1932

Abstract

The goal of this article is to provide a thorough introduction to the state of the art in magnetic methods for remote-manipulation and wireless-actuation tasks in robotics. The article synthesizes prior works using a unified notation, enabling straightforward application in robotics. It begins with a discussion of the magnetic fields generated by magnetic materials and electromagnets, how magnetic materials become magnetized in an applied field, and the forces and torques generated on magnetic objects. It then describes systems used to generate and control applied magnetic fields, including both electromagnetic and permanent-magnet systems. Finally, it surveys work from a variety of robotic application areas in which researchers have utilized magnetic methods, including microrobotics, medical robotics, haptics, and aerospace.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-081219-082713
2020-05-03
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/control/3/1/annurev-control-081219-082713.html?itemId=/content/journals/10.1146/annurev-control-081219-082713&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Lynch KM, Park FC. 2017. Modern Robotics: Mechanics, Planning, and Control Cambridge, UK: Cambridge Univ. Press
  2. 2. 
    Furlani EP. 2001. Permanent Magnet and Electromechanical Devices San Diego, CA: Academic
  3. 3. 
    Griffiths DJ. 1999. Introduction to Electrodynamics Upper Saddle River, NJ: Prentice Hall
  4. 4. 
    Petruska AJ, Abbott JJ. 2013. Optimal permanent-magnet geometries for dipole field approximation. IEEE Trans. Magn. 49:811–19
    [Google Scholar]
  5. 5. 
    Cullity BD, Graham CD. 2009. Introduction to Magnetic Materials Piscataway, NJ: IEEE Press, 2nd ed..
  6. 6. 
    Liorzou F, Phelps B, Atherton DL 2000. Macroscopic models of magnetization. IEEE Trans. Magn. 36:418–28
    [Google Scholar]
  7. 7. 
    Diller E, Zhang N, Sitti M 2013. Modular micro-robotic assembly through magnetic actuation and thermal bonding. J. Micro-Bio Robot. 8:121–31
    [Google Scholar]
  8. 8. 
    Abbott JJ, Ergeneman O, Kummer MP, Hirt AM, Nelson BJ 2007. Modeling magnetic torque and force for controlled manipulation of soft-magnetic bodies. IEEE Trans. Robot. 23:1247–52
    [Google Scholar]
  9. 9. 
    Osborn JA. 1945. Demagnetizing factors of the general ellipsoid. Phys. Rev. 67:351–57
    [Google Scholar]
  10. 10. 
    Chen DX, Pardo E, Sanchez A 2002. Demagnetizing factors of rectangular prisms and ellipsoids. IEEE Trans. Magn. 38:1742–52
    [Google Scholar]
  11. 11. 
    Joseph RI, Schlömann E. 1965. Demagnetizing field in nonellipsoidal bodies. J. Appl. Phys. 36:1579–93
    [Google Scholar]
  12. 12. 
    Chen DX, Brug JA, Goldfarb RB 1991. Demagnetizing factors for cylinders. IEEE Trans. Magn. 27:3601–19
    [Google Scholar]
  13. 13. 
    Beleggia M, De Graef M, Millev YT 2006. The equivalent ellipsoid of a magnetized body. J. Phys. D 39:891–99
    [Google Scholar]
  14. 14. 
    Beleggia M, Vokoun D, De Graef M 2009. Demagnetization factors for cylindrical shells and related shapes. J. Magn. Magn. Mater. 321:1306–15
    [Google Scholar]
  15. 15. 
    Aharoni A. 1998. Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 83:3432–34
    [Google Scholar]
  16. 16. 
    Hagedorn FB, Gyorgy EM. 1968. Magnetic-shape anisotropy in polygonal prisms. J. Appl. Phys. 39:995–97
    [Google Scholar]
  17. 17. 
    Martel S. 2015. Magnetic nanoparticles in medical nanorobotics. J. Nanopart. Res. 17:75
    [Google Scholar]
  18. 18. 
    Wang X, Ho C, Tsatskis Y, Law J, Zhang Z et al. 2019. Intracellular manipulation and measurement with multipole magnetic tweezers. Sci. Robot. 4:eaav6180
    [Google Scholar]
  19. 19. 
    Shapiro B, Kulkarni S, Nacev A, Sarwar A, Preciado D, Depireux DA 2014. Shaping magnetic fields to direct therapy to ears and eyes. Annu. Rev. Biomed. Eng. 16:455–81
    [Google Scholar]
  20. 20. 
    Cheang UK, Roy D, Lee JH, Kim MJ 2010. Fabrication and magnetic control of bacteria-inspired robotic microswimmers. Appl. Phys. Lett. 97:213704
    [Google Scholar]
  21. 21. 
    Beleggia M, Tandon S, Zhu Y, De Graef M 2004. On the computation of the demagnetization tensor for particles of arbitrary shape. J. Magn. Magn. Mater. 272–76:Suppl.E1197–99
    [Google Scholar]
  22. 22. 
    Petruska AJ, Nelson BJ. 2015. Minimum bounds on the number of electromagnets required for remote magnetic manipulation. IEEE Trans. Robot. 31:714–22
    [Google Scholar]
  23. 23. 
    Giltinan J, Sitti M. 2019. Simultaneous six-degree-of-freedom control of a single-body magnetic microrobot. IEEE Robot. Autom. Lett. 4:508–14
    [Google Scholar]
  24. 24. 
    Diller E, Giltinan J, Lum GZ, Ye Z, Sitti M 2016. Six-degree-of-freedom magnetic actuation for wireless microrobotics. Int. J. Robot. Res. 35:114–28
    [Google Scholar]
  25. 25. 
    Thornley CR, Pham LN, Abbott JJ 2019. Reconsidering six-degree-of-freedom magnetic actuation across scales. IEEE Robot. Autom. Lett. 4:2325–32
    [Google Scholar]
  26. 26. 
    Hsu A, Cowan C, Chu W, McCoy B, Wong-Foy A et al. 2017. Automated 2D micro-assembly using diamagnetically levitated milli-robots. 2017 International Conference on Manipulation, Automation, and Robotics at Small Scales160–65 Piscataway, NJ: IEEE
    [Google Scholar]
  27. 27. 
    Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ 2010. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans. Robot. 26:1006–17
    [Google Scholar]
  28. 28. 
    Firester AH. 1966. Design of square Helmholtz coil systems. Rev. Sci. Instrum. 37:1264–65
    [Google Scholar]
  29. 29. 
    Ginsberg DM, Melchner MJ. 1970. Optimum geometry of saddle shaped coils for generating a uniform magnetic field. Rev. Sci. Instrum. 41:122–23
    [Google Scholar]
  30. 30. 
    Hidalgo-Tabon SS. 2001. Theory of gradient coil design methods for magnetic resonance imaging. Concepts Mag. Res. A 36A:223–42
    [Google Scholar]
  31. 31. 
    Ishiyama K, Arai KI, Sendoh M, Yamazaki A 2003. Spiral-type micro-machine for medical applications. J. Micromechatron. 2:77–86
    [Google Scholar]
  32. 32. 
    Abbott JJ. 2015. Parametric design of tri-axial nested Helmholtz coils. Rev. Sci. Instrum. 86:054701
    [Google Scholar]
  33. 33. 
    Ha YH, Han BH, Lee SY 2010. Magnetic propulsion of a magnetic device using three square-Helmholtz coils and a square-Maxwell coil. Med. Biol. Eng. Comput. 48:139–45
    [Google Scholar]
  34. 34. 
    Choi H, Cha K, Jeong S, Park J, Park S 2013. 3-D locomotive and drilling microrobot using novel stationary EMA system. IEEE/ASME Trans. Mechatron. 18:1221–25
    [Google Scholar]
  35. 35. 
    Meeker D, Maslen EH, Ritter RC, Creighton F 1996. Optimal realization of arbitrary forces in a magnetic stereotaxis system. IEEE Trans. Magn. 32:320–28
    [Google Scholar]
  36. 36. 
    Rahmer J, Stehning C, Gleich B 2017. Spatially selective remote magnetic actuation of identical helical micromachines. Sci. Robot. 2:eaal2845
    [Google Scholar]
  37. 37. 
    Keller H, Juloski A, Kawano H, Bechtold M, Kumura A et al. 2012. Method for navigation and control of a magnetically guided capsule endoscope in the human stomach. 2012 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics859–65 Piscataway, NJ: IEEE
    [Google Scholar]
  38. 38. 
    Kratochvil BE, Kummer MP, Erni S, Borer R, Frutiger DR et al. 2014. MiniMag: a hemispherical electromagnetic system for 5-DOF wireless micromanipulation. Experimental Robotics O Khatib, V Kumar, G Sukhatme 317–29 Berlin: Springer
    [Google Scholar]
  39. 39. 
    Edelmann J, Petruska AJ, Nelson BJ 2018. Estimation-based control of a magnetic endoscope without device localization. J. Med. Robot. Res. 3:1850002
    [Google Scholar]
  40. 40. 
    Salmanipour S, Diller E. 2018. Eight-degrees-of-freedom remote actuation of small magnetic mechanisms. 2018 IEEE International Conference on Robotics and Automation3608–13 Piscataway, NJ: IEEE
    [Google Scholar]
  41. 41. 
    Khalil ISM, Magdanz V, Sanchez S, Schmidt OG, Misra S 2013. Three-dimensional closed-loop control of self-propelled microjets. Appl. Phys. Lett. 103:172404
    [Google Scholar]
  42. 42. 
    Diller E, Sitti M. 2014. Three-dimensional programmable assembly by untethered magnetic robotic micro-grippers. Adv. Funct. Mater. 24:4397–404
    [Google Scholar]
  43. 43. 
    Pourkand A, Abbott JJ. 2018. A critical analysis of eight-electromagnet manipulation systems: the role of electromagnet configuration on strength, isotropy, and access. IEEE Robot. Autom. Lett 3:2957–62 Erratum. 2019 IEEE Robot. Autom. Lett 4:2251
    [Google Scholar]
  44. 44. 
    Gang ES, Nguyen BL, Shachar Y, Farkas L, Farkas L et al. 2011. Dynamically shaped magnetic fields initial animal validation of a new remote electrophysiology catheter guidance and control system. Circ. Arrhythm. Electrophysiol. 4:770–77
    [Google Scholar]
  45. 45. 
    Berkelman P, Dzadovsky M. 2013. Magnetic levitation over large translation and rotation ranges in all directions. IEEE/ASME Trans. Mechatron. 18:44–52
    [Google Scholar]
  46. 46. 
    Adel A, Micheal MM, Seif MA, Abdennadher S, Khalil ISM 2018. Rendering of virtual volumetric shapes using an electromagnetic-based haptic interface. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems8737–42 Piscataway, NJ: IEEE
    [Google Scholar]
  47. 47. 
    Son D, Dong X, Sitti M 2019. A simultaneous calibration method for magnetic robot localization and actuation systems. IEEE Trans. Robot. 35:343–52
    [Google Scholar]
  48. 48. 
    Petruska AJ, Abbott JJ. 2014. Omnimagnet: an omnidirectional electromagnet for controlled dipole-field generation. IEEE Trans. Magn. 50:8400810
    [Google Scholar]
  49. 49. 
    Petruska AJ, Mahoney AW, Abbott JJ 2014. Remote manipulation with a stationary computer-controlled magnetic dipole source. IEEE Trans. Robot. 30:1222–27
    [Google Scholar]
  50. 50. 
    Petruska AJ, Brink JB, Abbott JJ 2015. First demonstration of a modular and reconfigurable magnetic-manipulation system. 2015 IEEE International Conference on Robotics and Automation149–55 Piscataway, NJ: IEEE
    [Google Scholar]
  51. 51. 
    Erni S, Schürle S, Fakhraee A, Kratochvil BE, Nelson BJ 2013. Comparison, optimization, and limitations of magnetic manipulation systems. J. Micro-Bio Robot. 8:107–20
    [Google Scholar]
  52. 52. 
    Ongaro F, Pane S, Scheggi S, Misra S 2019. Design of an electromagnetic setup for independent three-dimensional control of pairs of identical and nonidentical microrobots. IEEE Trans. Robot. 35:174–83
    [Google Scholar]
  53. 53. 
    Afshar S, Khamesee MB, Khajepour A 2012. Optimal configuration for electromagnets and coils in magnetic actuators. IEEE Trans. Magn. 49:1372–81
    [Google Scholar]
  54. 54. 
    McCaslin MF. 1958. An improved hand electromagnet for eye surgery. Trans. Am. Ophthalmol. Soc. 56:571–605
    [Google Scholar]
  55. 55. 
    Haber C, Wirtz D. 2000. Magnetic tweezers for DNA micromanipulation. Rev. Sci. Instrum. 71:4561–70
    [Google Scholar]
  56. 56. 
    De Vlaminck I, Dekker C 2012. Recent advances in magnetic tweezers. Annu. Rev. Biophys. 41:453–72
    [Google Scholar]
  57. 57. 
    Khamesee MB, Kato N, Nomura Y, Nakamura T 2002. Design and control of a microrobotic system using magnetic levitation. IEEE/ASME Trans. Mechatron. 7:1–14
    [Google Scholar]
  58. 58. 
    Rahmer J, Stehning C, Glech B 2018. Remote magnetic actuation using a clinical scale system. PLOS ONE 13:e0193546
    [Google Scholar]
  59. 59. 
    Abbott JJ, Osting B. 2018. Optimization of coreless electromagnets to maximize field generation for magnetic manipulation systems. IEEE Magn. Lett. 9:1300104
    [Google Scholar]
  60. 60. 
    Brink JB, Petruska AJ, Johnson DE, Abbott JJ 2014. Factors affecting the design of untethered magnetic haptic interfaces. 2014 IEEE Haptics Symposium107–14 Piscataway, NJ: IEEE
    [Google Scholar]
  61. 61. 
    Leclerc J, Isichei B, Becker AT 2018. A magnetic manipulator cooled with liquid nitrogen. IEEE Robot. Autom. Lett. 3:4367–74
    [Google Scholar]
  62. 62. 
    Grady MS, Howard MA III, Molloy JA, Ritter RC, Quate EG, Gillies GT 1990. Nonlinear magnetic stereotaxis: three-dimensional, in vivo remote magnetic manipulation of a small object in canine brain. Med. Phys. 17:405–15
    [Google Scholar]
  63. 63. 
    Mahoney AW, Abbott JJ. 2016. Five-degree-of-freedom manipulation of an untethered magnetic device in fluid using a single permanent magnet with application in stomach capsule endoscopy. Int. J. Robot. Res. 35:129–47
    [Google Scholar]
  64. 64. 
    Ryan P, Diller E. 2017. Magnetic actuation for full dexterity microrobotic control using rotating permanent magnets. IEEE Trans. Robot. 33:1398–409
    [Google Scholar]
  65. 65. 
    Pittiglio G, Barducci L, Martin JW, Norton JC, Avizzano CA 2019. Magnetic levitation for soft-tethered capsule colonoscopy actuated with a single permanent magnet: a dynamic control approach. IEEE Robot. Autom. Lett. 4:1224–31
    [Google Scholar]
  66. 66. 
    Ciuti G, Valdastri P, Menciassi A, Dario P 2010. Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures. Robotica 28:199–207
    [Google Scholar]
  67. 67. 
    Carpi F, Pappone C. 2009. Stereotaxis Niobe® magnetic navigation system for endocardial catheter ablation and gastrointestinal capsule endoscopy. Expert Rev. Med. Devices 6:487–98
    [Google Scholar]
  68. 68. 
    Zhang W, Meng Y, Huang P 2008. A novel method of arraying permanent magnets circumferentially to generate a rotation magnetic field. IEEE Trans. Magn. 44:2367–72
    [Google Scholar]
  69. 69. 
    Zarrouk A, Belharet K, Tahri O, Ferreira A 2019. A four-magnet system for 2D wireless open-loop control of microrobots. 2019 International Conference on Robotics and Automation883–88 Piscataway, NJ: IEEE
    [Google Scholar]
  70. 70. 
    Yesin KB, Vollmers K, Nelson B 2006. Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int. J. Robot. Res. 25:527–36
    [Google Scholar]
  71. 71. 
    Jeong S, Choi H, Choi J, Yu C, Park J, Park S 2010. Novel electromagnetic actuation (EMA) method for 3-dimensional locomotion of intravascular microrobot. Sens. Actuators A 157:118–25
    [Google Scholar]
  72. 72. 
    Choi H, Cha K, Choi J, Jeong S, Jeon S et al. 2010. EMA system with gradient and uniform saddle coils for 3D locomotion of microrobot. Sens. Actuators A 163:410–17
    [Google Scholar]
  73. 73. 
    Véron B, Hubert A, Abadie J, Andreff N 2013. Geometric analysis of the singularities of a magnetic manipulation system with several mobile coils. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems4996–5001 Piscataway, NJ: IEEE
    [Google Scholar]
  74. 74. 
    Sikorski J, Denasi A, Bucchi G, Scheggi S, Misra S 2019. Vision-based 3-D control of magnetically actuated catheter using BigMag—an array of mobile electromagnetic coils. IEEE/ASME Trans. Mechatron. 24:505–16
    [Google Scholar]
  75. 75. 
    Yang L, Du X, Yu E, Jin D, Zhang L 2019. DeltaMag: an electromagnetic manipulation system with parallel mobile coils. 2019 International Conference on Robotics and Automation9814–20 Piscataway, NJ: IEEE
    [Google Scholar]
  76. 76. 
    Wang X, Meng MQH. 2008. A fast algorithm for field computation in magnetic guidance. 2008 International Conference on Information and Automation1608–13 Piscataway, NJ: IEEE
    [Google Scholar]
  77. 77. 
    Schuerle S, Erni S, Flink M, Kratochvil BE, Nelson BJ 2013. Three-dimensional magnetic manipulation of micro- and nanostructures for applications in life sciences. IEEE Trans. Magn. 49:321–30
    [Google Scholar]
  78. 78. 
    Khalil ISM, Abelmann L, Misra S 2014. Magnetic-based motion control of paramagnetic microparticles with disturbance compensation. IEEE Trans. Magn. 50:1–10
    [Google Scholar]
  79. 79. 
    Ongaro F, Heunis CM, Misra S 2019. Precise model-free spline-based approach for magnetic field mapping. IEEE Magn. Lett. 10:2100405
    [Google Scholar]
  80. 80. 
    Petruska AJ, Edelmann J, Nelson BJ 2017. Model-based calibration for magnetic manipulation. IEEE Trans. Magn. 53:4900206
    [Google Scholar]
  81. 81. 
    Mahoney AW, Abbott JJ. 2014. Generating rotating magnetic fields with a single permanent magnet for propulsion of untethered magnetic devices in a lumen. IEEE Trans. Robot. 30:411–20
    [Google Scholar]
  82. 82. 
    Wright SE, Mahoney AW, Popek KM, Abbott JJ 2017. The spherical-actuator-magnet manipulator: a permanent-magnet robotic end-effector. IEEE Trans. Robot. 33:1013–24
    [Google Scholar]
  83. 83. 
    Hosney A, Klingner A, Misra S, Khalil IS 2015. Propulsion and steering of helical magnetic microrobots using two synchronized rotating dipole fields in three-dimensional space. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems1988–93 Piscataway, NJ: IEEE
    [Google Scholar]
  84. 84. 
    Abbott JJ, Nagy Z, Beyeler F, Nelson BJ 2007. Robotics in the small, part I: microrobotics. IEEE Robot. Autom. Mag. 14:292–103
    [Google Scholar]
  85. 85. 
    Nelson BJ, Kaliakatsos IK, Abbott JJ 2010. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12:55–85
    [Google Scholar]
  86. 86. 
    Diller E, Sitti M. 2013. Micro-scale mobile robotics. Found. Trends Robot. 2:143–259
    [Google Scholar]
  87. 87. 
    Chen XZ, Hoop M, Mushtaq F, Siringil E, Hu C et al. 2017. Recent developments in magnetically driven micro- and nanorobots. Appl. Mater. Today 9:37–48
    [Google Scholar]
  88. 88. 
    Sitti M. 2017. Mobile Microrobotics Cambridge, MA: MIT Press
  89. 89. 
    Chowdhury S, Jing W, Cappelleri DJ 2015. Controlling multiple microrobots: recent progress and future challenges. J. Micro-Bio Robot. 10:1–11
    [Google Scholar]
  90. 90. 
    Diller E, Giltinan J, Sitti M 2013. Independent control of multiple magnetic microrobots in three dimensions. Int. J. Robot. Res. 32:614–31
    [Google Scholar]
  91. 91. 
    Khalil IS, Tabak AF, Hamed Y, Tawakol M, Klingner A et al. 2018. Independent actuation of two-tailed microrobots. IEEE Robot. Autom. Lett. 3:1703–10
    [Google Scholar]
  92. 92. 
    Salehizadeh M, Diller E. 2017. Two-agent formation control of magnetic microrobots in two dimensions. J. Micro-Bio Robot. 12:9–19
    [Google Scholar]
  93. 93. 
    Cheang UK, Meshkati F, Kim H, Lee K, Fu HC, Kim MJ 2016. Versatile microrobotics using simple modular subunits. Sci. Rep. 6:30472
    [Google Scholar]
  94. 94. 
    Yu J, Yang L, Zhang L 2018. Pattern generation and motion control of a vortex-like paramagnetic nanoparticle swarm. Int. J. Robot. Res. 37:912–30
    [Google Scholar]
  95. 95. 
    Xie H, Sun M, Fan X, Lin Z, Chen W et al. 2019. Reconfigurable magnetic microrobot swarm: multimode transformation, locomotion, and manipulation. Sci. Robot. 4:eaav8006
    [Google Scholar]
  96. 96. 
    Frei EH. 1970. Medical applications of magnetism. Crit. Rev. Solid State Mater. Sci. 1:381–407
    [Google Scholar]
  97. 97. 
    Sliker LJ, Ciuti G, Rentschler M, Menciassi A 2015. Magnetically driven medical devices: a review. Expert Rev. Med. Devices 12:737–52
    [Google Scholar]
  98. 98. 
    Sliker LJ, Ciuti G. 2014. Flexible and capsule endoscopy for screening, diagnosis and treatment. Expert Rev. Med. Devices 11:649–66
    [Google Scholar]
  99. 99. 
    Ciuti G, Caliò R, Camboni D, Neri L, Bianchi F et al. 2016. Frontiers of robotic endoscopic capsules: a review. J. Micro-Bio. Robot. 11:1–18
    [Google Scholar]
  100. 100. 
    Yim S, Sitti M. 2012. Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE Trans. Robot. 28:183–94
    [Google Scholar]
  101. 101. 
    Chiba A, Sendoh M, Ishiyama K, Arai KI, Kawano H et al. 2007. Magnetic actuator for a capsule endoscope navigation system. J. Magnet. 12:89–92
    [Google Scholar]
  102. 102. 
    Popek KM, Hermans T, Abbott JJ 2017. First demonstration of simultaneous localization and propulsion of a magnetic capsule in a lumen using a single rotating magnet. 2017 IEEE International Conference on Robotics and Automation1154–60 Piscataway, NJ: IEEE
    [Google Scholar]
  103. 103. 
    Slawinski PR, Taddese AZ, Musto KB, Obstein KL, Valdastri P 2017. Autonomous retroflexion of a magnetic flexible endoscope. IEEE Robot. Autom. Lett. 2:1352–59
    [Google Scholar]
  104. 104. 
    Taddese AZ, Slawinski PR, Pirotta M, DeMomi E, Obstein KL, Valdastri P 2018. Enhanced real-time pose estimation for closed-loop robotic manipulation of magnetically actuated capsule endoscopes. Int. J. Robot. Res. 37:890–911
    [Google Scholar]
  105. 105. 
    Tillander H. 1951. Magnetic guidance of a catheter with articulated steel tip. Acta Radiol 35:62–64
    [Google Scholar]
  106. 106. 
    Driller J, Frei EH. 1987. A review of medical applications of magnet attraction and detection. J. Med. Eng. Technol. 11:271–77
    [Google Scholar]
  107. 107. 
    Lavie A. 1970. The swimming of the POD: theoretical analysis and experimental results. IEEE Trans. Magn. 6:365–67
    [Google Scholar]
  108. 108. 
    Casarella WJ, Driller J, Hilal SK 1969. The magnetically guided bronchial catheter of modified POD design: a new approach to selective bronchography. Radiology 93:930–32
    [Google Scholar]
  109. 109. 
    Molcho J, Karny HZ, Frei EH, Askenasy HM 1970. Selective cerebral catheterization. IEEE Trans. Biomed. Eng BME-17 134–40
    [Google Scholar]
  110. 110. 
    Penn RD, Hilal SK, Michelsen WJ, Goldensohn ES, Driller J 1973. Intravascular intracranial EEG recording: technical note. J. Neurosurg. 38:239–43
    [Google Scholar]
  111. 111. 
    Faddis MN, Lindsay BD. 2003. Magnetic catheter manipulation. Coron. Artery Dis. 14:25–27
    [Google Scholar]
  112. 112. 
    Ernst S, Ouyang F, Linder C, Hertting K, Stahl F et al. 2004. Initial experience with remote catheter ablation using a novel magnetic navigation system magnetic remote catheter ablation. Circulation 109:1472–75
    [Google Scholar]
  113. 113. 
    Leon L, Warren FM, Abbott JJ 2018. An in-vitro insertion-force study of magnetically guided lateral-wall cochlear-implant electrode arrays. Otol. Neurotol. 39:e63–73
    [Google Scholar]
  114. 114. 
    Charreyron SL, Gabbi E, Boehler Q, Becker M, Nelson BJ 2019. A magnetically steered endolaser probe for automated panretinal photocoagulation. IEEE Robot. Autom. Lett. 4:xvii–xxiii
    [Google Scholar]
  115. 115. 
    Jeon S, Hoshiar AK, Kim K, Lee S, Kim E et al. 2019. A magnetically controlled soft microrobot steering a guidewire in a three-dimensional phantom vascular network. Soft Robot 6:54–68
    [Google Scholar]
  116. 116. 
    Kim J, Kang B, Nguyen PB, Choi E, Kim CS, Park JO 2018. Magnetic guidewire control without tip-angle detection in sharply curved blood vessel. 2018 International Conference on Manipulation, Automation and Robotics at Small Scales Piscataway, NJ: IEEE https://doi.org/10.1109/MARSS.2018.8481187
    [Crossref] [Google Scholar]
  117. 117. 
    Chautems C, Nelson BJ. 2017. The tethered magnet: force and 5-DOF pose control for cardiac ablation. 2017 IEEE International Conference on Robotics and Automation4837–42 Piscataway, NJ: IEEE
    [Google Scholar]
  118. 118. 
    Boskma KJ, Scheggi S, Misra S 2016. Closed-loop control of a magnetically-actuated catheter using two-dimensional ultrasound images. 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics61–66 Piscataway, NJ: IEEE
    [Google Scholar]
  119. 119. 
    Le VN, Nguyen NH, Alameh K, Weerasooriya R, Pratten P 2016. Accurate modeling and positioning of a magnetically controlled catheter tip. Med. Phys. 43:650–63
    [Google Scholar]
  120. 120. 
    Liu T, Jackson R, Franson D, Lombard Poirot N, Criss RK et al. 2017. Iterative Jacobian-based inverse kinematics and open-loop control of an MRI-guided magnetically actuated steerable catheter system. IEEE/ASME Trans. Mechatron. 22:1765–76
    [Google Scholar]
  121. 121. 
    Ullrich F, Schuerle S, Pieters R, Dishy A, Michels S, Nelson BJ 2014. Automated capsulorhexis based on a hybrid magnetic-mechanical actuation system. 2014 IEEE International Conference on Robotics and Automation4387–92 Piscataway, NJ: IEEE
    [Google Scholar]
  122. 122. 
    Greigarn T, Poirot NL, Xu X, Çavuşoğlu MC 2018. Jacobian-based task-space motion planning for MRI-actuated continuum robots. IEEE Robot. Autom. Lett. 4:145–52
    [Google Scholar]
  123. 123. 
    Tunay I. 2004. Position control of catheters using magnetic fields. Proceedings of the IEEE International Conference on Mechatronics, 2004392–97 Piscataway, NJ: IEEE
    [Google Scholar]
  124. 124. 
    Tunay I. 2011. Distributed parameter statics of magnetic catheters. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society8344–47 Piscataway, NJ: IEEE
    [Google Scholar]
  125. 125. 
    Charreyron SL, Zeydan B, Nelson BJ 2017. Shared control of a magnetic microcatheter for vitreoretinal targeted drug delivery. 2017 IEEE International Conference on Robotics and Automation4843–48 Piscataway, NJ: IEEE
    [Google Scholar]
  126. 126. 
    Kratchman LB, Bruns TL, Abbott JJ, Webster RJ III 2017. Guiding elastic rods with a robot-manipulated magnet for medical applications. IEEE Trans. Robot. 33:227–33
    [Google Scholar]
  127. 127. 
    Edelmann J, Petruska AJ, Nelson BJ 2017. Magnetic control of continuum devices. Int. J. Robot. Res. 36:65–85
    [Google Scholar]
  128. 128. 
    Peyron Q, Boehler Q, Rabenorosoa K, Nelson BJ, Renaud P, Andreff N 2018. Kinematic analysis of magnetic continuum robots using continuation method and bifurcation analysis. IEEE Robot. Autom. Lett. 3:3646–53
    [Google Scholar]
  129. 129. 
    Grady MS, Howard MA III, Dacey RG Jr, Blume W, Lawson M et al. 2000. Experimental study of the magnetic stereotaxis system for catheter manipulation within the brain. J. Neurosurg. 93:282–88
    [Google Scholar]
  130. 130. 
    Petruska AJ, Ruetz F, Hong A, Regli L, Surucu O et al. 2016. Magnetic needle guidance for neurosurgery: initial design and proof of concept. 2016 IEEE International Conference on Robotics and Automation4392–97 Piscataway, NJ: IEEE
    [Google Scholar]
  131. 131. 
    Mathieu JB, Beaudoin G, Martel S 2006. Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system. IEEE Trans. Biomed. Eng. 53:292–99
    [Google Scholar]
  132. 132. 
    Martel S. 2017. Beyond imaging: macro- and microscale medical robots actuated by clinical MRI scanners. Sci. Robot 2:eaam8119
    [Google Scholar]
  133. 133. 
    Vartholomeos P, Fruchard M, Ferreira A, Mavroidis C 2011. MRI-guided nanorobotic systems for therapeutic and diagnostic applications. Annu. Rev. Biomed. Eng. 13:157–84
    [Google Scholar]
  134. 134. 
    Jeon SM, Jang GH, Choi HC, Park SH, Park JO 2011. Precise manipulation of a microrobot in the pulsatile flow of human blood vessels using magnetic navigation system. J. Appl. Phys. 109:07B316
    [Google Scholar]
  135. 135. 
    Vartholomeos P, Bergeles C, Qin L, Dupont PE 2013. An MRI-powered and controlled actuator technology for tetherless robotic interventions. Int. J. Robot. Res. 32:1536–52
    [Google Scholar]
  136. 136. 
    Felfoul O, Becker A, Bergeles C, Dupont PE 2015. Achieving commutation control of an MRI-powered robot actuator. IEEE Trans. Robot. 31:387–99
    [Google Scholar]
  137. 137. 
    Latulippe M, Martel S. 2018. Evaluation of the potential of dipole field navigation for the targeted delivery of therapeutic agents in a human vascular network. IEEE Trans. Magn. 54:5600112
    [Google Scholar]
  138. 138. 
    Felfoul O, Becker AT, Fagogenis G, Dupont PE 2016. Simultaneous steering and imaging of magnetic particles using MRI toward delivery of therapeutics. Sci. Rep. 6:33567
    [Google Scholar]
  139. 139. 
    de Jong S. 2010. Presenting the cyclotactor project. TEI '10: Proceedings of the Fourth International Conference on Tangible, Embedded, and Embodied Interaction319–20 New York: ACM
    [Google Scholar]
  140. 140. 
    Pedram SA, Klatzky RL, Berkelman P 2017. Torque contribution to haptic rendering of virtual textures. IEEE Trans. Haptics 10:567–79
    [Google Scholar]
  141. 141. 
    Zhang R, Boyles AJ, Abbott JJ 2018. Six principal modes of vibrotactile display via stylus. 2018 IEEE Haptics Symposium313–18 Piscataway, NJ: IEEE
    [Google Scholar]
  142. 142. 
    Jenkins AW, Parker HM. 1959. Electromagnetic support arrangement with three-dimensional control. I. Theoretical. J. Appl. Phys. 30:S238–39
    [Google Scholar]
  143. 143. 
    Fosque HS, Miller G. 1959. Electromagnetic support arrangement with three-dimensional control. II. Experimental. J. Appl. Phys. 30:S240–41
    [Google Scholar]
  144. 144. 
    Abbott JJ, Brink JB, Osting B 2017. Computing minimum-power dipole solutions for interdipole forces using nonlinear constrained optimization with application to electromagnetic formation flight. IEEE Robot. Autom. Lett. 2:1008–14
    [Google Scholar]
/content/journals/10.1146/annurev-control-081219-082713
Loading
/content/journals/10.1146/annurev-control-081219-082713
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error