1932

Abstract

Micro- and nanorobots can perform a number of tasks at small scales, such as minimally invasive diagnostics, targeted drug delivery, and localized surgery. During the past decade, the field has been transformed in many ways, one of the most significant being a transition from hard and rigid micro- and nanostructures to soft and flexible architectures. Inspired by the dynamics of flexible microorganisms, researchers have focused on developing miniaturized soft components such as actuators, sensors, hinges, joints, and reservoirs to create soft micro- and nanoswimmers. The use of organic structures such as polymers and supramolecular ensembles as functional components has brought more complex features to these devices, such as advanced locomotion strategies and stimulus-triggered shape transformations, as well as other capabilities. A variety of microorganisms and contractile mammalian cells have also been utilized as microengines and integrated with functional synthetic materials, producing bending or deformation of the functional materials to initiate motion. In this review, we consider several types of soft micro- and nanorobots in terms of their architecture and design, and we describe their locomotion mechanisms and applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-060117-104947
2018-05-28
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/control/1/1/annurev-control-060117-104947.html?itemId=/content/journals/10.1146/annurev-control-060117-104947&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Nelson BJ, Kaliakatsos IK, Abbott JJ 2010. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12:55–85
    [Google Scholar]
  2. 2.  Jager EWH 2000. Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. Science 288:2335–38
    [Google Scholar]
  3. 3.  Ahmed D, Dillinger C, Hong A, Nelson BJ 2017. Artificial acousto-magnetic soft microswimmers. Adv. Mater. Technol. 2:1700050
    [Google Scholar]
  4. 4.  Hu C, Aeschlimann F, Chatzipirpiridis G, Pokki J, Chen X et al. 2017. Spatiotemporally controlled electrodeposition of magnetically driven micromachines based on the inverse opal architecture. Electrochem. Commun. 81:97–101
    [Google Scholar]
  5. 5.  Rogoz M, Zeng H, Xuan C, Wiersma DS, Wasylczyk P 2016. Light-driven soft robot mimics caterpillar locomotion in natural scale. Adv. Opt. Mater. 4:1689–94
    [Google Scholar]
  6. 6.  Huang TY, Sakar MS, Mao A, Petruska AJ, Qiu FM et al. 2015. 3D printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents. Adv. Mater. 27:6644–50
    [Google Scholar]
  7. 7.  Donald BR, Levey CG, McGray CD, Paprotny I, Rus D 2006. An untethered, electrostatic, globally controllable MEMS micro-robot. J. Microelectromech. Syst. 15:1–15
    [Google Scholar]
  8. 8.  Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregón A, Nelson BJ 2012. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24:811–16
    [Google Scholar]
  9. 9.  Huang T-Y, Qiu F, Tung H-W, Peyer KE, Shamsudhin N et al. 2014. Cooperative manipulation and transport of microobjects using multiple helical microcarriers. RSC Adv 4:26771–76
    [Google Scholar]
  10. 10.  Peters C, Hoop M, Pane S, Nelson BJ, Hierold C 2016. Degradable magnetic composites for minimally invasive interventions: device fabrication, targeted drug delivery, and cytotoxicity tests. Adv. Mater. 28:533–38
    [Google Scholar]
  11. 11.  Zeeshan MA, Grisch R, Pellicer E, Sivaraman KM, Peyer KE et al. 2014. Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition. Small 10:1284–88
    [Google Scholar]
  12. 12.  Zhang L, Peyer KE, Nelson BJ 2010. Artificial bacterial flagella for micromanipulation. Lab Chip 10:2203–15
    [Google Scholar]
  13. 13.  Qiu F, Mhanna R, Zhang L, Ding Y, Fujita S, Nelson BJ 2014. Artificial bacterial flagella functionalized with temperature-sensitive liposomes for controlled release. Sens. Actuators B 196:676–81
    [Google Scholar]
  14. 14.  Kim S, Qiu F, Kim S, Ghanbari A, Moon C et al. 2013. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv. Mater. 25:5863–68
    [Google Scholar]
  15. 15.  Ania S, Qiu F, Mazza M, Kostarelos K, Nelson BJ 2015. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 27:2981–88
    [Google Scholar]
  16. 16.  Mourran A, Zhang H, Vinokur R, Moller M 2017. Soft microrobots employing nonequilibrium actuation via plasmonic heating. Adv. Mater. 29:1604825
    [Google Scholar]
  17. 17.  Snezhko A, Aranson IS 2011. Magnetic manipulation of self-assembled colloidal asters. Nat. Mater. 10:698–703
    [Google Scholar]
  18. 18.  Singh AV, Hosseinidoust Z, Park B-W, Yasa O, Sitti M 2017. Microemulsion-based soft bacteria-driven microswimmers for active cargo delivery. ACS Nano 11:9759–69
    [Google Scholar]
  19. 19.  Bartlett NW, Tolley MT, Overvelde JTB, Weaver JC, Mosadegh B et al. 2015. A 3D-printed, functionally graded soft robot powered by combustion. Science 349:161–65
    [Google Scholar]
  20. 20.  Sato Y, Hiratsuka Y, Kawamata I, Murata S, Nomura SM 2017. Micrometer-sized molecular robot changes its shape in response to signal molecules. Sci. Robot. 2:eaal3735
    [Google Scholar]
  21. 21.  Reed EM, Wallace HR 1965. Leaping locomotion by an insect-parasitic nematode. Nature 206:210–11
    [Google Scholar]
  22. 22.  Jarrell KF, McBride MJ 2008. The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol. 6:466–76
    [Google Scholar]
  23. 23.  Tam D, Hosoi AE 2011. Optimal kinematics and morphologies for spermatozoa. Phys. Rev. E 83:045303
    [Google Scholar]
  24. 24.  Woolley DM, Crockett RF, Groom WDI, Revell SG 2009. A study of synchronisation between the flagella of bull spermatozoa, with related observations. J. Exp. Biol. 212:2215–23
    [Google Scholar]
  25. 25.  Darnton NC, Turner L, Rojevsky S, Berg HC 2007. On torque and tumbling in swimming Escherichia coli. . J. Bacteriol. 189:1756–64
    [Google Scholar]
  26. 26.  Berg HC, Anderson RA 1973. Bacteria swim by rotating their flagellar filaments. Nature 245:380–82
    [Google Scholar]
  27. 27.  Elgeti J, Winkler RG, Gompper G 2015. Physics of microswimmers-single particle motion and collective behavior: a review. Rep. Prog. Phys. 78:056601
    [Google Scholar]
  28. 28.  Ozin GA, Manners I, Fournier-Bidoz S, Arsenault A 2005. Dream nanomachines. Adv. Mater. 17:3011–18
    [Google Scholar]
  29. 29.  Sengupta S, Ibele ME, Sen A 2012. Fantastic voyage: designing self-powered nanorobots. Angew. Chem. Int. Ed. 51:8434–45
    [Google Scholar]
  30. 30.  Peyer KE, Zhang L, Nelson BJ 2013. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5:1259–72
    [Google Scholar]
  31. 31.  Ehlers KM, Samuel ADT, Berg HC, Montgomery R 1996. Do cyanobacteria swim using traveling surface waves?. PNAS 93:8340–43
    [Google Scholar]
  32. 32.  Shaevitz JW, Lee JY, Fletcher DA 2005. Spiroplasma swim by a processive change in body helicity. Cell 122:941–45
    [Google Scholar]
  33. 33.  Vollmers K, Frutiger DR, Kratochvil BE, Nelson BJ 2008. Wireless resonant magnetic microactuator for untethered mobile microrobots. Appl. Phys. Lett. 92:144103
    [Google Scholar]
  34. 34.  Frutiger DR, Vollmers K, Kratochvil BE, Nelson BJ 2010. Small, fast, and under control: wireless resonant magnetic micro-agents. Int. J. Robot. Res. 29:613–36
    [Google Scholar]
  35. 35.  Tung HW, Maffioli M, Frutiger DR, Sivaraman KM, Pane S, Nelson BJ 2014. Polymer-based wireless resonant magnetic microrobots. IEEE Trans. Robot. 30:26–32
    [Google Scholar]
  36. 36.  Randhawa JS, Leong TG, Bassik N, Benson BR, Jochmans MT, Gracias DH 2008. Pick-and-place using chemically actuated microgrippers. J. Am. Chem. Soc. 130:17238–39
    [Google Scholar]
  37. 37.  Bassik N, Brafman A, Zarafshar AM, Jamal M, Luvsanjav D et al. 2010. Enzymatically triggered actuation of miniaturized tools. J. Am. Chem. Soc. 132:16314–17
    [Google Scholar]
  38. 38.  Leong TG, Randall CL, Benson BR, Bassik N, Stern GM, Gracias DH 2009. Tetherless thermobiochemically actuated microgrippers. PNAS 106:703–8
    [Google Scholar]
  39. 39.  Gultepe E, Yamanaka S, Laflin KE, Kadam S, Shim Y et al. 2013. Biologic tissue sampling with untethered microgrippers. Gastroenterology 144:691–93
    [Google Scholar]
  40. 40.  Gultepe E, Randhawa JS, Kadam S, Yamanaka S, Selaru FM et al. 2013. Biopsy with thermally-responsive untethered microtools. Adv. Mater. 25:514–19
    [Google Scholar]
  41. 41.  Malachowski K, Jamal M, Jin QR, Polat B, Morris CJ, Gracias DH 2014. Self-folding single cell grippers. Nano Lett 14:4164–70
    [Google Scholar]
  42. 42.  Yim S, Gultepe E, Gracias DH, Sitti M 2014. Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans. Bio-Med. Eng. 61:513–21
    [Google Scholar]
  43. 43.  Diller E, Sitti M 2014. Three-dimensional programmable assembly by untethered magnetic robotic micro-grippers. Adv. Funct. Mater. 24:4397–404
    [Google Scholar]
  44. 44.  Qiu T, Lee TC, Mark AG, Morozov KI, Munster R et al. 2014. Swimming by reciprocal motion at low Reynolds number. Nat. Commun. 5:5119
    [Google Scholar]
  45. 45.  Iss C, Ortiz G, Truong A, Hou YX, Livache T et al. 2017. Fabrication of nanotweezers and their remote actuation by magnetic fields. Sci. Rep. 7:451
    [Google Scholar]
  46. 46.  Kim S, Lee S, Lee J, Nelson BJ, Zhang L, Choi H 2016. Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation. Sci. Rep. 6:30713
    [Google Scholar]
  47. 47.  Kim J, Chung SE, Choi SE, Lee H, Kim J, Kwon S 2011. Programming magnetic anisotropy in polymeric microactuators. Nat. Mater. 10:747–52
    [Google Scholar]
  48. 48.  Zhang JC, Diller E 2016. Tetherless mobile micrograsping using a magnetic elastic composite material. Smart Mater. Struct. 25:11LT03
    [Google Scholar]
  49. 49.  Lum GZ, Ye Z, Dong XG, Marvi H, Erin O et al. 2016. Shape-programmable magnetic soft matter. PNAS 113:E6007–15
    [Google Scholar]
  50. 50.  Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J 2005. Microscopic artificial swimmers. Nature 437:862–65
    [Google Scholar]
  51. 51.  Gao W, Sattayasamitsathit S, Manesh KM, Weihs D, Wang J 2010. Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc. 132:14403–5
    [Google Scholar]
  52. 52.  Pak OS, Gao W, Wang J, Lauga E 2011. High-speed propulsion of flexible nanowire motors: theory and experiments. Soft Matter 7:8169–81
    [Google Scholar]
  53. 53.  Gao W, Manesh KM, Hua J, Sattayasamitsathit S, Wang J 2011. Hybrid nanomotor: a catalytically/magnetically powered adaptive nanowire swimmer. Small 7:2047–51
    [Google Scholar]
  54. 54.  Li TL, Li JX, Zhang HT, Chang XC, Song WP et al. 2016. Magnetically propelled fish-like nanoswimmers. Small 12:6098–105
    [Google Scholar]
  55. 55.  Li TL, Li JX, Morozov KI, Wu ZG, Xu TL et al. 2017. Highly efficient freestyle magnetic nanoswimmer. Nano Lett 17:5092–98
    [Google Scholar]
  56. 56.  Khalil ISM, Dijkslag HC, Abelmann L, Misra S 2014. Magnetosperm: a microrobot that navigates using weak magnetic fields. Appl. Phys. Lett. 104:223701
    [Google Scholar]
  57. 57.  Jang B, Gutman E, Stucki N, Seitz BF, Wendel-Garcia PD et al. 2015. Undulatory locomotion of magnetic multilink nanoswimmers. Nano Lett 15:4829–33
    [Google Scholar]
  58. 58.  Mirkovic T, Foo ML, Arsenault AC, Fournier-Bidoz S, Zacharia NS, Ozin GA 2007. Hinged nanorods made using a chemical approach to flexible nanostructures. Nat. Nanotechnol. 2:565–69
    [Google Scholar]
  59. 59.  Purcell EM 1977. Life at low Reynolds number. Am. J. Phys. 45:3–11
    [Google Scholar]
  60. 60.  Ahmed D, Baasch T, Jang B, Pane S, Dual J, Nelson BJ 2016. Artificial swimmers propelled by acoustically activated flagella. Nano Lett 16:4968–74
    [Google Scholar]
  61. 61.  Yoshizumi Y, Suzuki H 2017. Self-propelled metal-polymer hybrid micromachines with bending and rotational motions. ACS Appl. Mater. Interfaces 9:21355–61
    [Google Scholar]
  62. 62.  Jeong B, Kim SW, Bae YH 2012. Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliv. Rev. 64:154–62
    [Google Scholar]
  63. 63.  Kulkarni RV, Biswanath S 2007. Electrically responsive smart hydrogels in drug delivery: a review. J. Appl. Biomater. Biomech. 5:125–39
    [Google Scholar]
  64. 64.  Li H, Go G, Ko SY, Park JO, Park S 2016. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater. Struct. 25:027001
    [Google Scholar]
  65. 65.  Mohd Jani J, Leary M, Subic A, Gibson MA 2014. A review of shape memory alloy research, applications and opportunities. Mater. Des. 56:1078–113
    [Google Scholar]
  66. 66.  Clark AE, Restorff JB, Wun-Fogle M, Lograsso TA, Schlagel DL 2000. Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys. IEEE Trans. Magn. 36:3238–40
    [Google Scholar]
  67. 67.  Wang ZL, Song J 2006. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–46
    [Google Scholar]
  68. 68.  Holtz JH, Asher SA 1997. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–32
    [Google Scholar]
  69. 69.  Geryak R, Tsukruk VV 2014. Reconfigurable and actuating structures from soft materials. Soft Matter 10:1246–63
    [Google Scholar]
  70. 70.  Erlanger BF, Kokowsky N, Cohen W 1961. The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys. 95:271–78
    [Google Scholar]
  71. 71.  Donnelly RF, Singh TRR, Alkilani AZ, McCrudden MTC, O'Neill S et al. 2013. Hydrogel-forming microneedle arrays exhibit antimicrobial properties: potential for enhanced patient safety. Int. J. Pharm. 451:76–91
    [Google Scholar]
  72. 72.  Fernandes R, Gracias DH 2012. Self-folding polymeric containers for encapsulation and delivery of drugs. Adv. Drug Deliv. Rev. 64:1579–89
    [Google Scholar]
  73. 73.  Hoffman AS 2002. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 54:3–12
    [Google Scholar]
  74. 74.  Kim M, Jung B, Park JH 2012. Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials 33:668–78
    [Google Scholar]
  75. 75.  Meenach SA, Shapiro JM, Hilt JZ, Anderson KW 2013. Characterization of peg-iron oxide hydrogel nanocomposites for dual hyperthermia and paclitaxel delivery. J. Biomater. Sci. Polym. Ed. 24:1112–26
    [Google Scholar]
  76. 76.  Hoare TR, Kohane DS 2008. Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007
    [Google Scholar]
  77. 77.  Vashist A, Vashist A, Gupta YK, Ahmad S 2014. Recent advances in hydrogel based drug delivery systems for the human body. J. Mater. Chem. B 2:147–66
    [Google Scholar]
  78. 78.  Jeon SJ, Hauser AW, Hayward RC 2017. Shape-morphing materials from stimuli-responsive hydrogel hybrids. Accounts Chem. Res. 50:161–69
    [Google Scholar]
  79. 79.  Xu LZ, Shyu TC, Kotov NA 2017. Origami and kirigami nanocomposites. ACS Nano 11:7587–99
    [Google Scholar]
  80. 80.  Qiu F, Fujita S, Mhanna R, Zhang L, Simona BR, Nelson BJ 2015. Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv. Funct. Mater. 25:1666–71
    [Google Scholar]
  81. 81.  Zou YQ, Yu K, Lai BFL, Brooks DE, Kizhakkedathu JN 2013. Hemocompatible surfaces for blood-contacting applications. Handbook of Biofunctional Surfaces W Knoll 923–59 Boca Raton, FL: CRC
    [Google Scholar]
  82. 82.  Knop K, Hoogenboom R, Fischer D, Schubert US 2010. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 49:6288–308
    [Google Scholar]
  83. 83.  Zhao Q, Yang XX, Ma CX, Chen D, Bai H et al. 2016. A bioinspired reversible snapping hydrogel assembly. Mater. Horiz. 3:422–28
    [Google Scholar]
  84. 84.  Deng H, Dong Y, Su J-W, Zhang C, Xie Y et al. 2017. Bioinspired programmable polymer gel controlled by swellable guest medium. ACS Appl. Mater. Interfaces 9:30900–8
    [Google Scholar]
  85. 85.  Ahn SK, Kasi RM, Kim SC, Sharma N, Zhou YX 2008. Stimuli-responsive polymer gels. Soft Matter 4:1151–57
    [Google Scholar]
  86. 86.  Li X, Serpe MJ 2014. Understanding and controlling the self-folding behavior of poly (N-isopropylacrylamide) microgel-based devices. Adv. Funct. Mater. 24:4119–26
    [Google Scholar]
  87. 87.  Breger JC, Yoon C, Xiao R, Kwag HR, Wang MO et al. 2015. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl. Mater. Interfaces 7:3398–405
    [Google Scholar]
  88. 88.  Hauser AW, Evans AA, Na JH, Hayward RC 2015. Photothermally reprogrammable buckling of nanocomposite gel sheets. Angew. Chem. Int. Ed. 54:5434–37
    [Google Scholar]
  89. 89.  Hu ZB, Zhang XM, Li Y 1995. Synthesis and application of modulated polymer gels. Science 269:525–27
    [Google Scholar]
  90. 90.  Fusco S, Sakar MS, Kennedy S, Peters C, Bottani R et al. 2014. An integrated microrobotic platform for on-demand, targeted therapeutic interventions. Adv. Mater. 26:952–57
    [Google Scholar]
  91. 91.  Yoon C, Xiao R, Park J, Cha J, Nguyen TD, Gracias DH 2014. Functional stimuli responsive hydrogel devices by self-folding. Smart Mater. Struct. 23:094008
    [Google Scholar]
  92. 92.  Malachowski K, Breger J, Kwag HR, Wang MO, Fisher JP et al. 2014. Stimuli-responsive theragrippers for chemomechanical controlled release. Angew. Chem. Int. Ed. 53:8045–49
    [Google Scholar]
  93. 93.  Stoychev G, Turcaud S, Dunlop JWC, Ionov L 2013. Hierarchical multi-step folding of polymer bilayers. Adv. Funct. Mater. 23:2295–300
    [Google Scholar]
  94. 94.  Therien-Aubin H, Wu ZL, Nie ZH, Kumacheva E 2013. Multiple shape transformations of composite hydrogel sheets. J. Am. Chem. Soc. 135:4834–39
    [Google Scholar]
  95. 95.  Wu ZL, Moshe M, Greener J, Therien-Aubin H, Nie ZH et al. 2013. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat. Commun. 4:1586
    [Google Scholar]
  96. 96.  Huang HW, Sakar MS, Petruska AJ, Pane S, Nelson BJ 2016. Soft micromachines with programmable motility and morphology. Nat. Commun. 7:12263
    [Google Scholar]
  97. 97.  Huang HW, Chao Q, Sakar MS, Nelson BJ 2017. Optimization of tail geometry for the propulsion of soft microrobots. IEEE Robot. Autom. Lett. 2:727–32
    [Google Scholar]
  98. 98.  Wang W, Duan WT, Sen A, Mallouk TE 2013. Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles. PNAS 110:17744–49
    [Google Scholar]
  99. 99.  Palacci J, Sacanna S, Steinberg AP, Pine DJ, Chaikin PM 2013. Living crystals of light-activated colloidal surfers. Science 339:936–40
    [Google Scholar]
  100. 100.  Kagan D, Balasubramanian S, Wang J 2011. Chemically triggered swarming of gold microparticles. Angew. Chem. Int. Ed. 50:503–6
    [Google Scholar]
  101. 101.  Solovev AA, Sanchez S, Schmidt OG 2013. Collective behaviour of self-propelled catalytic micromotors. Nanoscale 5:1284–93
    [Google Scholar]
  102. 102.  Thakur S, Kapral R 2012. Collective dynamics of self-propelled sphere-dimer motors. Phys. Rev. E 85:026121
    [Google Scholar]
  103. 103.  Magdanz V, Stoychev G, Ionov L, Sanchez S, Schmidt OG 2014. Stimuli-responsive microjets with reconfigurable shape. Angew. Chem. Int. Ed. 53:2673–77
    [Google Scholar]
  104. 104.  Palagi S, Mark AG, Reigh SY, Melde K, Qiu T et al. 2016. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15:647–54
    [Google Scholar]
  105. 105.  White TJ, Broer DJ 2015. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14:1087–98
    [Google Scholar]
  106. 106.  Wani OM, Zeng H, Priimagi A 2017. A light-driven artificial flytrap. Nat. Commun. 8:15546
    [Google Scholar]
  107. 107.  Xiong XL, Wu CC, Zhou CS, Zhu GZ, Chen Z, Tan WH 2013. Responsive DNA-based hydrogels and their applications. Macromol. Rapid Commun. 34:1271–83
    [Google Scholar]
  108. 108.  Hu YW, Kahn JS, Guo WW, Huang FJ, Fadeev M et al. 2016. Reversible modulation of DNA-based hydrogel shapes by internal stress interactions. J. Am. Chem. Soc. 138:16112–19
    [Google Scholar]
  109. 109.  Cangialosi A, Yoon C, Liu J, Huang Q, Guo J et al. 2017. DNA sequence–directed shape change of photopatterned hydrogels via high-degree swelling. Science 357:1126–30
    [Google Scholar]
  110. 110.  Wilson DA, Nolte RJM, van Hest JCM 2012. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 4:268–74
    [Google Scholar]
  111. 111.  Peng F, Tu YF, van Hest JCM, Wilson DA 2015. Self-guided supramolecular cargo-loaded nanomotors with chemotactic behavior towards cells. Angew. Chem. Int. Ed. 54:11662–65
    [Google Scholar]
  112. 112.  van Rhee PG, Rikken RSM, Abdelmohsen LKEA, Maan JC, Nolte RJM et al. 2014. Polymersome magneto-valves for reversible capture and release of nanoparticles. Nat. Commun. 5:5010
    [Google Scholar]
  113. 113.  Tu YF, Peng F, White PB, Wilson DA 2017. Redox-sensitive stomatocyte nanomotors: destruction and drug release in the presence of glutathione. Angew. Chem. Int. Ed. 56:7620–24
    [Google Scholar]
  114. 114.  Wu ZG, Wu YJ, He WP, Lin XK, Sun JM, He Q 2013. Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew. Chem. Int. Ed. 52:7000–3
    [Google Scholar]
  115. 115.  Wu Z, Lin X, Wu Y, Si T, Sun J, He Q 2014. Near-infrared light-triggered “on/off” motion of polymer multilayer rockets. ACS Nano 8:6097–105
    [Google Scholar]
  116. 116.  Wu ZG, Lin XK, Zou X, Sun JM, He Q 2015. Biodegradable protein-based rockets for drug transportation and light-triggered release. ACS Appl. Mater. Interfaces 7:250–55
    [Google Scholar]
  117. 117.  Carlsen RW, Edwards MR, Zhuang J, Pacoret C, Sitti M 2014. Magnetic steering control of multi-cellular bio-hybrid microswimmers. Lab Chip 14:3850–59
    [Google Scholar]
  118. 118.  Sakar MS, Steager EB, Kim DH, Julius AA, Kim M et al. 2011. Modeling, control and experimental characterization of microbiorobots. Int. J. Robot. Res. 30:647–58
    [Google Scholar]
  119. 119.  Kojima M, Zhang ZH, Nakajima M, Ooe K, Fukuda T 2013. Construction and evaluation of bacteria-driven liposome. Sens. Actuators B 183:395–400
    [Google Scholar]
  120. 120.  Xi JZ, Schmidt JJ, Montemagno CD 2005. Self-assembled microdevices driven by muscle. Nat. Mater. 4:180–84
    [Google Scholar]
  121. 121.  Taherkhani S, Mohammadi M, Daoud J, Martel S, Tabrizian M 2014. Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano 8:5049–60
    [Google Scholar]
  122. 122.  Zhuang J, Sitti M 2016. Chemotaxis of bio-hybrid multiple bacteria-driven microswimmers. Sci. Rep. 6:32135
    [Google Scholar]
  123. 123.  Singh AV, Sitti M 2016. Patterned and specific attachment of bacteria on biohybrid bacteria-driven microswimmers. Adv. Healthc. Mater. 5:2325–31
    [Google Scholar]
  124. 124.  Carlsen RW, Sitti M 2014. Bio-hybrid cell-based actuators for microsystems. Small 10:3831–51
    [Google Scholar]
  125. 125.  Feinberg AW 2015. Biological soft robotics. Annu. Rev. Biomed. Eng. 17:243–65
    [Google Scholar]
  126. 126.  Feinberg AW, Feigel A, Shevkoplyas SS, Sheehy S, Whitesides GM, Parker KK 2007. Muscular thin films for building actuators and powering devices. Science 317:1366–70
    [Google Scholar]
  127. 127.  Kim J, Park J, Yang S, Baek J, Kim B et al. 2007. Establishment of a fabrication method for a long-term actuated hybrid cell robot. Lab Chip 7:1504–8
    [Google Scholar]
  128. 128.  Nawroth JC, Lee H, Feinberg AW, Ripplinger CM, McCain ML et al. 2012. A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30:792–97
    [Google Scholar]
  129. 129.  Park SJ, Gazzola M, Park KS, Park S, Di Santo V et al. 2016. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353:158–62
    [Google Scholar]
  130. 130.  Chan V, Park K, Collens MB, Kong H, Saif TA, Bashir R 2012. Development of miniaturized walking biological machines. Sci. Rep. 2:857
    [Google Scholar]
  131. 131.  Williams BJ, Anand SV, Rajagopalan J, Saif MTA 2014. A self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun. 5:3081
    [Google Scholar]
  132. 132.  Sakar MS, Neal D, Boudou T, Borochin MA, Li YQ et al. 2012. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab Chip 12:4976–85
    [Google Scholar]
  133. 133.  Raman R, Cvetkovic C, Uzel SGM, Platt RJ, Sengupta P et al. 2016. Optogenetic skeletal muscle-powered adaptive biological machines. PNAS 113:3497–502
    [Google Scholar]
  134. 134.  Cvetkovic C, Raman R, Chan V, Williams BJ, Tolish M et al. 2014. Three-dimensionally printed biological machines powered by skeletal muscle. PNAS 111:10125–30
    [Google Scholar]
/content/journals/10.1146/annurev-control-060117-104947
Loading
/content/journals/10.1146/annurev-control-060117-104947
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error