-NABLE. 2018. About us. Enabling the Future http://enablingthefuture.org/about
    [Google Scholar]
  234. 234.  Liarokapis MV, Zisimatos AG, Mavrogiannis CI, Kyriakopoulos KJ 2014. OpenBionics: an open-source initiative for the creation of affordable, modular, light-weight, underactuated robot hands and prosthetic devices Paper presented at the 2nd Arizona State University Rehabilitation Robotics Workshop, Tempe, Feb. 28–Mar. 1
    [Google Scholar]
  235. 235.  Shintake J, Cacucciolo V, Floreano D, Shea H 2018. Soft robotic grippers. Adv. Mater. 30:1707035
    [Google Scholar]
  236. 236.  Hughes J, Culha U, Giardina F, Guenther F, Rosendo A, Iida F 2016. Soft manipulators and grippers: a review. Front. Robot. AI 3:69
    [Google Scholar]
  237. 237.  Ulrich N, Kumar V 1988. Grasping using fingers with coupled joints. Trends and Developments in Mechanisms, Machines and Robotics A Midha201–8 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  238. 238.  Lee S 1990. Artificial dexterous hand US Patent 4,955,918
    [Google Scholar]
  239. 239.  Birglen L, Laliberté T, Gosselin CM 2007. Underactuated Robotic Hands Berlin: Springer
    [Google Scholar]
  240. 240.  Easton TA 1972. On the normal use of reflexes: The hypothesis that reflexes form the basic language of the motor program permits simple, flexible specifications of voluntary movements and allows fruitful speculation. Am. Sci. 60:591–99
    [Google Scholar]
  241. 241.  Prattichizzo D, Malvezzi M, Bicchi A 2010. On motion and force control of grasping hands with postural synergies. Robotics: Science and Systems VI Y Matsuoka, H Durrant-Whyte, J Neira49–56 Cambridge, MA: MIT Press
    [Google Scholar]
  242. 242.  Ciocarlie M, Goldfeder C, Allen P 2007. Dexterous grasping via eigengrasps: a low-dimensional approach to a high-complexity problem Paper presented at the 3rd Robotics: Science and Systems Conference, Atlanta, June 27–30
    [Google Scholar]
  243. 243.  Bonilla M, Farnioli E, Piazza C, Catalano M, Grioli G et al. 2014. Grasping with soft hands. 2014 14th IEEE-RAS International Conference on Humanoid Robots581–87 New York: IEEE
    [Google Scholar]
  244. 244.  Eppner C, Deimel R, Álvarez-Ruiz J, Maertens M, Brock O 2015. Exploitation of environmental constraints in human and robotic grasping. Int. J. Robot. Res. 34:1021–38
    [Google Scholar]
  245. 245.  Cannata G, Maggiali M, Metta G, Sandini G 2008. An embedded artificial skin for humanoid robots. 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems434–38 New York: IEEE
    [Google Scholar]
  246. 246.  Wall V, Zöller G, Brock O 2017. A method for sensorizing soft actuators and its application to the RBO Hand 2. 2017 IEEE International Conference on Robotics and Automation4965–70 New York: IEEE
    [Google Scholar]
  247. 247.  Lessing JA, Whitesides GM, Martinez RV, Yang D, Mosadegh B et al. 2017. Sensors for soft robots and soft actuators US Patent Appl. 15/503549
    [Google Scholar]
  248. 248.  Falco J, Van Wyk K, Liu S, Carpin S 2015. Grasping the performance: facilitating replicable performance measures via benchmarking and standardized methodologies. IEEE Robot. Autom. Mag. 22:125–36
    [Google Scholar]
  249. 249.  Grebenstein M, Albu-Schäffer A, Bahls T, Chalon M, Eiberger O et al. 2011. The DLR hand arm system. 2011 IEEE International Conference on Robotics and Automation3175–82 New York: IEEE
    [Google Scholar]
  250. 250.  Zisimatos AG, Liarokapis MV, Mavrogiannis CI, Kyriakopoulos KJ 2014. Open-source, affordable, modular, light-weight, underactuated robot hands. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems3207–12 New York: IEEE
    [Google Scholar]
  251. 251.  Bierbaum A, Rambow M, Asfour T, Dillmann R 2009. Grasp affordances from multi-fingered tactile exploration using dynamic potential fields. 9th IEEE-RAS International Conference on Humanoid Robots168–74 New York: IEEE
    [Google Scholar]
  252. 252.  Herzog A, Pastor P, Kalakrishnan M, Righetti L, Bohg J et al. 2014. Learning of grasp selection based on shape-templates. Auton. Robots 36:51–65
    [Google Scholar]
/content/journals/10.1146/annurev-control-060117-105003
Loading
/content/journals/10.1146/annurev-control-060117-105003
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error