1932

Abstract

This article reviews the technology behind creating artificial touch sensations and the relevant aspects of human touch. We focus on the design and control of haptic devices and discuss the best practices for generating distinct and effective touch sensations. Artificial haptic sensations can present information to users, help them complete a task, augment or replace the other senses, and add immersiveness and realism to virtual interactions. We examine these applications in the context of different haptic feedback modalities and the forms that haptic devices can take. We discuss the prior work, limitations, and design considerations of each feedback modality and individual haptic technology. We also address the need to consider the neuroscience and perception behind the human sense of touch in the design and control of haptic devices.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-060117-105043
2018-05-28
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/control/1/1/annurev-control-060117-105043.html?itemId=/content/journals/10.1146/annurev-control-060117-105043&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Chu V, McMahon I, Riano L, McDonald CG, He Q et al. 2015. Robotic learning of haptic adjectives through physical interaction. Robot. Auton. Syst 63:279–92
    [Google Scholar]
  2. 2.  Flesher SN, Collinger JL, Foldes ST, Weiss JM, Downey JE et al. 2016. Intracortical microstimulation of human somatosensory cortex. Sci. Transl. Med. 8:361ra141
    [Google Scholar]
  3. 3.  Johansson RS, Flanagan JR 2009. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci 10:345–59
    [Google Scholar]
  4. 4.  Johnson KO, Yoshioka T, Vega-Bermudez F 2000. Tactile functions of mechanoreceptive afferents innervating the hand. J. Clin. Neurophysiol. 17:539–58
    [Google Scholar]
  5. 5.  Bolanowski SJ, Gescheider GA, Verrillo RT 1994. Hairy skin: psychophysical channels and their physiological substrates. Somatosens. Motor Res. 11:279–90
    [Google Scholar]
  6. 6.  Massie TH, Salisbury JK 1994. The phantom haptic interface: a device for probing virtual objects. Proceedings of the ASME Dynamic Systems and Control Division 55295–300 New York: IEEE
    [Google Scholar]
  7. 7.  Colgate JE, Brown JM 1994. Factors affecting the Z-width of a haptic display. Proceedings of the 1994 IEEE International Conference on Robotics and Automation3205–10 New York: IEEE
    [Google Scholar]
  8. 8.  Peshkin MA, Colgate JE, Wannasuphoprasit W, Moore CA, Gillespie RB, Akella P 2001. Cobot architecture. IEEE Trans. Robot. Autom. 17:377–90
    [Google Scholar]
  9. 9.  Chan S, Conti F, Blevins NH, Salisbury K 2011. Constraint-based six degree-of-freedom haptic rendering of volume-embedded isosurfaces. 2011 IEEE World Haptics Conference89–94 New York: IEEE
    [Google Scholar]
  10. 10.  Walker JM, Colonnese N, Okamura AM 2016. Noise, but not uncoupled stability, reduces realism and likeability of bilateral teleoperation. IEEE Robot. Autom. Lett. 1:562–69
    [Google Scholar]
  11. 11.  Orta Martinez M, Morimoto TK, Taylor AT, Barron AC, Pultorak JDA et al. 2016. 3-D printed haptic devices for educational applications. 2016 IEEE Haptics Symposium126–33 New York: IEEE
    [Google Scholar]
  12. 12.  Minogue J, Jones MG 2006. Haptics in education: exploring an untapped sensory modality. Rev. Educ. Res. 76:317–48
    [Google Scholar]
  13. 13.  Zhang J, Fiers P, Witte KA, Jackson RW, Poggensee KL et al. 2017. Human-in-the-loop optimization of exoskeleton assistance during walking. Science 356:1280–84
    [Google Scholar]
  14. 14.  Stetten G, Wu B, Klatzky R, Galeotti J, Siegel M et al. 2011. Hand-held force magnifier for surgical instruments. Information Processing in Computer-Assisted Interventions: IPCAI 2011 RH Taylor, GZ Yang 90–100 Berlin: Springer
    [Google Scholar]
  15. 15.  Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ 2015. Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73:135–43
    [Google Scholar]
  16. 16.  Wehner M, Quinlivan B, Aubin PM, Martinez-Villalpando E, Baumann M et al. 2013. A lightweight soft exosuit for gait assistance. 2013 IEEE International Conference on Robotics and Automation3362–69 New York: IEEE
    [Google Scholar]
  17. 17.  Pacchierotti C, Sinclair S, Solazzi M, Frisoli A, Hayward V, Prattichizzo D 2017. Wearable haptic systems for the fingertip and the hand: taxonomy, review, and perspectives. IEEE Trans. Haptics 10:580–600
    [Google Scholar]
  18. 18.  Diolaiti N, Niemeyer G, Barbagli F, Salisbury J 2006. Stability of haptic rendering: discretization, quantization, time delay, and coulomb effects. IEEE Trans. Robot. 22:256–68
    [Google Scholar]
  19. 19.  Srinivasan MA, Beauregard GL, Brock DL 1996. The impact of visual information on the haptic perception of stiffness in virtual environments. Proceedings of the ASME Dynamic Systems and Control Division 58555–59 New York: ASME
    [Google Scholar]
  20. 20.  Okamura AM, Dennerlein JT, Howe RD 1998. Vibration feedback models for virtual environments. 1998 IEEE International Conference on Robotics and Automation674–79 New York: IEEE
    [Google Scholar]
  21. 21.  Kuchenbecker KJ, Fiene J, Niemeyer G 2006. Improving contact realism through event-based haptic feedback. IEEE Trans. Vis. Comput. Graph. 12:219–30
    [Google Scholar]
  22. 22.  Hachisu T, Sato M, Fukushima S, Kajimoto H 2012. Augmentation of material property by modulating vibration resulting from tapping. Haptics: Perception, Devices, Mobility, and Communication: EuroHaptics 2012 P Isokoski, J Springare 173–80 Berlin: Springer
    [Google Scholar]
  23. 23.  Prattichizzo D, Pacchierotti C, Rosati G 2012. Cutaneous force feedback as a sensory subtraction technique in haptics. IEEE Trans. Haptics 5:289–300
    [Google Scholar]
  24. 24.  Biggs J, Srinivasan M 2002. Tangential versus normal displacements of skin: relative effectiveness for producing tactile sensations. Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems121–28 New York: IEEE
    [Google Scholar]
  25. 25.  Drewing K, Fritschi M, Zopf R, Ernst MO, Buss M 2005. First evaluation of a novel tactile display exerting shear force via lateral displacement. ACM Trans. Appl. Percept. 2:118–31
    [Google Scholar]
  26. 26.  Gleeson B, Horschel S, Provancher W 2010. Perception of direction for applied tangential skin displacement: effects of speed, displacement, and repetition. IEEE Trans. Haptics 3:177–88
    [Google Scholar]
  27. 27.  Webster RJ, Murphy TE, Verner LN, Okamura AM 2005. A novel two-dimensional tactile slip display: design, kinematics and perceptual experiment. ACM Trans. Appl. Percept. 2:150–65
    [Google Scholar]
  28. 28.  Guzererler A, Provancher WR, Basdogan C 2016. Perception of skin stretch applied to palm: effects of speed and displacement. Haptics: Perception, Devices, Control, and Applications: EuroHaptics 2016 F Bello, H Kajimoto, Y Visell 180–89 Berlin: Springer
    [Google Scholar]
  29. 29.  Bark K, Wheeler J, Shull P, Savall J, Cutkosky M 2010. Rotational skin stretch feedback: a wearable haptic display for motion. IEEE Trans. Haptics 3:166–76
    [Google Scholar]
  30. 30.  Wheeler J, Bark K, Savall J, Cutkosky M 2010. Investigation of rotational skin stretch for proprioceptive feedback with application to myoelectric systems. IEEE Trans. Neural Syst. Rehabil. Eng. 18:58–66
    [Google Scholar]
  31. 31.  Guinan AL, Hornbaker NC, Montandon MN, Doxon AJ, Provancher WR 2013. Back-to-back skin stretch feedback for communicating five degree-of-freedom direction cues. 2013 World Haptics Conference (WHC)13–18 New York: IEEE
    [Google Scholar]
  32. 32.  Provancher WR, Sylvester ND 2009. Fingerpad skin stretch increases the perception of virtual friction. IEEE Trans. Haptics 2:212–23
    [Google Scholar]
  33. 33.  Quek ZF, Schorr SB, Nisky I, Okamura AM, Provancher WR 2014. Augmentation of stiffness perception with a 1-degree-of-freedom skin stretch device. IEEE Trans. Hum.-Mach. Syst. 44:731–42
    [Google Scholar]
  34. 34.  Quek ZF, Schorr SB, Nisky I, Okamura AM, Provancher WR 2014. Sensory substitution using 3-degree-of-freedom tangential and normal skin deformation feedback. 2014 IEEE Haptics Symposium27–33 New York: IEEE
    [Google Scholar]
  35. 35.  Quek ZF, Schorr SB, Nisky I, Provancher WR, Okamura AM 2015. Sensory substitution of force and torque using 6-DoF tangential and normal skin deformation feedback. 2015 IEEE International Conference on Robotics and Automation (ICRA)264–71 New York: IEEE
    [Google Scholar]
  36. 36.  Girard A, Marchal M, Gosselin F, Chabrier A, Louveau F, Lécuyer A 2016. HapTip: displaying haptic shear forces at the fingertips for multi-finger interaction in virtual environments. Front. ICT 3:6
    [Google Scholar]
  37. 37.  Quek ZF, Schorr SB, Nisky I, Provancher WR, Okamura AM 2015. Sensory substitution and augmentation using 3-degree-of-freedom skin deformation feedback. IEEE Trans. Haptics 8:209–21
    [Google Scholar]
  38. 38.  Schorr SB, Quek ZF, Romano RY, Nisky I, Provancher WR, Okamura AM 2013. Sensory substitution via cutaneous skin stretch feedback. 2013 IEEE International Conference on Robotics and Automation2341–46 New York: IEEE
    [Google Scholar]
  39. 39.  Schorr SB, Quek ZF, Nisky I, Provancher W, Okamura AM 2015. Tactor-induced skin stretch as a sensory substitution method in teleoperated palpation. IEEE Trans. Hum.-Mach. Syst. 45:714–26
    [Google Scholar]
  40. 40.  Solazzi M, Frisoli A, Bergamasco M 2010. Design of a novel finger haptic interface for contact and orientation display. 2010 IEEE Haptics Symposium129–32 New York: IEEE
    [Google Scholar]
  41. 41.  Pacchierotti C, Tirmizi A, Prattichizzo D 2014. Improving transparency in teleoperation by means of cutaneous tactile force feedback. ACM Trans. Appl. Percept. 11:4
    [Google Scholar]
  42. 42.  Leonardis D, Solazzi M, Bortone I, Frisoli A 2015. A wearable fingertip haptic device with 3 DoF asymmetric 3-RSR kinematics. 2015 IEEE World Haptics Conference388–93 New York: IEEE
    [Google Scholar]
  43. 43.  Schorr SB, Okamura AM 2017. Three-dimensional skin deformation as force substitution: wearable device design and performance during haptic exploration of virtual environments. IEEE Trans. Haptics 10:418–30
    [Google Scholar]
  44. 44.  Brown JD, Ibrahim M, Chase EDZ, Pacchierotti C, Kuchenbecker KJ 2016. Data-driven comparison of four cutaneous displays for pinching palpation in robotic surgery. 2016 IEEE Haptics Symposium147–54 New York: IEEE
    [Google Scholar]
  45. 45.  Perez AG, Lobo D, Chinello F, Cirio G, Malvezzi M et al. 2015. Soft finger tactile rendering for wearable haptics. 2015 IEEE World Haptics Conference327–32 New York: IEEE
    [Google Scholar]
  46. 46.  Prattichizzo D, Chinello F, Pacchierotti C, Malvezzi M 2013. Towards wearability in fingertip haptics: a 3-DoF wearable device for cutaneous force feedback. IEEE Trans. Haptics 6:506–16
    [Google Scholar]
  47. 47.  Pacchierotti C, Meli L, Chinello F, Malvezzi M, Prattichizzo D 2015. Cutaneous haptic feedback to ensure the stability of robotic teleoperation systems. Int. J. Robot. Res. 34:1773–87
    [Google Scholar]
  48. 48.  Pacchierotti C, Prattichizzo D, Kuchenbecker KJ 2016. Cutaneous feedback of fingertip deformation and vibration for palpation in robotic surgery. IEEE Trans. Biomed. Eng. 63:278–87
    [Google Scholar]
  49. 49.  Tsetserukou D, Hosokawa S, Terashima K 2014. LinkTouch: a wearable haptic device with five-bar linkage mechanism for presentation of two-DOF force feedback at the fingerpad. 2014 IEEE Haptics Symposium307–12 New York: IEEE
    [Google Scholar]
  50. 50.  Schorr SB, Okamura AM 2017. Fingertip tactile devices for virtual object manipulation and exploration. Proceedings of the 2017 ACM CHI Conference on Human Factors in Computing Systems3115–19 New York: ACM
    [Google Scholar]
  51. 51.  Sofia KO, Jones L 2013. Mechanical and psychophysical studies of surface wave propagation during vibrotactile stimulation. IEEE Trans. Haptics 6:320–29
    [Google Scholar]
  52. 52.  Bell J, Bolanowski S, Holmes MH 1994. The structure and function of Pacinian corpuscles: a review. Prog. Neurobiol. 42:79–128
    [Google Scholar]
  53. 53.  Ackerley R, Carlsson I, Wester H, Olausson H, Wasling HB 2014. Touch perceptions across skin sites: differences between sensitivity, direction discrimination and pleasantness. Front. Behav. Neurosci. 8:54
    [Google Scholar]
  54. 54.  Meier A, Matthies DJ, Urban B, Wettach R 2015. Exploring vibrotactile feedback on the body and foot for the purpose of pedestrian navigation. Proceedings of the 2nd International Workshop on Sensor-Based Activity Recognition and Interaction art. 11 New York: ACM
    [Google Scholar]
  55. 55.  Zelek JS, Bromley S, Asmar D, Thompson D 2003. A haptic glove as a tactile-vision sensory substitution for wayfinding. J. Vis. Impair. Blind. 97:621–32
    [Google Scholar]
  56. 56.  Paneels S, Anastassova M, Strachan S, Van SP, Sivacoumarane S, Bolzmacher C 2013. What's around me? Multi-actuator haptic feedback on the wrist. 2013 IEEE World Haptics Conference407–12 New York: IEEE
    [Google Scholar]
  57. 57.  Elliott LR, van Erp J, Redden ES, Duistermaat M 2010. Field-based validation of a tactile navigation device. IEEE Trans. Haptics 3:78–87
    [Google Scholar]
  58. 58.  Jones LA, Lockyer B, Piateski E 2006. Tactile display and vibrotactile pattern recognition on the torso. Adv. Robot. 20:1359–74
    [Google Scholar]
  59. 59.  Bark K, Khanna P, Irwin R, Kapur P, Jax SA et al. 2011. Lessons in using vibrotactile feedback to guide fast arm motions. 2011 IEEE World Haptics Conference355–60 New York: IEEE
    [Google Scholar]
  60. 60.  Jansen C, Oving A, van Veen HJ 2004. Vibrotactile movement initiation. Proceedings of the EuroHaptics International Conference (EuroHaptics '04)110–17 Berlin: Springer
    [Google Scholar]
  61. 61.  Culbertson H, Walker JM, Raitor M, Okamura AM, Stolka PJ 2016. Plane assist: the influence of haptics on ultrasound-based needle guidance. Medical Image Computing and Computer-Assisted Intervention: MICCAI 2016 S Ourselin, L Joskowicz, M Sabuncu, G Unal, W Wells 370–77 Cham, Switz.: Springer
    [Google Scholar]
  62. 62.  Christiansen R, Contreras-Vidal JL, Gillespie RB, Shewokis PA, O'Malley MK 2013. Vibrotactile feedback of pose error enhances myoelectric control of a prosthetic hand. 2013 IEEE World Haptics Conference531–36 New York: IEEE
    [Google Scholar]
  63. 63.  Rotella MF, Guerin K, He X, Okamura AM 2012. HAPI Bands: a haptic augmented posture interface. 2012 IEEE Haptics Symposium163–70 New York: IEEE
    [Google Scholar]
  64. 64.  Bark K, Hyman E, Tan F, Cha E, Jax SA et al. 2015. Effects of vibrotactile feedback on human learning of arm motions. IEEE Trans. Neural Syst. Rehabil. Eng. 23:51–63
    [Google Scholar]
  65. 65.  Bluteau J, Dubois MD, Coquillart S, Gentaz E, Payan Y 2010. Vibrotactile guidance for trajectory following in computer aided surgery. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology2085–88 New York: IEEE
    [Google Scholar]
  66. 66.  Kontarinis DA, Howe RD 1995. Tactile display of vibratory information in teleoperation and virtual environments. Presence Teleoper. Virtual Environ. 4:387–402
    [Google Scholar]
  67. 67.  McMahan W, Gewirtz J, Standish D, Martin P, Kunkel J et al. 2011. Tool contact acceleration feedback for telerobotic surgery. IEEE Trans. Haptics 4:210–20
    [Google Scholar]
  68. 68.  Dennerlein JT, Millman PA, Howe RD 1997. Vibrotactile feedback for industrial telemanipulators. Sixth Annual Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems189–95 New York: ASME
    [Google Scholar]
  69. 69.  Sibert J, Cooper J, Covington C, Stefanovski A, Thompson D, Lindeman RW 2006. Vibrotactile feedback for enhanced control of urban search and rescue robots. Proceedings of the 2006 IEEE International Workshop on Safety, Security and Rescue Robotics New York: IEEE
    [Google Scholar]
  70. 70.  Brewster S, Brown LM 2004. Tactons: structured tactile messages for non-visual information display. Proceedings of the Fifth Conference on Australasian User Interface15–23 New York: ACM
    [Google Scholar]
  71. 71.  Azadi M, Jones LA 2014. Evaluating vibrotactile dimensions for the design of tactons. IEEE Trans. Haptics 7:14–23
    [Google Scholar]
  72. 72.  Schneider OS, MacLean KE 2016. Studying design process and example use with macaron, a web-based vibrotactile effect editor. 2016 IEEE Haptics Symposium52–58 New York: IEEE
    [Google Scholar]
  73. 73.  Rovers L, van Essen HA 2004. Design and evaluation of hapticons for enriched instant messaging. Virtual Reality 9:177–91
    [Google Scholar]
  74. 74.  Mathew D 2005. vSmileys: imaging emotions through vibration patterns. Alternative Access: Feeling and Games 200575–80 Tampere, Finl.: Univ. Tampere
    [Google Scholar]
  75. 75.  Krishna S, Bala S, McDaniel T, McGuire S, Panchanathan S 2010. VibroGlove: an assistive technology aid for conveying facial expressions. CHI '10: Extended Abstracts on Human Factors in Computing Systems3637–42 New York: ACM
    [Google Scholar]
  76. 76.  Eid MA, Al Osman H 2016. Affective haptics: current research and future directions. IEEE Access 4:26–40
    [Google Scholar]
  77. 77.  Burtt HE 1917. Tactual illusions of movement. J. Exp. Psychol. 2:371–85
    [Google Scholar]
  78. 78.  Kang J, Lee J, Kim H, Cho K, Wang S, Ryu J 2012. Smooth vibrotactile flow generation using two piezoelectric actuators. IEEE Trans. Haptics 5:21–32
    [Google Scholar]
  79. 79.  Seo J, Choi S 2013. Perceptual analysis of vibrotactile flows on a mobile device. IEEE Trans. Haptics 6:522–27
    [Google Scholar]
  80. 80.  Seo J, Choi S 2015. Edge flows: improving information transmission in mobile devices using two-dimensional vibrotactile flows. 2015 IEEE World Haptics Conference25–30 New York: IEEE
    [Google Scholar]
  81. 81.  Alles DS 1970. Information transmission by phantom sensations. IEEE Trans. Man-Mach. Syst. 11:85–91
    [Google Scholar]
  82. 82.  Israr A, Poupyrev I 2011. Tactile brush: drawing on skin with a tactile grid display. CHI '11: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems2019–28 New York: ACM
    [Google Scholar]
  83. 83.  Geldard FA, Sherrick CE 1972. The cutaneous “rabbit”: a perceptual illusion. Science 178:178–79
    [Google Scholar]
  84. 84.  Cholewiak RW, Collins AA 2000. The generation of vibrotactile patterns on a linear array: influences of body site, time, and presentation mode. Atten. Percept. Psychophys. 62:1220–35
    [Google Scholar]
  85. 85.  Yang GH, Ryu D, Park S, Kang S 2012. Sensory saltation and phantom sensation for vibrotactile display of spatial and directional information. Presence Teleoper. Virtual Environ. 21:192–202
    [Google Scholar]
  86. 86.  Amemiya T, Ando H, Maeda T 2005. Virtual force display: direction guidance using asymmetric acceleration via periodic translational motion. 2005 IEEE World Haptics Conference619–22 New York: IEEE
    [Google Scholar]
  87. 87.  Amemiya T, Ando H, Maeda T 2005. Phantom-DRAWN: direction guidance using rapid and asymmetric acceleration weighted by nonlinearity of perception. Proceedings of the 2005 ACM International Conference on Augmented Tele-Existence201–8 New York: ACM
    [Google Scholar]
  88. 88.  Shima T, Takemura K 2012. An ungrounded pulling force feedback device using periodical vibration-impact. Haptics: Perception, Devices, Mobility, and Communication: EuroHaptics 2012 P Isokoski, J Springare 481–92 Berlin: Springer
    [Google Scholar]
  89. 89.  Tappeiner HW, Klatzky RL, Unger B, Hollis R 2009. Good vibrations: asymmetric vibrations for directional haptic cues. 2009 IEEE World Haptics Conference285–89 New York: IEEE
    [Google Scholar]
  90. 90.  Imaizumi A, Okamoto S, Yamada Y 2014. Friction sensation produced by laterally asymmetric vibrotactile stimulus. Haptics: Neuroscience, Devices, Modeling, and Applications: EuroHaptics 2014 M Auvray, C Duriez 11–18 Berlin: Springer
    [Google Scholar]
  91. 91.  Rekimoto J 2013. Traxion: a tactile interaction device with virtual force sensation. Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology427–32 New York: ACM
    [Google Scholar]
  92. 92.  Amemiya T, Gomi H 2014. Distinct pseudo-attraction force sensation by a thumb-sized vibrator that oscillates asymmetrically. Haptics: Neuroscience, Devices, Modeling, and Applications: EuroHaptics 2014 M Auvray, C Duriez 88–95 Berlin: Springer
    [Google Scholar]
  93. 93.  Culbertson H, Walker JM, Okamura AM 2016. Modeling and design of asymmetric vibrations to induce ungrounded pulling sensation through asymmetric skin displacement. 2016 IEEE Haptics Symposium27–33 New York: IEEE
    [Google Scholar]
  94. 94.  Culbertson H, Walker JM, Raitor M, Okamura AM 2017. WAVES: a wearable asymmetric vibration excitation system for presenting three-dimensional translation and rotation cues. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems4972–82 New York: ACM
    [Google Scholar]
  95. 95.  Tanabe T, Yano H, Iwata H 2016. Properties of proprioceptive sensation with a vibration speaker-type non-grounded haptic interface. 2016 IEEE Haptics Symposium21–26 New York: IEEE
    [Google Scholar]
  96. 96.  Amemiya T, Gomi H 2016. Active manual movement improves directional perception of illusory force. IEEE Trans. Haptics 9:465–73
    [Google Scholar]
  97. 97.  Klatzky RL, Lederman SJ, Hamilton C, Grindley M, Swendsen RH 2003. Feeling textures through a probe: effects of probe and surface geometry and exploratory factors. Atten. Percept. Psychophys. 65:613–31
    [Google Scholar]
  98. 98.  Lederman SJ, Klatzky RL, Hamilton CL, Ramsay GI 1999. Perceiving surface roughness via a rigid probe: effects of exploration speed and mode of touch. Haptics-e 1:1
    [Google Scholar]
  99. 99.  Campion G, Hayward V 2005. Fundamental limits in the rendering of virtual haptic textures. First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems263–70 New York: IEEE
    [Google Scholar]
  100. 100.  Otaduy MA, Lin MC 2008. Rendering of textured objects. Haptic Rendering: Foundations, Algorithms, and Applications M Lin, M Otaduy 371–93 Boca Raton, FL: CRC
    [Google Scholar]
  101. 101.  Okamura AM, Kuchenbecker KJ, Mahvash M 2008. Measurement-based modeling for haptic display. Haptic Rendering: Foundations, Algorithms, and Applications M Lin, M Otaduy 443–67 Boca Raton, FL: CRC
    [Google Scholar]
  102. 102.  Okamura AM, Webster RJ III, Nolin JT, Johnson KW, Jafry H 2003. The haptic scissors: cutting in virtual environments. 2003 IEEE International Conference on Robotics and Automation828–33 New York: IEEE
    [Google Scholar]
  103. 103.  Takeuchi Y, Kamuro S, Minamizawa K, Tachi S 2012. Haptic duplicator. Proceedings of the 2012 Virtual Reality International Conference art. 30 New York: ACM
    [Google Scholar]
  104. 104.  Saga S, Raskar R 2012. Feel through window: simultaneous geometry and texture display based on lateral force for touchscreen. SIGGRAPH Asia 2012 Emerging Technologies art. 8 New York: ACM
    [Google Scholar]
  105. 105.  Loomis JM 1992. Distal attribution and presence. Presence Teleoper. Virtual Environ. 1:113–19
    [Google Scholar]
  106. 106.  Guruswamy VL, Lang J, Lee WS 2009. Modeling of haptic vibration textures with infinite-impulse-response filters. 2009 IEEE International Workshop on Haptic Audio Visual Environments and Games105–10 New York: IEEE
    [Google Scholar]
  107. 107.  Romano JM, Kuchenbecker KJ 2012. Creating realistic virtual textures from contact acceleration data. IEEE Trans. Haptics 5:109–19
    [Google Scholar]
  108. 108.  Culbertson H, Unwin J, Kuchenbecker KJ 2014. Modeling and rendering realistic textures from unconstrained tool-surface interactions. IEEE Trans. Haptics 7:381–93
    [Google Scholar]
  109. 109.  Meyer DJ, Wiertlewski M, Peshkin MA, Colgate JE 2014. Dynamics of ultrasonic and electrostatic friction modulation for rendering texture on haptic surfaces. 2014 IEEE Haptics Symposium63–67 New York: IEEE
    [Google Scholar]
  110. 110.  Hoshi T, Takahashi M, Iwamoto T, Shinoda H 2010. Noncontact tactile display based on radiation pressure of airborne ultrasound. IEEE Trans. Haptics 3:155–65
    [Google Scholar]
  111. 111.  Hasegawa K, Shinoda H 2013. Aerial display of vibrotactile sensation with high spatial-temporal resolution using large-aperture airborne ultrasound phased array. 2013 IEEE World Haptics Conference31–36 New York: IEEE
    [Google Scholar]
  112. 112.  Monnai Y, Hasegawa K, Fujiwara M, Yoshino K, Inoue S, Shinoda H 2014. HaptoMime: mid-air haptic interaction with a floating virtual screen. Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology663–67 New York: ACM
    [Google Scholar]
  113. 113.  Carter T, Seah SA, Long B, Drinkwater B, Subramanian S 2013. UltraHaptics: multi-point mid-air haptic feedback for touch surfaces. Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology505–14 New York: ACM
    [Google Scholar]
  114. 114.  Long B, Seah SA, Carter T, Subramanian S 2014. Rendering volumetric haptic shapes in mid-air using ultrasound. ACM Trans. Graph. 33:181
    [Google Scholar]
  115. 115.  Mazzone A, Kunz A 2005. Sketching the future of the SmartMesh wide area haptic feedback device by introducing the controlling concept for such a deformable multi-loop mechanism. 2005 IEEE World Haptics Conference308–15 New York: IEEE
    [Google Scholar]
  116. 116.  Klare S, Peer A 2014. The formable object: a 24-degree-of-freedom shape-rendering interface. IEEE/ASME Trans. Mechatron. 20:1360–71
    [Google Scholar]
  117. 117.  Winck R, Kim J, Book WJ, Park H 2012. Command generation techniques for a pin array using the SVD and the SNMF. IFAC Proc. Vol. 45:411–16
    [Google Scholar]
  118. 118.  Hayward V, Cruz-Hernandez M 2000. Tactile display device using distributed lateral skin stretch. Proceedings of the Haptic Interfaces for Virtual Environment and Teleoperator Systems Symposium 691309–14 New York: ASME
    [Google Scholar]
  119. 119.  Follmer S, Leithinger D, Olwal A, Hogge A, Ishii H 2013. inFORM: dynamic physical affordances and constraints through shape and object actuation. Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology417–26 New York: ACM
    [Google Scholar]
  120. 120.  Leithinger D, Follmer S, Olwal A, Ishii H 2014. Physical telepresence: shape capture and display for embodied, computer-mediated remote collaboration. Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology461–70 New York: ACM
    [Google Scholar]
  121. 121.  Leithinger D, Follmer S, Olwal A, Luescher S, Hogge A et al. 2013. Sublimate: state-changing virtual and physical rendering to augment interaction with shape displays. CHI '13: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems1441–50 New York: ACM
    [Google Scholar]
  122. 122.  Rossignac J, Allen M, Book W, Glezer A, Ebert-Uphoff I et al. 2003. Finger sculpting with digital clay: 3D shape input and output through a computer-controlled real surface. 2003 Shape Modeling International229–31 New York: IEEE
    [Google Scholar]
  123. 123.  Majidi C 2014. Soft robotics: a perspective—current trends and prospects for the future. Soft Robot 1:5–11
    [Google Scholar]
  124. 124.  Steltz E, Mozeika A, Rembisz J 2010. Jamming as an enabling technology for soft robotics. SPIE Proc 7642:764225
    [Google Scholar]
  125. 125.  Steltz E, Mozeika A, Rodenberg N, Brown E, Jaeger H 2009. JSEL: jamming skin enabled locomotion. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems5672–77 New York: IEEE
    [Google Scholar]
  126. 126.  Follmer S, Leithinger D, Olwal A, Cheng N, Ishii H 2012. Jamming user interfaces: programmable particle stiffness and sensing for malleable and shape-changing devices. Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology519–28 New York: ACM
    [Google Scholar]
  127. 127.  Yao L, Niiyama R, Ou J, Follmer S, Della Silva C, Ishii H 2013. PneUI: pneumatically actuated soft composite materials for shape changing interfaces. Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology13–22 New York: ACM
    [Google Scholar]
  128. 128.  Stanley AA, Okamura AM 2015. Controllable surface haptics via particle jamming and pneumatics. IEEE Trans. Haptics 8:20–30
    [Google Scholar]
  129. 129.  Mullenbach J, Shultz C, Piper AM, Peshkin MA, Colgate JE 2013. Surface haptic interactions with a TPad tablet. Proceedings of the Adjunct Publication of the 26th Annual ACM Symposium on User Interface Software and Technology7–8 New York: ACM
    [Google Scholar]
  130. 130.  Bau O, Poupyrev I, Israr A, Harrison C 2010. TeslaTouch: electrovibration for touch surfaces. Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology283–92 New York: ACM
    [Google Scholar]
  131. 131.  Winfield L, Glassmire J, Colgate JE, Peshkin M 2007. T-PaD: tactile pattern display through variable friction reduction. 2007 IEEE World Haptics Conference421–26 New York: IEEE
    [Google Scholar]
  132. 132.  Takasaki M, Kotani H, Mizuno T, Nara T 2005. Transparent surface acoustic wave tactile display. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems3354–59 New York: IEEE
    [Google Scholar]
  133. 133.  Mullenbach J, Johnson D, Colgate J, Peshkin M 2012. ActivePaD surface haptic device. 2012 IEEE Haptics Symposium407–14 New York: IEEE
    [Google Scholar]
  134. 134.  Matsumoto K, Ban Y, Narumi T, Yanase Y, Tanikawa T, Hirose M 2016. Unlimited corridor: redirected walking techniques using visuo haptic interaction. ACM SIGGRAPH 2016 Emerging Technologies art. 20 New York: ACM
    [Google Scholar]
  135. 135.  Yokokohji Y 2005. Designing an encountered-type haptic display for multiple fingertip contacts based on the observation of human grasping behaviors. Int. J. Robot. Res. 24:717–29
    [Google Scholar]
  136. 136.  Lederman SJ, Jones LA 2011. Tactile and haptic illusions. IEEE Trans. Haptics 4:273–94
    [Google Scholar]
  137. 137.  Klatzky RL, Lederman SJ, Reed C 1987. There's more to touch than meets the eye: the salience of object attributes for haptics with and without vision. J. Exp. Psychol. Gen. 116:356
    [Google Scholar]
  138. 138.  Rock I, Victor J 1964. Vision and touch: an experimentally created conflict between the two senses. Science 143:594–96
    [Google Scholar]
  139. 139.  Lécuyer A 2009. Simulating haptic feedback using vision: a survey of research and applications of pseudo-haptic feedback. Presence Teleoper. Virtual Environ. 18:39–53
    [Google Scholar]
  140. 140.  Jang I, Lee D 2014. On utilizing pseudo-haptics for cutaneous fingertip haptic device. 2014 IEEE Haptics Symposium635–39 New York: IEEE
    [Google Scholar]
  141. 141.  Lécuyer A, Burkhardt JM, Le Biller J, Congedo M 2005. “A4”: a technique to improve perception of contacts with under-actuated haptic devices in virtual reality. 2005 IEEE World Haptics Conference316–22 New York: IEEE
    [Google Scholar]
  142. 142.  Ban Y, Narumi T, Tanikawa T, Hirose M 2014. Displaying shapes with various types of surfaces using visuo-haptic interaction. Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology191–96 New York: ACM
    [Google Scholar]
  143. 143.  Ban Y, Kajinami T, Narumi T, Tanikawa T, Hirose M 2012. Modifying an identified curved surface shape using pseudo-haptic effect. 2012 IEEE Haptics Symposium211–16 New York: IEEE
    [Google Scholar]
  144. 144.  Ban Y, Kajinami T, Narumi T, Tanikawa T, Hirose M 2012. Modifying an identified angle of edged shapes using pseudo-haptic effects. Haptics: Perception, Devices, Mobility, and Communication: EuroHaptics 2012P Isokoski, J Springare25–36 Berlin: Springer
    [Google Scholar]
  145. 145.  Kohli L 2010. Redirected touching: warping space to remap passive haptics. 2010 IEEE Symposium on 3D User Interfaces (3DUI)129–30 New York: IEEE
    [Google Scholar]
  146. 146.  Azmandian M, Hancock M, Benko H, Ofek E, Wilson AD 2016. Haptic retargeting: dynamic repurposing of passive haptics for enhanced virtual reality experiences. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems1968–79 New York: ACM
    [Google Scholar]
/content/journals/10.1146/annurev-control-060117-105043
Loading
/content/journals/10.1146/annurev-control-060117-105043
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error