Airborne wind energy (AWE) is a fascinating technology to convert wind power into electricity with an autonomous tethered aircraft. Deemed a potentially game-changing solution, AWE is attracting the attention of policy makers and stakeholders with the promise of producing large amounts of cost-competitive electricity with wide applicability worldwide. Since the pioneering experimental endeavors in the years 2000–2010, there has been a clear technology convergence trend and steady progress in the field. Today, AWE systems can operate automatically with minimal supervision in all operational phases. A first product is also being commercialized. However, all-around fully autonomous operation still presents important fundamental challenges that are conceptually similar to those of other systems that promise to change our lives, such as fully autonomous passenger cars or service drones. At the same time, autonomous operation is necessary to enable large-scale AWE, thus combining challenging fundamental problems with high potential impact on society and the economy. This article describes the state of the art of this technology from a system perspective and witha critical view on some fundamental aspects, presents the latest automatic control results by prominent industrial players, and finally points out the most important challenges on the road to fully autonomous AWE systems.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. 
    Bauer F. 2019. Do we need flying wind turbines? (Spoiler: absolutely!). kiteKRAFT Apr. 19. https://medium.com/kitekraft/do-we-need-flying-wind-turbines-spoiler-absolutely-858da214306e
    [Google Scholar]
  2. 2. 
    Manalis MS. 1976. Airborne windmills and communication aerostats. J. Aircr. 13:543–44
    [Google Scholar]
  3. 3. 
    Loyd ML. 1980. Crosswind kite power. J. Energy 4:106–11
    [Google Scholar]
  4. 4. 
    IRENA (Int. Renew. Energy Agency) 2016. Innovation outlook: off-shore wind Rep. IRENA Abu Dhabi, United Arab Emir:.
  5. 5. 
    Eur. Comm. Dir.-Gen. Res. Innov 2018. Study on challenges in the commercialisation of airborne wind energy systems Rep. PP-05081-2016 Eur. Comm. Dir.-Gen. Res. Innov. Brussels:
  6. 6. 
    Ilzhöfer A, Houska B, Diehl M. 2007. Nonlinear MPC of kites under varying wind conditions for a new class of large-scale wind power generators. Int. J. Robust Nonlinear Control 17:1590–99
    [Google Scholar]
  7. 7. 
    Canale M, Fagiano L, Milanese M. 2010. High altitude wind energy generation using controlled power kites. IEEE Trans. Control Syst. Technol. 18:279–93
    [Google Scholar]
  8. 8. 
    Fagiano L, Milanese M, Piga D 2011. Optimization of airborne wind energy generators. Int. J. Robust Nonlinear Control 22:2055–83
    [Google Scholar]
  9. 9. 
    Fagiano L, Zgraggen A, Morari M, Khammash M. 2014. Automatic crosswind flight of tethered wings for airborne wind energy: modeling, control design and experimental results. IEEE Trans. Control Syst. Technol. 22:1433–47
    [Google Scholar]
  10. 10. 
    Erhard M, Strauch H 2015. Flight control of tethered kites in autonomous pumping cycles for airborne wind energy. Control Eng. Pract. 40:13–26
    [Google Scholar]
  11. 11. 
    Erhard M, Horn G, Diehl M 2017. A quaternion-based model for optimal control of an airborne wind energy system. Z. Angew. Math. Mech. 97:7–24
    [Google Scholar]
  12. 12. 
    Gupta Y, Dumon J, Hably A 2017. Modeling and control of a magnus effect-based airborne wind energy system in crosswind maneuvers. IFAC-PapersOnLine 50:113878–85
    [Google Scholar]
  13. 13. 
    Li H, Olinger D, Demetriou M. 2018. Attitude tracking control of an airborne wind energy system. See Ref. 53 215–39
  14. 14. 
    Baheri A, Bin-Karim S, Bafandeh A, Vermillion C 2017. Real-time control using Bayesian optimization: a case study in airborne wind energy systems. Control Eng. Pract. 69:131–40
    [Google Scholar]
  15. 15. 
    Ahbe E, Wood TA, Smith RS 2018. Transverse contraction-based stability analysis for periodic trajectories of controlled power kites with model uncertainty. 2018 IEEE Conference on Decision and Control (CDC)6501–6 Piscataway, NJ: IEEE
    [Google Scholar]
  16. 16. 
    Wood TA, Hesse H, Polzin M, Ahbe E, Smith RS 2018. Modeling, identification, estimation and adaptation for the control of power-generating kites. IFAC-PapersOnLine 51:15981–89
    [Google Scholar]
  17. 17. 
    Erhard M, Strauch H 2018. Automatic control of pumping cycles for the skysails prototype in airborne wind energy. See Ref. 53 189–213
  18. 18. 
    Rapp S, Schmehl R, Oland E, Haas T 2019. Cascaded pumping cycle control for rigid wing airborne wind energy systems. J. Guid. Control Dyn. 42:2456–73
    [Google Scholar]
  19. 19. 
    Stastny T, Ahbe E, Dangel M, Siegwart R. 2019. Locally power-optimal nonlinear model predictive control for fixed-wing airborne wind energy. 2019 American Control Conference (ACC)2191–96 Piscataway, NJ: IEEE
    [Google Scholar]
  20. 20. 
    Cobb MK, Barton K, Fathy H, Vermillion C. 2020. Iterative learning-based path optimization for repetitive path planning, with application to 3-D crosswind flight of airborne wind energy systems. IEEE Trans. Control Syst. Technol. 28:1447–59
    [Google Scholar]
  21. 21. 
    Dief TN, Fechner U, Schmehl R, Yoshida S, Rushdi MA. 2020. Adaptive flight path control of airborne wind energy systems. Energies 13:667
    [Google Scholar]
  22. 22. 
    Todeschini D, Fagiano L, Micheli C, Cattano A. 2021. Control of a rigid wing pumping airborne wind energy system in all operational phases. Control Eng. Pract. 111:104794
    [Google Scholar]
  23. 23. 
    Fechner U, van der Vlugt R, Schreuder E, Schmehl R 2015. Dynamic model of a pumping kite power system. Renew. Energy 83:705–16
    [Google Scholar]
  24. 24. 
    Licitra G, Bürger A, Williams P, Ruiterkamp R, Diehl M 2018. Optimal input design for autonomous aircraft. Control Eng. Pract. 77:15–27
    [Google Scholar]
  25. 25. 
    Pastor-Rodriguez A, Sanchez-Arriaga G, Sanjurjo-Rivo M. 2017. Modeling and stability analysis of tethered kites at high altitudes. J. Guid. Control Dyn. 40:1892–901
    [Google Scholar]
  26. 26. 
    Sanchez-Arriaga G, Garcia-Villalba M, Schmehl R. 2017. Modeling and dynamics of a two-line kite. Appl. Math. Model. 47:473–86
    [Google Scholar]
  27. 27. 
    Fagiano L, Huynh K, Bamieh B, Khammash M. 2014. On sensor fusion for airborne wind energy systems. IEEE Trans. Control Syst. Technol. 22:930–43
    [Google Scholar]
  28. 28. 
    Schmidt E, De Lellis Costa de Oliveira M, Saraiva da Silva R, Fagiano L, Trofino Neto A 2020. In-flight estimation of the aerodynamics of tethered wings for airborne wind energy. IEEE Trans. Control Syst. Technol. 28:1309–22
    [Google Scholar]
  29. 29. 
    Vimalakanthan K, Caboni M, Schepers J, Pechenik E, Williams P 2018. Aerodynamic analysis of Ampyx's airborne wind energy system. J. Phys. Conf. Series 1037:062008
    [Google Scholar]
  30. 30. 
    De Lellis M, Reginatto R, Saraiva R, Trofino A. 2018. The Betz limit applied to Airborne Wind Energy. Renew. Energy 127:32–40
    [Google Scholar]
  31. 31. 
    Paulig X, Bungart M, Specht B. 2013. Conceptual design of textile kites considering overall system performance. See Ref. 52 547–62
  32. 32. 
    Bosman R, Reid V, Vlasblom M, Smeets P 2013. Airborne wind energy tethers with high-modulus polyethylene fibers. See Ref. 52 563–85
  33. 33. 
    Vander Lind D. 2013. Analysis and flight test validation of high performance airborne wind turbines. See Ref. 52 473–90
  34. 34. 
    Bauer F, Kennel RM, Hackl CM, Campagnolo F, Patt M, Schmehl R 2018. Drag power kite with very high lift coefficient. Renew. Energy 118:290–305
    [Google Scholar]
  35. 35. 
    Licitra G, Koenemann J, Bürger A, Williams P, Ruiterkamp R, Diehl M 2019. Performance assessment of a rigid wing Airborne Wind Energy pumping system. Energy 173:569–85
    [Google Scholar]
  36. 36. 
    Ruiterkamp R, Sieberling S. 2013. Description and preliminary test results of a six degrees of freedom rigid wing pumping system. See Ref. 52 443–58
  37. 37. 
    Luchsinger R, Aregger D, Bezard F, Costa D, Galliot C et al. 2018. Airborne wind energy, advances in technology development and research. See Ref. 53 603–21
  38. 38. 
    Stuyts J, Horn G, Vandermeulen W, Driesen J, Diehl M 2015. Effect of the electrical energy conversion on optimal cycles for pumping airborne wind energy. IEEE Trans. Sustain. Energy 6:2–10
    [Google Scholar]
  39. 39. 
    Fagiano L, Milanese M, Piga D. 2010. High-altitude wind power generation. IEEE Trans. Energy Convers. 25:168–80
    [Google Scholar]
  40. 40. 
    Heilmann J, Houle C. 2013. Economics of pumping kite generators. See Ref. 52 271–84
  41. 41. 
    Malz E, Hedenus F, Göransson L, Verendel V, Gros S. 2019. Drag-mode airborne wind energy versus wind turbines: an analysis of power production, variability and geography. Energy 193:116765
    [Google Scholar]
  42. 42. 
    Haas T, Schutter JD, Diehl M, Meyers J. 2019. Wake characteristics of pumping mode airborne wind energy systems. J Phys. Conf. Ser. 1256:012016
    [Google Scholar]
  43. 43. 
    Salma V, Friedl F, Schmehl R. 2019. Improving reliability and safety of airborne wind energy systems. Wind Energy 23:340–56
    [Google Scholar]
  44. 44. 
    Rapp S, Schmehl R. 2021. Enhancing resilience of airborne wind energy systems through upset condition avoidance. J. Guid. Control Dyn. 44:251–65
    [Google Scholar]
  45. 45. 
    Archer CL, Caldeira K. 2009. Global assessment of high-altitude wind power. Energies 2:307–19
    [Google Scholar]
  46. 46. 
    Archer CL, Delle Monache L, Rife DL. 2014. Airborne wind energy: optimal locations and variability. Renew. Energy 64:180–86
    [Google Scholar]
  47. 47. 
    Bechtle P, Schelbergen M, Schmehl R, Zillmann U, Watson S. 2019. Airborne wind energy resource analysis. Renew. Energy 141:1103–16
    [Google Scholar]
  48. 48. 
    Fagiano L, Milanese M. 2012. Airborne Wind Energy: an overview. 2012 American Control Conference (ACC)3132–43 Piscataway, NJ: IEEE
    [Google Scholar]
  49. 49. 
    Cherubini A, Papini A, Vertechy R, Fontana M. 2015. Airborne wind energy systems: a review of the technologies. Renew. Sustain. Energy Rev. 51:1461–76
    [Google Scholar]
  50. 50. 
    de Souza Mendonça AK, Rodrigues Vaz C, Rojas Lezana AG, Alvez Anacleto C, Pacheco Paladini E. 2017. Comparing patent and scientific literature in airborne wind energy. Sustainability 9:915
    [Google Scholar]
  51. 51. 
    Vermillion C, Cobb M, Fagiano L, Leuthold R, Diehl M et al. 2021. Electricity in the air: insights from two decades of advanced control research and experimental flight testing of airborne wind energy systems. Annu. Rev. Control 52:330–57
    [Google Scholar]
  52. 52. 
    Ahrens U, Diehl M, Schmehl R 2013. Airborne Wind Energy Berlin: Springer
  53. 53. 
    Schmehl R 2018. Airborne Wind Energy: Advances in Technology Development and Research Singapore: Springer
  54. 54. 
    Stirr K dir 2020. Pulling Power from the Sky: The Story of Makani. Doc. Film, Makani Technol Alameda, CA: https://www.youtube.com/watch?v=qd_hEja6bzE
    [Google Scholar]
  55. 55. 
    Echeverri P, Fricke T, Homsy G, Tucker N (Makani Team) 2020. The Energy Kite: Selected Results from the Design, Development and Testing of Makani's Airborne Wind Turbines Parts I–III Alameda, CA: Makani Technol.
  56. 56. 
    SkySails Group 2021. Series production of AWES starts. SkySails Power Feb. 25. https://skysails-power.com/series-production-of-awes-starts
    [Google Scholar]
  57. 57. 
    Erhard M, Strauch H 2013. Sensors and navigation algorithms for flight control of tethered kites. 2013 European Control Conference (ECC)998–1003 Piscataway, NJ: IEEE
    [Google Scholar]
  58. 58. 
    Erhard M, Strauch H 2012. Control of towing kites for seagoing vessels. IEEE Trans. Control Syst. Technol. 21:1629–40
    [Google Scholar]
  59. 59. 
    Bauer F. 2020. Taking over the baton from Makani. kiteKRAFT Sept. 16. https://medium.com/kitekraft/taking-over-the-baton-from-makani-23318d88b7b0
    [Google Scholar]
  60. 60. 
    Bauer F, Kennel RM. 2018. Fault tolerant power electronic system for drag power kites. J. Renew. Energy 2018:1306750
    [Google Scholar]
  61. 61. 
    Schmehl R, Noom M, van der Vlugt R. 2013. Traction power generation with tethered wings. See Ref. 52 23–45
  62. 62. 
    Fagiano L, Schnez S. 2017. On the take-off of airborne wind energy systems based on rigid wings. Renew. Energy 107:473–88
    [Google Scholar]
  63. 63. 
    Houska B, Diehl M. 2007. Optimal control for power generating kites. 2007 European Control Conference (ECC)3560–67 Piscataway, NJ: IEEE
    [Google Scholar]
  64. 64. 
    Trevisi F, Gaunaa M, McWilliam M. 2020. The influence of tether sag on airborne wind energy generation. J. Phys. Conf. Ser. 1618:032006
    [Google Scholar]
  65. 65. 
    Trevisi F, McWilliam M, Gaunaa M. 2021. Configuration optimization and global sensitivity analysis of Ground-Gen and Fly-Gen Airborne Wind Energy Systems. Renew. Energy 178:385–402
    [Google Scholar]
  66. 66. 
    Antsaklis PJ, Passino KM, Wang SJ. 1991. An introduction to autonomous control systems. IEEE Control Syst. Mag. 11:45–13
    [Google Scholar]
  67. 67. 
    Passino KM. 1995. Intelligent control for autonomous systems. IEEE Spectrum 32:55–62
    [Google Scholar]
  68. 68. 
    Quack M. 2017. Recent advances in automation of tethered flight at SkySails Power Presentation at the 7th Airborne Wind Energy Conference Freiburg, Ger.: Oct. 5–6. https://awec2017.com/presentations/manfred-quack
  69. 69. 
    Quack M. 2019. Extended periods of automated tethered flight at SkySails Presentation at the 8th Airborne Wind Energy Conference Glasgow, Scotl.: Oct. 15–16. https://av.tib.eu/media/50214
  70. 70. 
    Kolar JW, Friedli T, Krismer F, Looser A, Schweizer M et al. 2013. Conceptualization and multiobjective optimization of the electric system of an airborne wind turbine. IEEE J. Emerg. Sel. Top. Power Electron. 1:73–103
    [Google Scholar]
  71. 71. 
    Gammeter C, Krismer F, Kolar JW. 2016. Comprehensive conceptualization, design, and experimental verification of a weight-optimized all-SiC 2 kV/700 V DAB for an airborne wind turbine. IEEE J. Emerg. Sel. Top. Power Electron. 4:638–56
    [Google Scholar]
  72. 72. 
    van Dam C. 2002. The aerodynamic design of multi-element high-lift systems for transport airplanes. Prog. Aerosp. Sci. 38:101–44
    [Google Scholar]
  73. [Google Scholar]
  74. 74. 
    kiteKRAFT 2020. kiteKRAFT tethered hover test with disturbance. YouTube Sept. 17. https://youtu.be/xNPgqNaoMR8
    [Google Scholar]
  75. 75. 
    kiteKRAFT 2020. kiteKRAFT operational flight. YouTube Nov. 10. https://youtu.be/sc4RAtPwNRw
    [Google Scholar]
  76. 76. 
    kiteKRAFT 2020. kiteKRAFT – building flying wind turbines. YouTube Aug. 28. https://youtu.be/F9gq9Bp3-Jg
    [Google Scholar]
  77. 77. 
    Bagaber B, Mertens A. 2021. Fault ride-through performance of pumping cycle airborne wind energy generators with the support of optimally sized energy storage system. 2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia)1144–50 Piscataway, NJ: IEEE
    [Google Scholar]
  78. 78. 
    Bauer F, Petzold D, Kennel RM, Campagnolo F, Schmehl R 2018. Control of a drag power kite over the entire wind speed range. J. Guid. Control Dyn. 42:2167–82
    [Google Scholar]
  79. 79. 
    Weber J. 2012. WEC technology readiness and performance matrix – finding the best research technology development trajectory Paper presented at the 4th International Conference on Ocean Energy Dublin: Oct. 17–19

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error