1932

Abstract

Magnetic microrobotics has undergone approximately 20 years of development, and the robotics and control communities have contributed significant theoretical and practical results to the motion control aspects of this field. This article introduces fundamental motion principles covering individual, multiagent, and swarm control and critically reviews the state of the art along with representative results. It then describes closed-loop control (an important part of this field), including the system structure, current motion planning and control methods, and current feedback approaches. As the development of motion control in magnetic microrobotics is far from complete, especially for swarm control, its current limitations are discussed. Finally, we conclude with several challenges and future research directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-032720-104318
2021-05-03
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/control/4/1/annurev-control-032720-104318.html?itemId=/content/journals/10.1146/annurev-control-032720-104318&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abbott JJ, Nagy Z, Beyeler F, Nelson BJ. 2007. Robotics in the small, part I: microbotics. IEEE Robot. Autom. Mag. 14:292–103
    [Google Scholar]
  2. 2. 
    Diller E, Sitti M. 2013. Micro-scale mobile robotics. Found. Trends Robot. 2:143–259
    [Google Scholar]
  3. 3. 
    Nelson BJ, Kaliakatsos IK, Abbott JJ. 2010. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12:55–85
    [Google Scholar]
  4. 4. 
    Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, et al. 2015. Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE 103:205–24
    [Google Scholar]
  5. 5. 
    Xu T, Gao W, Xu LP, Zhang X, Wang S. 2017. Fuel-free synthetic micro-/nanomachines. Adv. Mater. 29:1603250
    [Google Scholar]
  6. 6. 
    Palima D, Glückstad J. 2013. Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces. Laser Photonics Rev. 7:478–94
    [Google Scholar]
  7. 7. 
    Karshalev E, Esteban-Fernandez de Avila B, Wang J. 2018. Micromotors for “chemistry-on-the-fly.”. J. Am. Chem. Soc. 140:3810–20
    [Google Scholar]
  8. 8. 
    Rao KJ, Li F, Meng L, Zheng H, Cai F, Wang W. 2015. A force to be reckoned with: a review of synthetic microswimmers powered by ultrasound. Small 11:2836–46
    [Google Scholar]
  9. 9. 
    Donald BR, Levey CG, McGray CD, Paprotny I, Rus D. 2006. An untethered, electrostatic, globally controllable MEMS micro-robot. J. Microelectromech. Syst. 15:1–15
    [Google Scholar]
  10. 10. 
    Peyer KE, Zhang L, Nelson BJ. 2013. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5:1259–72
    [Google Scholar]
  11. 11. 
    Felfoul O, Mohammadi M, Taherkhani S, De Lanauze D, Xu YZ, et al. 2016. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11:941–47
    [Google Scholar]
  12. 12. 
    Li J, Li X, Luo T, Wang R, Liu C, et al. 2018. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 3:eaat8829
    [Google Scholar]
  13. 13. 
    Zhang Y, Zhang L, Yang L, Vong CI, Chan KF, et al. 2019. Real-time tracking of fluorescent magnetic spore–based microrobots for remote detection of C. diff toxins. Sci. Adv. 5:eaau9650
    [Google Scholar]
  14. 14. 
    Wang X, Ho C, Tsatskis Y, Law J, Zhang Z, et al. 2019. Intracellular manipulation and measurement with multipole magnetic tweezers. Sci. Robot. 4:eaav6180
    [Google Scholar]
  15. 15. 
    Wu Z, Troll J, Jeong HH, Wei Q, Stang M, et al. 2018. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci. Adv. 4:eaat4388
    [Google Scholar]
  16. 16. 
    Yu J, Jin D, Chan KF, Wang Q, Yuan K, Zhang L. 2019. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat. Commun. 10:5631
    [Google Scholar]
  17. 17. 
    Servant A, Qiu F, Mazza M, Kostarelos K, Nelson BJ. 2015. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 27:2981–88
    [Google Scholar]
  18. 18. 
    Abbott JJ, Diller E, Petruska AJ. 2019. Magnetic methods in robotics. Annu. Rev. Control Robot. Auton. Syst. 3:57–90
    [Google Scholar]
  19. 19. 
    Xu T, Yu J, Yan X, Choi H, Zhang L. 2015. Magnetic actuation based motion control for microrobots: an overview. Micromachines 6:1346–64
    [Google Scholar]
  20. 20. 
    Yang L, Du X, Yu E, Jin D, Zhang L. 2019. DeltaMag: an electromagnetic manipulation system with parallel mobile coils. In 2019 IEEE International Conference on Robotics and Automationpp9814–20 Piscataway, NJ: IEEE
    [Google Scholar]
  21. 21. 
    Hu C, Pané S, Nelson BJ. 2018. Soft micro- and nanorobotics. Annu. Rev. Control Robot. Auton. Syst. 1:53–75
    [Google Scholar]
  22. 22. 
    Alapan Y, Yasa O, Yigit B, Yasa IC, Erkoc P, Sitti M. 2019. Microrobotics and microorganisms: biohybrid autonomous cellular robots. Annu. Rev. Control Robot. Auton. Syst. 2:205–30
    [Google Scholar]
  23. 23. 
    Zhang Z, Wang X, Liu J, Dai C, Sun Y. 2019. Robotic micromanipulation: fundamentals and applications. Annu. Rev. Control Robot. Auton. Syst. 2:181–203
    [Google Scholar]
  24. 24. 
    Wautelet M. 2001. Scaling laws in the macro-, micro- and nanoworlds. Eur. J. Phys. 22:601–11
    [Google Scholar]
  25. 25. 
    Abbott JJ, Peyer KE, Lagomarsino MC, Zhang L, Dong L, et al. 2009. How should microrobots swim?. Int. J. Robot. Res. 28:1434–47
    [Google Scholar]
  26. 26. 
    Petruska AJ, Nelson BJ. 2015. Minimum bounds on the number of electromagnets required for remote magnetic manipulation. IEEE Trans. Robot. 31:714–22
    [Google Scholar]
  27. 27. 
    Mahoney AW, Abbott JJ. 2016. Five-degree-of-freedom manipulation of an untethered magnetic device in fluid using a single permanent magnet with application in stomach capsule endoscopy. Int. J. Robot. Res. 35:129–47
    [Google Scholar]
  28. 28. 
    Petruska AJ, Abbott JJ. 2012. Optimal permanent-magnet geometries for dipole field approximation. IEEE Trans. Magn. 49:811–19
    [Google Scholar]
  29. 29. 
    Salehizadeh M, Diller E. 2017. Two-agent formation control of magnetic microrobots in two dimensions. J. Micro-Bio Robot. 12:9–19
    [Google Scholar]
  30. 30. 
    Wang Q, Yang L, Wang B, Yu E, Yu J, Zhang L. 2018. Collective behavior of reconfigurable magnetic droplets via dynamic self-assembly. ACS Appl. Mater. Interfaces 11:1630–37
    [Google Scholar]
  31. 31. 
    White FM. 2015. Fluid Mechanics New York: McGraw-Hill
    [Google Scholar]
  32. 32. 
    Loth E. 2008. Drag of non-spherical solid particles of regular and irregular shape. Powder Technol. 182:342–53
    [Google Scholar]
  33. 33. 
    Finn R. 1953. Determination of the drag on a cylinder at low Reynolds numbers. J. Appl. Phys. 24:771–73
    [Google Scholar]
  34. 34. 
    Yu J, Xu T, Lu Z, Vong CI, Zhang L. 2017. On-demand disassembly of paramagnetic nanoparticle chains for microrobotic cargo delivery. IEEE Trans. Robot. 33:1213–25
    [Google Scholar]
  35. 35. 
    Lee H, Balachandar S. 2010. Drag and lift forces on a spherical particle moving on a wall in a shear flow at finite Re. J. Fluid Mech. 657:89–125
    [Google Scholar]
  36. 36. 
    Arcese L, Fruchard M, Ferreira A. 2011. Endovascular magnetically guided robots: navigation modeling and optimization. IEEE Trans. Biomed. Eng. 59:977–87
    [Google Scholar]
  37. 37. 
    Liu Q, Prosperetti A. 2010. Wall effects on a rotating sphere. J. Fluid Mech. 657:1–21
    [Google Scholar]
  38. 38. 
    Kehlenbeck R, Felice RD. 1999. Empirical relationships for the terminal settling velocity of spheres in cylindrical columns. Chem. Eng. Technol. 22:303–8
    [Google Scholar]
  39. 39. 
    Stalnaker JF, Hussey R. 1979. Wall effects on cylinder drag at low Reynolds number. Phys. Fluids 22:603–13
    [Google Scholar]
  40. 40. 
    Samantaray SK, Mohapatra SS, Munshi B. 2017. A numerical study of the wall effects for Newtonian fluid flow over a cone. Eng. Sci. Technol. Int. J. 20:1662–75
    [Google Scholar]
  41. 41. 
    Tierno P, Golestanian R, Pagonabarraga I, Sagués F. 2008. Controlled swimming in confined fluids of magnetically actuated colloidal rotors. Phys. Rev. Lett. 101:218304
    [Google Scholar]
  42. 42. 
    Yu J, Yang L, Zhang L. 2018. Pattern generation and motion control of a vortex-like paramagnetic nanoparticle swarm. Int. J. Robot. Res. 37:912–30
    [Google Scholar]
  43. 43. 
    Yang L, Zhang Y, Wang Q, Zhang L. 2019. An automated microrobotic platform for rapid detection of C. diff toxins. IEEE Trans. Biomed. Eng. 67:1517–27
    [Google Scholar]
  44. 44. 
    Pieters R, Tung HW, Charreyron S, Sargent DF, Nelson BJ. 2015. RodBot: a rolling microrobot for micromanipulation. In 2015 IEEE Conference on Robotics and Automationpp4042–47 Piscataway, NJ: IEEE
    [Google Scholar]
  45. 45. 
    Zhou Q, Petit T, Choi H, Nelson BJ, Zhang L. 2017. Dumbbell fluidic tweezers for dynamical trapping and selective transport of microobjects. Adv. Funct. Mater. 27:1604571
    [Google Scholar]
  46. 46. 
    Paris A, Decanini D, Hwang G. 2018. On-chip multimodal vortex trap micro-manipulator with multistage bi-helical micro-swimmer. Sens. Actuat. A 276:118–24
    [Google Scholar]
  47. 47. 
    Kaiser A, Snezhko A, Aranson IS. 2017. Flocking ferromagnetic colloids. Sci. Adv. 3:e1601469
    [Google Scholar]
  48. 48. 
    Xie H, Sun M, Fan X, Lin Z, Chen W, et al. 2019. Reconfigurable magnetic microrobot swarm: multimode transformation, locomotion, and manipulation. Sci. Robot. 4:eaav8006
    [Google Scholar]
  49. 49. 
    Grzybowski BA, Jiang X, Stone HA, Whitesides GM. 2001. Dynamic, self-assembled aggregates of magnetized, millimeter-sized objects rotating at the liquid-air interface: macroscopic, two-dimensional classical artificial atoms and molecules. Phys. Rev. E 64:011603
    [Google Scholar]
  50. 50. 
    Chwang AT, Wu TYT. 1974. Hydromechanics of low-Reynolds-number flow. Part 1. Rotation of axisymmetric prolate bodies. J. Fluid Mech. 63:607–22
    [Google Scholar]
  51. 51. 
    Qiu T, Lee TC, Mark AG, Morozov KI, Münster R, et al. 2014. Swimming by reciprocal motion at low Reynolds number. Nat. Commun. 5:5119
    [Google Scholar]
  52. 52. 
    Pawashe C, Floyd S, Sitti M. 2009. Modeling and experimental characterization of an untethered magnetic micro-robot. Int. J. Robot. Res. 28:1077–94
    [Google Scholar]
  53. 53. 
    Diller E, Floyd S, Pawashe C, Sitti M. 2011. Control of multiple heterogeneous magnetic microrobots in two dimensions on nonspecialized surfaces. IEEE Trans. Robot. 28:172–82
    [Google Scholar]
  54. 54. 
    Steager EB, Selman Sakar M, Magee C, Kennedy M, Cowley A, Kumar V. 2013. Automated biomanipulation of single cells using magnetic microrobots. Int. J. Robot. Res. 32:346–59
    [Google Scholar]
  55. 55. 
    Frutiger DR, Vollmers K, Kratochvil BE, Nelson BJ. 2010. Small, fast, and under control: wireless resonant magnetic micro-agents. Int. J. Robot. Res. 29:613–36
    [Google Scholar]
  56. 56. 
    Diller E, Pawashe C, Floyd S, Sitti M. 2011. Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. Int. J. Robot. Res. 30:1667–80
    [Google Scholar]
  57. 57. 
    Kantaros Y, Johnson BV, Chowdhury S, Cappelleri DJ, Zavlanos MM. 2018. Control of magnetic microrobot teams for temporal micromanipulation tasks. IEEE Trans. Robot. 34:1472–89
    [Google Scholar]
  58. 58. 
    Shahrokhi S, Shi J, Isichei B, Becker AT. 2019. Exploiting nonslip wall contacts to position two particles using the same control input. IEEE Trans. Robot. 35:577–88
    [Google Scholar]
  59. 59. 
    Shahrokhi S, Lin L, Ertel C, Wan M, Becker AT. 2017. Steering a swarm of particles using global inputs and swarm statistics. IEEE Trans. Robot. 34:207–19
    [Google Scholar]
  60. 60. 
    Dogangil G, Ergeneman O, Abbott JJ, Pané S, Hall H, et al. 2008. Toward targeted retinal drug delivery with wireless magnetic microrobots. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systemspp1921–26 Piscataway, NJ: IEEE
    [Google Scholar]
  61. 61. 
    Arcese L, Fruchard M, Ferreira A. 2013. Adaptive controller and observer for a magnetic microrobot. IEEE Trans. Robot. 29:1060–67
    [Google Scholar]
  62. 62. 
    Zhang L, Abbott JJ, Dong L, Kratochvil BE, Bell D, Nelson BJ. 2009. Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94:064107
    [Google Scholar]
  63. 63. 
    Qiu F, Zhang L, Peyer KE, Casarosa M, Franco-Obregón A, et al. 2014. Noncytotoxic artificial bacterial flagella fabricated from biocompatible ORMOCOMP and iron coating. J. Mater. Chem. B 2:357–62
    [Google Scholar]
  64. 64. 
    Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregón A, Nelson BJ. 2012. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24:811–16
    [Google Scholar]
  65. 65. 
    Huang HW, Uslu FE, Katsamba P, Lauga E, Selman Sakar M, Nelson B. 2019. Adaptive locomotion of artificial microswimmers. Sci. Adv. 5:eaau1532
    [Google Scholar]
  66. 66. 
    Khalil IS, Hafez M, Klingnert A, Scheggi S, Adel B, Misra S. 2018. Near surface effects on the flagellar propulsion of soft robotic sperms. In 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronicspp384–89 Piscataway, NJ: IEEE
    [Google Scholar]
  67. 67. 
    Jang B, Gutman E, Stucki N, Seitz BF, Wendel-García PD, et al. 2015. Undulatory locomotion of magnetic multilink nanoswimmers. Nano Lett. 15:4829–33
    [Google Scholar]
  68. 68. 
    Tung HW, Maffioli M, Frutiger DR, Sivaraman KM, Pané S, Nelson BJ. 2013. Polymer-based wireless resonant magnetic microrobots. IEEE Trans. Robot. 30:26–32
    [Google Scholar]
  69. 69. 
    Hu W, Lum GZ, Mastrangeli M, Sitti M. 2018. Small-scale soft-bodied robot with multimodal locomotion. Nature 554:81–85
    [Google Scholar]
  70. 70. 
    Mathieu JB, Beaudoin G, Martel S. 2006. Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system. IEEE Trans. Biomed. Eng. 53:292–99
    [Google Scholar]
  71. 71. 
    Choi H, Choi J, Jeong S, Yu C, Park Jo, Park S. 2009. Two-dimensional locomotion of a microrobot with a novel stationary electromagnetic actuation system. Smart Mater. Struct. 18:115017
    [Google Scholar]
  72. 72. 
    Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ. 2010. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans. Robot. 26:1006–17
    [Google Scholar]
  73. 73. 
    Yan X, Zhou Q, Vincent M, Deng Y, Yu J, et al. 2017. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2:eaaq1155
    [Google Scholar]
  74. 74. 
    Xu T, Hwang G, Andreff N, Régnier S. 2015. Planar path following of 3-D steering scaled-up helical microswimmers. IEEE Trans. Robot. 31:117–27
    [Google Scholar]
  75. 75. 
    Medina-Sánchez M, Schwarz L, Meyer AK, Hebenstreit F, Schmidt OG. 2015. Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett. 16:555–61
    [Google Scholar]
  76. 76. 
    Magdanz V, Sanchez S, Schmidt OG. 2013. Development of a sperm-flagella driven micro-bio-robot. Adv. Mater. 25:6581–88
    [Google Scholar]
  77. 77. 
    Khalil IS, Magdanz V, Hamed Y, Toubar M, Misra S, Klingner A. 2019. Characterization of flagellar propulsion of soft microrobotic sperm in a viscous heterogeneous medium. Front. Robot. AI 6:65
    [Google Scholar]
  78. 78. 
    Pieters RS, Tung HW, Sargent DF, Nelson BJ. 2014. Non-contact manipulation for automated protein crystal harvesting using a rolling microrobot. IFAC Proc. Vol. 47:7480–85
    [Google Scholar]
  79. 79. 
    Yang L, Wang Q, Zhang L. 2018. Model-free trajectory tracking control of two-particle magnetic microrobot. IEEE Trans. Nanotechnol. 17:697–700
    [Google Scholar]
  80. 80. 
    Fan X, Sun M, Lin Z, Song J, He Q, et al. 2018. Automated noncontact micromanipulation using magnetic swimming microrobots. IEEE Trans. Nanotechnol. 17:666–69
    [Google Scholar]
  81. 81. 
    Yang L, Zhang Y, Wang Q, Chan K, Zhang L. 2020. Automated control of magnetic spore-based microrobot using fluorescence imaging for targeted delivery with cellular resolution. IEEE Trans. Autom. Sci. Eng. 17:490–501
    [Google Scholar]
  82. 82. 
    Floyd S, Diller E, Pawashe C, Sitti M. 2011. Control methodologies for a heterogeneous group of untethered magnetic micro-robots. Int. J. Robot. Res. 30:1553–65
    [Google Scholar]
  83. 83. 
    Diller E, Giltinan J, Sitti M. 2013. Independent control of multiple magnetic microrobots in three dimensions. Int. J. Robot. Res. 32:614–31
    [Google Scholar]
  84. 84. 
    Wong D, Steager EB, Kumar V. 2016. Independent control of identical magnetic robots in a plane. IEEE Robot. Autom. Lett. 1:554–61
    [Google Scholar]
  85. 85. 
    Denasi A, Misra S. 2017. Independent and leader–follower control for two magnetic micro-agents. IEEE Robot. Autom. Lett. 3:218–25
    [Google Scholar]
  86. 86. 
    Ongaro F, Pane S, Scheggi S, Misra S. 2019. Design of an electromagnetic setup for independent three-dimensional control of pairs of identical and nonidentical microrobots. IEEE Trans. Robot. 35:174–83
    [Google Scholar]
  87. 87. 
    Becker A, Ou Y, Kim P, Kim MJ, Julius A. 2013. Feedback control of many magnetized Tetrahymena pyriformis cells by exploiting phase inhomogeneity. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systemspp3317–23 Piscataway, NJ: IEEE
    [Google Scholar]
  88. 88. 
    Salchizadeh M, Li Z, Diller E 2019. Independent position control of two magnetic microrobots via rotating magnetic field in two dimensions. 2019 International Conference on Manipulation, Automation and Robotics at Small Scales Piscataway, NJ: IEEE https://doi.org/10.1109/MARSS.2019.8860954
    [Crossref] [Google Scholar]
  89. 89. 
    Wang X, Hu C, Schurz L, De Marco C, Chen X, et al. 2018. Surface-chemistry-mediated control of individual magnetic helical microswimmers in a swarm. ACS Nano 12:6210–17
    [Google Scholar]
  90. 90. 
    Mahoney AW, Nelson ND, Peyer KE, Nelson BJ, Abbott JJ. 2014. Behavior of rotating magnetic microrobots above the step-out frequency with application to control of multi-microrobot systems. Appl. Phys. Lett. 104:144101
    [Google Scholar]
  91. 91. 
    Tottori S, Sugita N, Kometani R, Ishihara S, Mitsuishi M. 2011. Selective control method for multiple magnetic helical microrobots. J. Micro-Nano Mech. 6:89–95
    [Google Scholar]
  92. 92. 
    Kawaguchi T, Inoue Y, Ikeuchi M, Ikuta K. 2018. Independent actuation and master-slave control of multiple micro magnetic actuators. In 2018 IEEE Micro Electro Mechanical Systemspp190–93 Piscataway, NJ: IEEE
    [Google Scholar]
  93. 93. 
    Nelson ND, Abbott JJ. 2015. Generating two independent rotating magnetic fields with a single magnetic dipole for the propulsion of untethered magnetic devices. In 2015 IEEE Conference on Robotics and Automationpp4056–61 Piscataway, NJ: IEEE
    [Google Scholar]
  94. 94. 
    Rahmer J, Stehning C, Gleich B. 2017. Spatially selective remote magnetic actuation of identical helical micromachines. Sci. Robot. 2:eaal2845
    [Google Scholar]
  95. 95. 
    Tottori S, Zhang L, Peyer KE, Nelson BJ. 2013. Assembly, disassembly, and anomalous propulsion of microscopic helices. Nano Lett. 13:4263–68
    [Google Scholar]
  96. 96. 
    Khalil IS, Tabak AF, Hamed Y, Tawakol M, Klingner A, et al. 2018. Independent actuation of two-tailed microrobots. IEEE Robot. Autom. Lett. 3:1703–10
    [Google Scholar]
  97. 97. 
    Kratochvil BE, Frutiger D, Vollmers K, Nelson BJ. 2009. Visual servoing and characterization of resonant magnetic actuators for decoupled locomotion of multiple untethered mobile microrobots. In 2009 IEEE International Conference on Robotics and Automationpp1010–15 Piscataway, NJ: IEEE
    [Google Scholar]
  98. 98. 
    Martel S, Mohammadi M. 2010. Using a swarm of self-propelled natural microrobots in the form of flagellated bacteria to perform complex micro-assembly tasks. In 2010 IEEE International Conference on Robotics and Automationpp500–5 Piscataway, NJ: IEEE
    [Google Scholar]
  99. 99. 
    Loghin D, Tremblay C, Mohammadi M, Martel S. 2017. Exploiting the responses of magnetotactic bacteria robotic agents to enhance displacement control and swarm formation for drug delivery platforms. Int. J. Robot. Res. 36:1195–210
    [Google Scholar]
  100. 100. 
    Vach PJ, Walker D, Fischer P, Fratzl P, Faivre D. 2017. Pattern formation and collective effects in populations of magnetic microswimmers. J. Phys. D 50:11LT03
    [Google Scholar]
  101. 101. 
    Tasci T, Herson P, Neeves K, Marr D. 2016. Surface-enabled propulsion and control of colloidal microwheels. Nat. Commun. 7:10225
    [Google Scholar]
  102. 102. 
    Martinez-Pedrero F, Cebers A, Tierno P. 2016. Dipolar rings of microscopic ellipsoids: magnetic manipulation and cell entrapment. Phys. Rev. Appl. 6:034002
    [Google Scholar]
  103. 103. 
    Gao Y, van Reenen A, Hulsen MA, de Jong AM, Prins MW, den Toonder JM. 2013. Disaggregation of microparticle clusters by induced magnetic dipole–dipole repulsion near a surface. Lab Chip 13:1394–401
    [Google Scholar]
  104. 104. 
    Diller E, Giltinan J, Lum GZ, Ye Z, Sitti M. 2016. Six-degree-of-freedom magnetic actuation for wireless microrobotics. Int. J. Robot. Res. 35:114–28
    [Google Scholar]
  105. 105. 
    Koyasu S, Shirakihara Y. 1984. Caulobacter crescentus flagellar filament has a right-handed helical form. J. Mol. Biol. 173:125–30
    [Google Scholar]
  106. 106. 
    Purcell EM. 1977. Life at low Reynolds number. Am. J. Phys. 45:3–11
    [Google Scholar]
  107. 107. 
    Li T, Li J, Zhang H, Chang X, Song W, et al. 2016. Magnetically propelled fish-like nanoswimmers. Small 12:6098–105
    [Google Scholar]
  108. 108. 
    Rubenstein M, Cornejo A, Nagpal R. 2014. Programmable self-assembly in a thousand-robot swarm. Science 345:795–99
    [Google Scholar]
  109. 109. 
    Becker A, Habibi G, Werfel J, Rubenstein M, McLurkin J. 2013. Massive uniform manipulation: controlling large populations of simple robots with a common input signal. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systemspp520–27 Piscataway, NJ: IEEE
    [Google Scholar]
  110. 110. 
    Belkin M, Snezhko A, Aranson I, Kwok WK. 2007. Driven magnetic particles on a fluid surface: pattern assisted surface flows. Phys. Rev. Lett. 99:158301
    [Google Scholar]
  111. 111. 
    Snezhko A, Aranson IS. 2011. Magnetic manipulation of self-assembled colloidal asters. Nat. Mater. 10:698–703
    [Google Scholar]
  112. 112. 
    Yu J, Wang B, Du X, Wang Q, Zhang L. 2018. Ultra-extensible ribbon-like magnetic microswarm. Nat. Commun. 9:3260
    [Google Scholar]
  113. 113. 
    Yang L, Yu J, Zhang L. 2020. Statistics-based automated control for a swarm of paramagnetic nanoparticles in 2-D space. IEEE Trans. Robot. 36:254–70
    [Google Scholar]
  114. 114. 
    Becker AT. 2017. Controlling swarms of robots with global inputs: breaking symmetry. Microbiorobotics: Biologically Inspired Microscale Robotic Systems M Kim, AA Julius, U Key 3–20 Amsterdam: Elsevier. , 2nd. ed.
    [Google Scholar]
  115. 115. 
    Mandal P, Chopra V, Ghosh A. 2015. Independent positioning of magnetic nanomotors. ACS Nano 9:4717–25
    [Google Scholar]
  116. 116. 
    Ceylan H, Giltinan J, Kozielski K, Sitti M. 2017. Mobile microrobots for bioengineering applications. Lab Chip 17:1705–24
    [Google Scholar]
  117. 117. 
    Yan J, Bloom M, Bae SC, Luijten E, Granick S. 2012. Linking synchronization to self-assembly using magnetic Janus colloids. Nature 491:578–81
    [Google Scholar]
  118. 118. 
    Mohoric T, Kokot G, Osterman N, Snezhko A, Vilfan A, et al. 2016. Dynamic assembly of magnetic colloidal vortices. Langmuir 32:5094–101
    [Google Scholar]
  119. 119. 
    Martinez-Pedrero F, Tierno P. 2015. Magnetic propulsion of self-assembled colloidal carpets: efficient cargo transport via a conveyor-belt effect. Phys. Rev. Appl. 3:051003
    [Google Scholar]
  120. 120. 
    Wang W, Giltinan J, Zakharchenko S, Sitti M. 2017. Dynamic and programmable self-assembly of micro-rafts at the air-water interface. Sci. Adv. 3:e1602522
    [Google Scholar]
  121. 121. 
    Wang B, Chan KF, Yu J, Wang Q, Yang L, et al. 2018. Reconfigurable swarms of ferromagnetic colloids for enhanced local hyperthermia. Adv. Funct. Mater. 28:1705701
    [Google Scholar]
  122. 122. 
    Wang Q, Yu J, Yuan K, Yang L, Jin D, Zhang L. 2019. Disassembly and spreading of magnetic nanoparticle clusters on uneven surfaces. Appl. Mater. Today 18:100489
    [Google Scholar]
  123. 123. 
    Dong X, Sitti M. 2020. Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms. Int. J. Robot. Res. 39:617–38
    [Google Scholar]
  124. 124. 
    Yigit B, Alapan Y, Sitti M. 2019. Programmable collective behavior in dynamically self-assembled mobile microrobotic swarms. Adv. Sci. 6:1801837
    [Google Scholar]
  125. 125. 
    Chao Q, Yu J, Dai C, Xu T, Zhang L, et al. 2016. Steering micro-robotic swarm by dynamic actuating fields. In 2016 IEEE International Conference on Robotics and Automationpp5230–35 Piscataway, NJ: IEEE
    [Google Scholar]
  126. 126. 
    Shahrokhi S, Becker AT. 2015. Stochastic swarm control with global inputs. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systemspp421–27 Piscataway, NJ: IEEE
    [Google Scholar]
  127. 127. 
    Martel S, Taherkhani S, Tabrizian M, Mohammadi M, de Lanauze D, Felfoul O. 2014. Computer 3D controlled bacterial transports and aggregations of microbial adhered nano-components. J. Micro-Bio Robot. 9:23–28
    [Google Scholar]
  128. 128. 
    Pieters R, Lombriser S, Alvarez-Aguirre A, Nelson BJ. 2016. Model predictive control of a magnetically guided rolling microrobot. IEEE Robot. Autom. Lett. 1:455–60
    [Google Scholar]
  129. 129. 
    Khalil IS, Ferreira P, Eleutério R, de Korte CL, Misra S. 2014. Magnetic-based closed-loop control of paramagnetic microparticles using ultrasound feedback. In 2014 IEEE International Conference on Robotics and Automationpp3807–12 Piscataway, NJ: IEEE
    [Google Scholar]
  130. 130. 
    Huang L, Rogowski L, Kim MJ, Becker AT. 2017. Path planning and aggregation for a microrobot swarm in vascular networks using a global input. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systemspp414–20 Piscataway, NJ: IEEE
    [Google Scholar]
  131. 131. 
    Xie H, Fan X, Sun M, Lin Z, He Q, Sun L. 2019. Programmable generation and motion control of a snakelike magnetic microrobot swarm. IEEE/ASME Trans. Mechatron. 24:902–12
    [Google Scholar]
  132. 132. 
    Kim H, Cheang UK, Kim MJ. 2017. Autonomous dynamic obstacle avoidance for bacteria-powered microrobots (BPMs) with modified vector field histogram. PLOS ONE 12:e0185744
    [Google Scholar]
  133. 133. 
    Li X, Chen S, Liu C, Cheng SH, Wang Y, Sun D. 2018. Development of a collision-avoidance vector based control algorithm for automated in-vivo transportation of biological cells. Automatica 90:147–56
    [Google Scholar]
  134. 134. 
    Yang L, Yu J, Zhang L 2020. A mobile paramagnetic nanoparticle swarm with automatic shape deformation control. 2020 IEEE International Conference on Robotics and Automationpp. 923036 Piscataway, NJ: IEEE
    [Google Scholar]
  135. 135. 
    Tamaz S, Gourdeau R, Chanu A, Mathieu JB, Martel S. 2008. Real-time MRI-based control of a ferromagnetic core for endovascular navigation. IEEE Trans. Biomed. Eng. 55:1854–63
    [Google Scholar]
  136. 136. 
    Lucarini G, Palagi S, Levi A, Mazzolai B, Dario P, et al. 2014. Navigation of magnetic microrobots with different user interaction levels. IEEE Trans. Autom. Sci. Eng. 11:818–27
    [Google Scholar]
  137. 137. 
    Bergeles C, Kratochvil BE, Nelson BJ. 2012. Visually servoing magnetic intraocular microdevices. IEEE Trans. Robot. 28:798–809
    [Google Scholar]
  138. 138. 
    Sadelli L, Fruchard M, Ferreira A. 2016. 2D observer-based control of a vascular microrobot. IEEE Trans. Autom. Control 62:2194–206
    [Google Scholar]
  139. 139. 
    Marino H, Bergeles C, Nelson BJ. 2013. Robust electromagnetic control of microrobots under force and localization uncertainties. IEEE Trans. Autom. Sci. Eng. 11:310–16
    [Google Scholar]
  140. 140. 
    Ma W, Li J, Niu F, Ji H, Sun D. 2017. Robust control to manipulate a microparticle with electromagnetic coil system. IEEE Trans. Ind. Electron. 64:8566–77
    [Google Scholar]
  141. 141. 
    Zhang Z, Long F, Menq CH. 2012. Three-dimensional visual servo control of a magnetically propelled microscopic bead. IEEE Trans. Robot. 29:373–82
    [Google Scholar]
  142. 142. 
    Mellal L, Folio D, Belharet K, Ferreira A. 2016. Optimal control of multiple magnetic microbeads navigating in microfluidic channels. In 2016 IEEE International Conference on Robotics and Automationpp1921–26 Piscataway, NJ: IEEE
    [Google Scholar]
  143. 143. 
    Wang Q, Yang L, Yu J, Vong CI, Chiu PWY, Zhang L. 2018. Magnetic navigation of a rotating colloidal swarm using ultrasound images. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systemspp5380–85 Piscataway, NJ: IEEE
    [Google Scholar]
  144. 144. 
    Hu C, Meng MQH, Mandal M. 2005. Efficient magnetic localization and orientation technique for capsule endoscopy. Int. J. Inf. Acquis. 2:23–36
    [Google Scholar]
  145. 145. 
    Son D, Dong X, Sitti M. 2018. A simultaneous calibration method for magnetic robot localization and actuation systems. IEEE Trans. Robot. 35:343–52
    [Google Scholar]
  146. 146. 
    Popek KM, Hermans T, Abbott JJ. 2017. First demonstration of simultaneous localization and propulsion of a magnetic capsule in a lumen using a single rotating magnet. In 2017 IEEE International Conference on Robotics and Automationpp1154–60 Piscataway, NJ: IEEE
    [Google Scholar]
  147. 147. 
    Martel S, Mathieu JB, Felfoul O, Chanu A, Aboussouan E, et al. 2007. Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl. Phys. Lett. 90:114105
    [Google Scholar]
  148. 148. 
    Martel S. 2013. Microrobotics in the vascular network: present status and next challenges. J. Micro-Bio Robot. 8:41–52
    [Google Scholar]
  149. 149. 
    Wu Z, Li L, Yang Y, Hu P, Li Y, et al. 2019. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4:eaax0613
    [Google Scholar]
  150. 150. 
    Li D, Dong D, Lam W, Xing L, Wei T, Sun D 2019. Automated in vivo navigation of magnetic-driven microrobots using OCT imaging feedback. IEEE Trans. Biomed. Eng. 67:234958
    [Google Scholar]
  151. 151. 
    Mohanty S, Hong A, Alcantara C, Petruska AJ, Nelson BJ. 2017. Stereo holographic diffraction based tracking of microrobots. IEEE Robot. Autom. Lett. 3:567–72
    [Google Scholar]
  152. 152. 
    Grammatikopoulou M, Yang GZ. 2019. Three-dimensional pose estimation of optically transparent microrobots. IEEE Robot. Autom. Lett. 5:72–79
    [Google Scholar]
/content/journals/10.1146/annurev-control-032720-104318
Loading
/content/journals/10.1146/annurev-control-032720-104318
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error