1932

Abstract

Cost, efficiency, and emissions concerns have motivated the application of advanced control techniques to multiple carrier energy systems. Research in energy management and control over the last two decades has shown that significant energy and CO emissions reductions can be achieved. Within the last decade, this work has expanded to the domain of interconnected energy systems. The interconnection control of multiple energy carriers, conversion devices, and energy storage provides increased flexibility and energy/CO reduction potential. The focus of this article is on outlining the control methods required for these systems over a range of energy consumption and timescales. Dynamic interactions between multicarrier systems occur over timescales ranging from 15 minutes to seasons. The constrained nature of the resulting control problems favors optimization-based approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-042820-125219
2023-05-03
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/control/6/1/annurev-control-042820-125219.html?itemId=/content/journals/10.1146/annurev-control-042820-125219&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Geidl M, Andersson G. 2006. Operational and structural optimization of multi-carrier energy systems. Eur. Trans. Electr. Power 16:463–77
    [Google Scholar]
  2. 2.
    Orehounig K, Mavromatidis G, Evins R, Dorer V, Carmeliet J. 2014. Towards an energy sustainable community: an energy system analysis for a village in Switzerland. Energy Build. 84:277–86
    [Google Scholar]
  3. 3.
    Han S, Wangyun W, Kim J. 2017. Scenario-based approach for design and comparatively analysis of conventional and renewable energy systems. Energy 129:86–100
    [Google Scholar]
  4. 4.
    Sturzenegger D, Gyalistras D, Semeraro V, Morari M, Smith RS. 2014. BRCM Matlab Toolbox: model generation for model predictive building control. 2014 American Control Conference1063–69 Piscataway, NJ: IEEE
    [Google Scholar]
  5. 5.
    Darivianakis G, Georghious A, Smith RS, Lygeros J. 2015. EHCM Toolbox. ETH Zürich Automatic Control Laboratory https://control.ee.ethz.ch/software/BRCM-Toolbox1.html
    [Google Scholar]
  6. 6.
    Bollinger LA, Dorer V. 2017. The Ehub Modeling Tool: a flexible software package for district energy system optimization. Energy Procedia 122:541–46
    [Google Scholar]
  7. 7.
    Braun JE. 1990. Reducing energy costs and peak electrical demand through optimal control of building thermal storage. ASHRAE Trans. 96:876–88
    [Google Scholar]
  8. 8.
    Häberling C. 2020. Modeling and control of energy consumption in buildings: thermal and visual comfort MS Thesis, ETH Zürich, Zürich, Switz.
  9. 9.
    Henze GP, Krarti M. 2003. Predictive optimal control of active and passive building thermal storage inventory Tech. Rep. 894511 US Dep. Energy Washington, DC:
  10. 10.
    Klein SA et al. 2017. TRNSYS 18: a transient system simulation program Softw., Solar Energy Lab., Univ. Wisconsin–Madison Madison, WI: http://sel.me.wisc.edu/trnsys
  11. 11.
    Picard D, Jorissen F, Helsen L 2015. Methodology for obtaining linear state space building energy simulation models. Proceedings of the 11th International Modelica Conference P Fritzson, H Elmqvist 51–58 Linköping, Swed: Model. Assoc. and Linköping Univ. Electron. Press
    [Google Scholar]
  12. 12.
    Perez-Lombard L, Ortiz J, Maestre IR. 2011. The map of energy flow in HVAC systems. Appl. Energy 88:5020–31
    [Google Scholar]
  13. 13.
    Afroz Z, Shafiullah GM, Urmee T, Higgins G. 2018. Modeling techniques used in building HVAC control systems: a review. Renew. Sustain. Energy Rev. 83:64–84
    [Google Scholar]
  14. 14.
    Sturzenegger D, Gyalistras D, Morari M, Smith RS. 2016. Model predictive climate control of a Swiss office building: implementation, results, and cost-benefit analysis. IEEE Trans. Control Syst. Technol. 24:1–12
    [Google Scholar]
  15. 15.
    Oldewurtel F, Sturzenegger D, Morari M. 2013. Importance of occupancy information for building climate control. Appl. Energy 101:521–32
    [Google Scholar]
  16. 16.
    Guillemin A, Morel N. 2001. An innovative lighting controller integrated in a self-adaptive building control system. Energy Build. 33:477–87
    [Google Scholar]
  17. 17.
    Reuda L, Agbossou K, Cardenas A, Henao N, Kelowani S. 2020. A comprehensive review of approaches to building occupancy detection. Build. Environ. 180:106966
    [Google Scholar]
  18. 18.
    Ebadat A, Bottegal G, Varagnolo D, Wahlberg B, Hjalmarsson H, Johansson KH. 2015. Blind identification strategies for room occupancy estimation. 2015 European Control Conference1315–20 Piscataway, NJ: IEEE
    [Google Scholar]
  19. 19.
    Chen Z, Jiang C, Xie L. 2018. Building occupancy estimation and detection: a review. Energy Build. 169:260–70
    [Google Scholar]
  20. 20.
    Azuatalam D, Paridari K, Ma Y, Förstl M, Chapman AC. 2019. Energy management of small-scale PV-battery systems: a systematic review considering practical implementation, computational requirements, quality of input data and battery degradation. Renew. Sustain. Energy Rev. 112:555–70
    [Google Scholar]
  21. 21.
    Henze GP, Dodier RH, Krarti M. 1997. Development of a predictive optimal controller for thermal energy storage systems. HVAC&R Res. 3:233–64
    [Google Scholar]
  22. 22.
    García CE, Prett DM, Morari M. 1989. Model predictive control: theory and practice—a survey. Automatica 25:335–48
    [Google Scholar]
  23. 23.
    Maciejowski JM. 2002. Predictive Control with Constraints London: Pearson
  24. 24.
    Rawlings JB, Mayne DQ. 2009. Model Predictive Control: Theory and Design Madison, WI: Nob Hill
  25. 25.
    Long Y, Liu S, Xie L, Johansson KH. 2016. A hierarchical distributed MPC for HVAC systems. 2016 American Control Conference2385–90 Piscataway, NJ: IEEE
    [Google Scholar]
  26. 26.
    Ma Y, Kelman A, Daly A, Borrelli F. 2012. Predictive control for energy efficient buildings with thermal storage: modeling, stimulation, and experiments. IEEE Control Syst. Mag. 32:144–64
    [Google Scholar]
  27. 27.
    Drgoňa J, Arroyo J, Cupeiro Figueroa I, Blum D, Arendt K et al. 2020. All you need to know about model predictive control for buildings. Annu. Rev. Control 50:190–232
    [Google Scholar]
  28. 28.
    Henze GP, Kalz DE, Liu S, Felsmann C. 2005. Experimental analysis of model-based predictive optimal control for active and passive building thermal storage inventory. HVAC&R Res. 11:189–213
    [Google Scholar]
  29. 29.
    Bengea SC, Kelman AD, Borrelli F, Taylor R, Narayanan S. 2014. Implementation of model predictive control for an HVAC system in a mid-size commercial building. HVAC&R Res. 20:121–35
    [Google Scholar]
  30. 30.
    Finck C, Li R, Zeiler W. 2019. Economic model predictive control for demand flexibility of a residential building. Energy 176:365–79
    [Google Scholar]
  31. 31.
    Freund S, Schmitz G. 2021. Implementation of model predictive control in a large-sized, low-energy office building. Build. Environ. 197:107830
    [Google Scholar]
  32. 32.
    Siroky J, Oldewurtel F, Cigler J, Privara S. 2011. Experimental analysis of model predictive control for an energy efficient building heating system. Appl. Energy 88:3079–87
    [Google Scholar]
  33. 33.
    Castilla M, Álvarez J, Normey-Rico J, Rodríguez F. 2013. Thermal comfort control using a non-linear MPC strategy: a real case of study in a bioclimatic building. J. Process Control 24:703–13
    [Google Scholar]
  34. 34.
    Aswani A, Master N, Taneja J, Culler D, Tomlin C. 2012. Reducing transient and steady state electricity consumption in HVAC using learning-based model predictive control. Proc. IEEE 100:240–53
    [Google Scholar]
  35. 35.
    Scokaert POM, Mayne DQ. 1998. Min–max feedback model predictive control for constrained linear systems. IEEE Trans. Autom. Control 43:1136–42
    [Google Scholar]
  36. 36.
    Vandenberghe L, Boyd S. 1996. Semidefinite programming. SIAM Rev. 38:49–95
    [Google Scholar]
  37. 37.
    Goulart PJ, Kerrigan EC, Maciejowski JM. 2006. Optimization over state feedback policies for robust control with constraints. Automatica 42:523–33
    [Google Scholar]
  38. 38.
    Mayne DQ, Seron M, Raković SV. 2005. Robust model predictive control of constrained linear systems with bounded disturbances. Automatica 41:219–24
    [Google Scholar]
  39. 39.
    Kothare MV, Balakrishnan V, Morari M. 1996. Robust constrained model predictive control using linear matrix inequalities. Automatica 32:1361–79
    [Google Scholar]
  40. 40.
    de Oliveira Kothare SL, Morari M. 2000. Contractive model predictive control for constrained nonlinear systems. IEEE Trans. Autom. Control 45:1053–71
    [Google Scholar]
  41. 41.
    Smith RS. 2004. Robust model predictive control of constrained linear systems. 2004 American Control Conference, Vol. 1245–50 Piscataway, NJ: IEEE
    [Google Scholar]
  42. 42.
    Tanaskovic M, Fagiano L, Smith RS, Goulart P, Morari M. 2013. Adaptive model predictive control for constrained linear systems. 2013 European Control Conference382–87 Piscataway, NJ: IEEE
    [Google Scholar]
  43. 43.
    Tanaskovic M, Sturzenegger D, Smith RS, Morari M. 2017. Robust adaptive model predictive building climate control. IFAC Proc. Vol. 50:11871–76
    [Google Scholar]
  44. 44.
    Farina M, Giulioni L, Scattolini R. 2016. Stochastic linear model predictive control with chance constraints—a review. J. Process Control 44:53–67
    [Google Scholar]
  45. 45.
    Nygård Ferguson M, Scartezzini JL 1992. Evaluation of an optimal stochastic controller in a full-scale experiment. Energy Build. 181–10
    [Google Scholar]
  46. 46.
    van Hessem DH, Bosgra OH. 2002. A conic reformulation of Model Predictive Control including bounded and stochastic disturbances under state and input constraints. 41st IEEE Conference on Decision and Control, Vol. 44643–48 Piscataway, NJ: IEEE
    [Google Scholar]
  47. 47.
    Bertsimis D, Sim M. 2006. Tractable approximations to robust conic optimization problems. Math. Program. 107:5–36
    [Google Scholar]
  48. 48.
    Nemirovkski A, Shapiro A. 2006. Convex approximations of chance constrained programs. SIAM J. Optim. 17:969–96
    [Google Scholar]
  49. 49.
    Oldewurtel F, Jones CN, Morari M. 2008. A tractable approximation of chance constrained stochastic MPC based on affine disturbance feedback. 2008 47th IEEE Conference on Decision and Control4731–36 Piscataway, NJ: IEEE
    [Google Scholar]
  50. 50.
    Calafiori G, Campi MC. 2005. Uncertain convex programs: randomized solutions and confidence levels. Math. Program. 102:25–46
    [Google Scholar]
  51. 51.
    Campi MC, Garatti S. 2008. The exact feasibility of randomized solutions of uncertain convex programs. SIAM J. Optim. 19:1211–30
    [Google Scholar]
  52. 52.
    Schildbach G, Fagiano L, Frei C, Morari M. 2014. The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations. Automatica 50:3009–18
    [Google Scholar]
  53. 53.
    Margellos K, Goulart P, Lygeros J. 2014. On the road between robust optimization and the scenario approach for chance constrained optimization problems. IEEE Trans. Autom. Control 59:2258–63
    [Google Scholar]
  54. 54.
    Oldewurtel F, Parisio A, Jones CN, Gyalistras D, Gwerder M et al. 2012. Use of model predictive control and weather forecasts for energy efficient building climate control. Energy Build. 45:15–27
    [Google Scholar]
  55. 55.
    Zhang X, Schildbach G, Sturzenegger D, Morari M. 2013. Scenario-based MPC for energy-efficient building climate control under weather and occupancy uncertainty. 2013 European Control Conference1029–34 Piscataway, NJ: IEEE
    [Google Scholar]
  56. 56.
    Parisio A, Varagnolo D, Molinari M, Pattarello G, Fabietti L, Johansson KH. 2014. Implementation of a scenario-based MPC for HVAC systems: an experimental case study. IFAC Proc. Vol. 47:3599–605
    [Google Scholar]
  57. 57.
    Ma Y, Vichkik S, Borrelli F. 2012. Fast stochastic MPC with optimal risk allocation applied to building control systems. 2012 51st IEEE Conference on Decision and Control7559–64 Piscataway, NJ: IEEE
    [Google Scholar]
  58. 58.
    Zhang X, Grammatico S, Schildbach G, Goulart P, Lygeros J. 2014. On the sample size of randomized MPC for chance-constrained systems with application to building climate control. 2014 European Control Conference478–83 Piscataway, NJ: IEEE
    [Google Scholar]
  59. 59.
    Ioli D, Falsone A, Prandini M. 2016. Energy management of a building cooling system with thermal storage: a randomized solution with feedforward disturbance compensation. 2016 American Control Conference2346–51 Piscataway, NJ: IEEE
    [Google Scholar]
  60. 60.
    Mesbah A. 2016. Stochastic model predictive control; an overview and perspectives for future research. IEEE Control Syst. Mag. 36:630–44
    [Google Scholar]
  61. 61.
    Wang J, Li S, Chen H, Yuan Y, Huang Y. 2019. Data-driven model predictive control for building climate control: three cases studies on different buildings. Build. Environ. 160:106204
    [Google Scholar]
  62. 62.
    Ferreira PM, Ruano AE, Silva S, Conceição EZE. 2012. Neural networks based predictive control for thermal comfort and energy savings in public buildings. Energy Build. 55:238–51
    [Google Scholar]
  63. 63.
    Bünning F, Huber B, Schalbetter A, Aboudonia A, Hudoba de Badyn M et al. 2022. Physics-informed linear regression is competitive with two machine learning methods in residential MPC. Appl. Energy 310:118491
    [Google Scholar]
  64. 64.
    Bünning F, Huber B, Heer P, Aboudonia A, Lygeros J. 2020. Experimental demonstration of data predictive control for energy optimization and thermal comfort in buildings. Energy Build. 211:109792
    [Google Scholar]
  65. 65.
    Bünning F, Schalbetter A, Aboudonia A, Hudoba de Badyn M, Heer P, Lygeros J 2021. Input convex neural networks for building MPC. Proceedings of the 3rd Conference on Learning for Dynamics and Control A Jadbabaie, J Lygeros, GJ Pappas, PA Parrilo, B Recht et al.251–62 Proc. Mach. Learn. Res. 144. N.p.: PMLR
    [Google Scholar]
  66. 66.
    Kathirgamanathan A, De Rosa M, Mangina E, Finn DP. 2021. Data-driven predictive control for unlocking building energy flexibility: a review. Renew. Sustain. Energy Rev. 135:110120
    [Google Scholar]
  67. 67.
    Radhakrishnan N, Srinivasan S, Su R, Poolla K. 2018. Learning-based hierarchical distributed HVAC scheduling with operational constraints. IEEE Trans. Control Syst. Technol. 26:1892–900
    [Google Scholar]
  68. 68.
    Png E, Srinivasan S, Bekiroglu K, Chaoyang J, Su R. 2019. An internet of things upgrade for smart and scalable heating, ventilation and air-conditioning control in commercial buildings. Appl. Energy 239:408–24
    [Google Scholar]
  69. 69.
    Griva I, Nash SG, Ariela S 2009. Linear and Nonlinear Optimization Philadelphia: Soc. Ind. Appl. Math.
  70. 70.
    Dolatabadi A, Mohammadi-Ivatloo B, Adapour M, Tohidi S. 2017. Optimal stochastic design of wind integrated energy hub. IEEE Trans. Ind. Inf. 13:2379–88
    [Google Scholar]
  71. 71.
    Zeng A, Ho H, Yu Y. 2020. Prediction of building electricity usage using Gaussian process regression. J. Build. Eng. 28:101054
    [Google Scholar]
  72. 72.
    Shao C, Wang X, Shahidehpour M, Wang X, Wang B 2017. An MILP-based optimal power flow in multicarrier energy systems. IEEE Trans. Sustain. Energy 8:239–48
    [Google Scholar]
  73. 73.
    Ramirez-Elizondo LM, Paap GC. 2009. Unit commitment in multiple energy carrier systems. 41st North American Power Symposium Piscataway, NJ: IEEE https://doi.org/10.1109/NAPS.2009.5484065
    [Crossref] [Google Scholar]
  74. 74.
    Habibifar R, Khoshjahan M, Ghasemi MA. 2020. Optimal scheduling of multi-carrier energy system based on energy hub concept considering power-to-gas storage. 2020 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference Piscataway, NJ: IEEE https://doi.org/10.1109/ISGT45199.2020.9087751
    [Crossref] [Google Scholar]
  75. 75.
    Shao C, Ding Y, Song Y, Zhu C. 2017. Demand response from multiple-energy customers in integrated energy system. 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe Piscataway, NJ: IEEE https://doi.org/10.1109/EEEIC.2017.7977663
    [Crossref] [Google Scholar]
  76. 76.
    Geng S, Vrakopoulou M, Hiskens IA. 2020. Optimal capacity design and operation of energy hub systems. Proc. IEEE 108:1475–95
    [Google Scholar]
  77. 77.
    Dolatabadi A, Mohammadi-Ivatloo B. 2017. Stochastic risk-constrained scheduling of smart energy hub in the presence of wind power and demand response. Appl. Therm. Eng. 123:40–49
    [Google Scholar]
  78. 78.
    Risbeck MJ, Maravelias CT, Rawlings JB, Turney RD. 2015. Cost optimization of combined building heating/cooling equipment via mixed-integer linear programming. 2015 American Control Conference1689–94 Piscataway, NJ: IEEE
    [Google Scholar]
  79. 79.
    Arnold M, Negenborn RR, Andersson G, De Schutter B. 2009. Model-based predictive control applied to multi-carrier energy systems. 2009 IEEE Power and Energy Society General Meeting Piscataway, NJ: IEEE https://doi.org/10.1109/PES.2009.5275230
    [Crossref] [Google Scholar]
  80. 80.
    Bürger A, Bohlayer M, Hoffmann S, Altmann-Dieses A, Braun M, Diehl M. 2020. A whole-year simulation study on nonlinear mixed-integer model predictive control for a thermal energy supply system with multi-use components. Appl. Energy 258:114064
    [Google Scholar]
  81. 81.
    Darivianakis G, Georghiou A, Eichler A, Smith RS, Lygeros J. 2017. Scalability through decentralization: a robust control approach for the energy management of a building community. IFAC PapersOnLine 50:114314–19
    [Google Scholar]
  82. 82.
    Camponogara E, Jia D, Krogh BH, Talukdar S. 2002. Distributed model predictive control. IEEE Control Syst. Mag. 22:144–52
    [Google Scholar]
  83. 83.
    Dunbar WB. 2007. Distributed receding horizon control of dynamically coupled nonlinear systems. IEEE Trans. Autom. Control 52:1249–63
    [Google Scholar]
  84. 84.
    Farina M, Scattolini R. 2012. Distributed predictive control: a non-cooperative algorithm with neighbor-to-neighbor communication for linear systems. Automatica 48:1088–96
    [Google Scholar]
  85. 85.
    Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3:1–122
    [Google Scholar]
  86. 86.
    Parisio A, Wiezorek C, Kyntäjä T, Elo J, Strunz K, Johansson KH. 2017. Cooperative MPC-based energy management for networked microgrids. IEEE Trans. Smart Grid 8:3066–74
    [Google Scholar]
  87. 87.
    Yoshida A, Yoshikawa J, Fujimoto Y, Amano Y, Hayashi Y. 2018. Stochastic receding horizon control minimizing mean-variance with demand forecasting for home EMSs. Energy Build. 158:1632–39
    [Google Scholar]
  88. 88.
    Kumar R, Wenzel MJ, ElBsat MN, Risbeck MJ, Drees KH, Zavala VM. 2020. Stochastic model predictive control for central HVAC plants. J. Process Control 90:1–17
    [Google Scholar]
  89. 89.
    Parisio A, Del Vecchio C, Vaccaro A 2012. A robust optimization approach to energy hub management. Electr. Power Energy Syst. 42:98–104
    [Google Scholar]
  90. 90.
    Callaway DS, Hiskens IA. 2011. Achieving controllability of electric loads. Proc. IEEE 99:184–99
    [Google Scholar]
  91. 91.
    Angeli D, Kountouriotis P-A. 2012. A stochastic approach to “dynamic-demand” refrigerator control. IEEE Trans. Control Syst. Technol. 20:581–92
    [Google Scholar]
  92. 92.
    Long S, Marjanovic O, Parisio A. 2019. Generalised control-oriented modelling framework for multi-energy systems. Appl. Energy 235:320–31
    [Google Scholar]
  93. 93.
    Hao H, Sanandaji BM, Poolla K, Vincent TL. 2015. Potentials and economics of residential thermal loads providing regulation reserve. Energy Policy 79:115–26
    [Google Scholar]
  94. 94.
    Lin Y, Barooah P, Meyn SP. 2013. Low-frequency power-grid ancillary services from commercial building HVAC systems. 2013 IEEE International Conference on Smart Grid Communications169–74 Piscataway, NJ: IEEE
    [Google Scholar]
  95. 95.
    Zhao P, Henze GP, Plamp S, Cushing VJ. 2013. Evaluation of commercial building HVAC systems as frequency regulation providers. Energy Build. 67:225–35
    [Google Scholar]
  96. 96.
    Vrettos E, Kara EC, MacDonald J, Andersson G, Callaway DS. 2018. Experimental demonstration of frequency regulation by commercial buildings—part I: modeling and hierarchical control design. IEEE Trans. Smart Grid 9:3213–23
    [Google Scholar]
  97. 97.
    Oldewurtel F, Sturzenegger D, Andersson G, Morari M, Smith RS. 2013. Towards a standardized building assessment for demand response. 52nd IEEE Conference on Decision and Control7083–88 Piscataway, NJ: IEEE
    [Google Scholar]
  98. 98.
    Bünning F, Warrington J, Heer P, Smith RS, Lygeros J. 2022. Robust MPC with data-driven demand forecasting for frequency regulation with heat pumps. Control Eng. Pract. 122:105101
    [Google Scholar]
  99. 99.
    Murray P, Orehounig K, Grosspietsch D, Carmeliet J. 2018. A comparison of storage systems in neighbourhood decentralized energy system applications from 2015 to 2050. Appl. Energy 231:1285–306
    [Google Scholar]
  100. 100.
    Gabrielli P, Gazzani M, Martelli E, Mazzotti M. 2018. Optimal design of multi-energy systems with seasonal storage. Appl. Energy 219:408–24
    [Google Scholar]
  101. 101.
    Clarke WC, Manzie C, Brear MJ. 2018. Hierarchical economic MPC for systems with storage states. Automatica 94:138–50
    [Google Scholar]
  102. 102.
    Rostampour V, Keviczky T. 2019. Probabilistic energy management for building climate comfort in smart thermal grids with seasonal storage systems. IEEE Trans. Smart Grid 10:3687–97
    [Google Scholar]
  103. 103.
    Lago J, Suryanarayana G, Sogancioglu E, De Schutter B. 2021. Optimal control strategies for seasonal thermal energy storage systems with market interaction. IEEE Trans. Control Syst. Technol. 29:1891–906
    [Google Scholar]
  104. 104.
    Darivianakis G, Eichler A, Smith RS, Lygeros J. 2017. A data-driven stochastic optimization approach to the seasonal storage energy management. IEEE Control Syst. Lett. 1:394–99
    [Google Scholar]
  105. 105.
    De Ridder F, Diehl M, Mulder G, Desmedt J, Van Bael J. 2011. An optimal control algorithm for borehole thermal energy storage systems. Energy Build. 43:2918–25
    [Google Scholar]
  106. 106.
    Pereira MVF, Pinto LMVG. 1991. Multi-stage stochastic optimization applied to energy planning. Math. Program. 52:359–75
    [Google Scholar]
  107. 107.
    Flamm B, Eichler A, Warrington J, Lygeros J. 2018. Dual dynamic programming for nonlinear control problems over long horizons. 2018 European Control Conference471–76 Piscataway, NJ: IEEE
    [Google Scholar]
  108. 108.
    Røtting TA, Gjelsvik A. 1992. Stochastic dual dynamic programming for seasonal scheduling in the Norwegian power system. IEEE Trans. Power Syst. 7:273–79
    [Google Scholar]
  109. 109.
    Helseth A, Gjelsvik A, Mo B, Linnet Ú. 2013. A model for optimal scheduling of hydro thermal systems including pumped-storage and wind power. IET Gener. Transm. Distrib. 7:1426–34
    [Google Scholar]
  110. 110.
    Hafiz F, de Queiroz AR, Fajri P, Husain I. 2019. Energy management and optimal storage sizing for a shared community: a multi-stage stochastic programming approach. Appl. Energy 236:42–54
    [Google Scholar]
  111. 111.
    Powell WB, Meisel S. 2016. Tutorial on stochastic optimization in energy—part I: modeling and policies. IEEE Trans. Power Syst. 31:1459–67
    [Google Scholar]
  112. 112.
    Donadee J, Ilić MD. 2014. Stochastic optimization of grid to vehicle frequency regulation capacity bids. IEEE Trans. Smart Grid 5:1061–69
    [Google Scholar]
  113. 113.
    Kern T, Dossow P, Morlock E. 2022. Revenue opportunities by integrating combined vehicle-to-home and vehicle-to-grid applications in smart homes. Appl. Energy 307:118187
    [Google Scholar]
  114. 114.
    Tomić J, Kempton W. 2007. Using fleets of electric-drive vehicles for grid support. J. Power Sources 168:459–68
    [Google Scholar]
  115. 115.
    Zhang L, Jabbari F, Brown T, Samuelson S. 2012. Coordinating plug-in electric vehicle charging with electric grid: valley filling and target load following. J. Power Sources 267:584–97
    [Google Scholar]
  116. 116.
    López MA, Martí S, Aguado JA, de la Torre S 2013. V2G strategies for congestion management in microgrids with high penetration of electric vehicles. Electr. Power Syst. Res. 104:28–34
    [Google Scholar]
  117. 117.
    Tan KM, Ramachandaramurthy VK, Yong JY. 2016. Integration of electric vehicles in smart grid: a review on vehicle to grid technologies and optimization techniques. Renew. Sustain. Energy Rev. 53:720–32
    [Google Scholar]
  118. 118.
    Honarmand M, Zakariazadeh A, Jadid S 2014. Optimal scheduling of electric vehicles in an intelligent parking lot considering vehicle-to-grid concept and battery condition. Energy 65:572–79
    [Google Scholar]
  119. 119.
    Zanvettor GG, Casini M, Smith RS, Vicino A. 2022. Stochastic energy pricing of an electric vehicle parking lot. IEEE Trans. Smart Grid 13:3069–81
    [Google Scholar]
  120. 120.
    Amirioun MH, Kazemi A 2014. A new model based on optimal scheduling of combined energy exchange modes for aggregation of electric vehicles in a residential complex. Energy 69:186–98
    [Google Scholar]
  121. 121.
    Tanguy K, Dubois MR, Lopez KL, Gagné C. 2016. Optimization model and economic assessment of collaborative charging using Vehicle-to-Building. Sustain. Cities Soc. 26:496–506
    [Google Scholar]
  122. 122.
    Almassalkhi M, Hiskens I. 2011. Optimization framework for the analysis of large-scale networks of energy hubs. 17th Power Systems Computation Conference, Vol. 21124–30 Red Hook, NY: Curran
    [Google Scholar]
  123. 123.
    Chandan V, Alleyne AG. 2014. Decentralized predictive thermal control for buildings. J. Process Control 24:820–35
    [Google Scholar]
  124. 124.
    La Scala M, Vaccaro A, Zobaa A 2014. A goal programming methodology for multiobjective optimization of distributed energy hubs operation. Appl. Thermal Eng. 71:658–66
    [Google Scholar]
  125. 125.
    Maroufmashat A, Elkamel A, Fowler M, Sattari S, Roshandel R et al. 2015. Modeling and optimization of a network of energy hubs to improve economic and emission considerations. Energy 93:2546–58
    [Google Scholar]
  126. 126.
    Hajimiragha A, Canizares C, Fowler M, Geidl M, Andersson G. 2007. Optimal energy flow of integrated energy systems with hydrogen economy considerations. 2007 iREP Symposium – Bulk Power System Dynamics and Control – VII. Revitalizing Operational Reliability Piscataway, NJ: IEEE https://doi.org/10.1109/IREP.2007.4410517
    [Crossref] [Google Scholar]
  127. 127.
    Yang H, Xiong T, Qiu J, Qiu D, Dong ZY. 2016. Optimal operation of DES/CCHP based regional multi-energy prosumer with demand response. Appl. Energy 167:353–65
    [Google Scholar]
  128. 128.
    Lu X, Liu Z, Ma L, Wang L, Zhou K, Yang S 2020. A robust optimization approach for coordinated operation of multiple energy hubs. Energy 197:117171
    [Google Scholar]
  129. 129.
    Arnold M, Andersson G. 2008. Decomposed electricity and natural gas optimal power flow. 16th Power Systems Computation Conference, Vol. 1654–60 Red Hook, NY: Curran
    [Google Scholar]
  130. 130.
    Arnold M, Negenborn RR, Andersson G, De Schutter B 2010. Distributed predictive control for energy hub coordination in coupled electricity and gas networks. Intelligent Infrastructures R Negenborn, Z Lukszo, H Hellendoorn 235–73 Dordrecht, Neth: Springer
    [Google Scholar]
  131. 131.
    Nogales FJ, Prieto FJ, Conejo AJ. 2003. A decomposition methodology applied to the multi-area optimal power flow problem. Ann. Oper. Res. 120:99–116
    [Google Scholar]
  132. 132.
    Xu D, Zhou B, Chan KW, Li C, Wu Q et al. 2018. Distributed multi-energy coordination of multi-microgrids with biogas-solar-wind renewables. IEEE Trans. Ind. Inf. 15:3254–66
    [Google Scholar]
  133. 133.
    Nikmehr N. 2020. Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs. Energy 199:117440
    [Google Scholar]
  134. 134.
    Wang X, Liu Y, Liu C, Liu J. 2020. Coordinating energy management for multiple energy hubs: from a transactive perspective. Int. J. Electr. Power Energy Syst. 121:106060
    [Google Scholar]
  135. 135.
    Chen Y, Wei W, Liu F, Wub Q, Mei S 2018. Analyzing and validating the economic efficiency of managing a cluster of energy hubs in multi-carrier energy systems. Appl. Energy 30:403–16
    [Google Scholar]
  136. 136.
    Fan S, Li Z, Wang J, Piao L, Ai Q 2018. Cooperative economic scheduling for multiple energy hubs: a bargaining game theoretic perspective. IEEE Access 6:27777–89
    [Google Scholar]
  137. 137.
    Li Y, Zhang H, Liang X, Huang B. 2019. Event-triggered-based distributed cooperative energy management for multienergy systems. IEEE Trans. Ind. Inf. 15:2008–22
    [Google Scholar]
  138. 138.
    Benders JF. 1962. Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4:238–52
    [Google Scholar]
  139. 139.
    Rahmaniani R, Crainic TG, Gendreau M, Rei W. 2017. The Benders decomposition algorithm: a literature review. Eur. J. Oper. Res. 259:801–17
    [Google Scholar]
  140. 140.
    Oskouei MZ, Mohammadi-Ivatloo B, Abapour M, Shafiee M, Anvari-Moghaddam A. 2020. Privacy-preserving mechanism for collaborative operation of high-renewable power systems and industrial energy hubs. Appl. Energy 283:106060
    [Google Scholar]
  141. 141.
    Candas S, Zhang K, Hamacher T. 2020. A comparative study of Benders decomposition and ADMM for decentralized optimal power flow. 2020 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference Piscataway, NJ: IEEE https://doi.org/10.1109/ISGT45199.2020.9087777
    [Crossref] [Google Scholar]
  142. 142.
    Halvgaard R, Vandenberghe L, Poulsen NK, Madsen H, Jørgensen JB 2016. Distributed model predictive control for smart energy systems. IEEE Trans. Smart Grid 7:1675–82
    [Google Scholar]
  143. 143.
    Li Y, Li Z, Wen F, Shahidehpour M. 2019. Privacy-preserving optimal dispatch for an integrated power distribution and natural gas system in networked energy hubs. IEEE Trans. Sustain. Energy 10:2028–38
    [Google Scholar]
  144. 144.
    Bazin D, Julien L, Musy O 2020. On Stackelberg–Nash equilibria in bilevel optimization games. Bilevel Optimization S Dempe, A Zemkoho 27–51 Cham, Switz: Springer
    [Google Scholar]
  145. 145.
    Wei F, Jing ZX, Wu PZ, Wu QH. 2017. A Stackelberg game approach for multiple energies trading in integrated energy systems. Appl. Energy 200:315–29
    [Google Scholar]
  146. 146.
    Bostan A, Nazar MS, Shafie-khah M, Catalão JPS 2020. Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs. Energy 190:116349
    [Google Scholar]
  147. 147.
    Mirzapour-Kamanaj A, Majidi M, Zare K, Kazemzadeh R. 2020. Optimal strategic coordination of distribution networks and interconnected energy hubs: a linear multi-follower bi-level optimization model. Int. J. Electr. Power Energy Syst. 119:105925
    [Google Scholar]
  148. 148.
    Wang Y, Huang Z, Li Z, Wu X, Lai LL, Xu F. 2020. Transactive energy trading in reconfigurable multi-carrier energy systems. J. Mod. Power Syst. Clean Energy 8:67–76
    [Google Scholar]
  149. 149.
    Nasiri N, Yazdankhah AS, Mirzaei MA, Loni A, Mohammadi-Ivatloo B et al. 2020. A bi-level market-clearing for coordinated regional-local multi-carrier systems in presence of energy storage technologies. Sustain. Cities Soc. 63:102439
    [Google Scholar]
  150. 150.
    Shams MH, Shahabi M, Kia M, Heidari A, Lotfi M et al. 2019. Optimal operation of electrical and thermal resources in microgrids with energy hubs considering uncertainties. Energy 187:115949
    [Google Scholar]
  151. 151.
    Bahrami S, Toulabi M, Ranjbar S, Moeini-Aghtaie M, Ranjbar AM. 2018. A decentralized energy management framework for energy hubs in dynamic pricing markets. IEEE Trans. Smart Grid 9:6780–92
    [Google Scholar]
/content/journals/10.1146/annurev-control-042820-125219
Loading
/content/journals/10.1146/annurev-control-042820-125219
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error