This article provides a survey overview of the techniques, mechanisms, algorithms, and test and validation strategies required for the design of robotic grappling vehicles intended to approach and grapple free-flying client satellites. We concentrate on using a robotic arm to grapple a free-floating spacecraft, as distinct from spacecraft docking and berthing, where two spacecraft directly mate with each other. Robotic grappling of client spacecraft is a deceptively complex problem: It entails designing a robotic system that functions robustly in the visually stark, thermally extreme orbital environment, operating near massive and extremely expensive yet fragile client hardware, using relatively slow flight computers with limited and laggy communications. Spaceflight robotic systems are challenging to test and validate prior to deployment and extremely expensive to launch, which significantly limits opportunities to experiment with new techniques. These factors make the design and operation of orbital robotic systems significantly different from those of their terrestrial counterparts, and as a result, only a relative handful of systems have been demonstrated on orbit. Nevertheless, there is increasing interest in on-orbit robotic servicing and assembly missions, and grappling is the core requirement for these systems. Although existing systems such as the Space Station Remote Manipulator System have demonstrated extremely reliable operation, upcoming missions will attempt to expand the types of spacecraft that can be safely and dependably grappled and berthed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. 
    Cook J, Aksamentov V, Hoffman T, Bruner W. 2011. ISS interface mechanisms and their heritage. AIAA SPACE 2011 Conference and Exposition2011–7150 Reston, VA: Am. Inst. Aeronaut. Astronaut.
  2. 2. 
    Northrop Grumman 2021. SpaceLogistics: It's impossible to revive a satellite. Until it's not. Northrop Grumman https://www.northropgrumman.com/space/space-logistics-services
    [Google Scholar]
  3. 3. 
    Flores-Abad A, Ma O, Pham K, Ulrich S 2014. A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68:1–26
    [Google Scholar]
  4. 4. 
    Gao Y, Chien S. 2017. Review on space robotics: toward top-level science through space exploration. Sci. Robot. 2:eaan5074
    [Google Scholar]
  5. 5. 
    Yoshida K. 2009. Achievements in space robotics. IEEE Robot. Autom. Mag. 16:420–28
    [Google Scholar]
  6. 6. 
    Skaar S, Ruoff C 1994. Teleoperation and Robotics in Space Reston, VA: Am. Inst. Aeronaut. Astronaut.
  7. 7. 
    Ellery A. 2019. Tutorial review on space manipulators for space debris mitigation. Robotics 8:34
    [Google Scholar]
  8. 8. 
    Whelan DA, Adler EA, Wilson SB III, Roesler GM Jr. 2000. DARPA Orbital Express program: effecting a revolution in space-based systems. Small Payloads in Space BJ Horais, RJ Twiggs 48–56 SPIE Proc. Vol. 4136 Bellingham, WA: SPIE
    [Google Scholar]
  9. 9. 
    Jones H. 2018. The recent large reduction in space launch cost Paper presented at the 48th International Conference on Environmental Systems Albuquerque, NM: July 8–12
  10. 10. 
    Wertz J, Larson W. 1999. Space Mission Analysis and Design Dordrecht, Neth: Springer, 3rd ed..
  11. 11. 
    Hengeveld DW, Mathison MM, Braun JE, Groll EA, Williams AD 2010. Review of modern spacecraft thermal control technologies. HVAC&R Res 16:189–220
    [Google Scholar]
  12. 12. 
    Hu C, White R. 1983. Solar Cells: From Basic to Advanced Systems New York: McGraw-Hill
  13. 13. 
    Kauder L. 2005. Spacecraft thermal control coatings references. Tech. Rep 20070014757 Goddard Space Flight Cent., Natl. Aeronaut. Space Adm. Greenbelt, MD:
    [Google Scholar]
  14. 14. 
    RUAG Space 2012. Payload adapter systems for EELV Fact Sheet, RUAG Space Bern, Switz: https://www.ruag.com/system/files/media_document/2019-03/payload_adapter_system_for_EELV.pdf
  15. 15. 
    Natl. Aeronaut. Space Adm 2014. Marman clamp system design guidelines Guidel. Doc. GD-ED-2214 Natl. Aeronaut. Space Adm. Washington, DC.: https://web.archive.org/web/20130216113601/http://engineer.jpl.nasa.gov/practices/2214.pdf
  16. 16. 
    Reintsema D, Sommer B, Wolf T, Theater J, Radthke A et al. 2011. DEOS – the in-flight technology demonstration of Germany's robotics approach to dispose malfunctioned satellites Paper presented at the 11th Symposium on Advanced Space Technologies in Robotics and Automation Noordwijk, Neth.: Apr. 12–14
  17. 17. 
    Akin D, Roberts B, Pilotte K, Baker M. 2003. Robotic augmentation of EVA for Hubble Space Telescope servicing. AIAA SPACE 2003 Conference and Exposition pap. 20036274 Reston, VA: Am. Inst. Aeronaut. Astronaut.
  18. 18. 
    Granath B. 2016. Gemini's first docking turns to wild ride in orbit. National Aeronautics and Space Administration, Mar. 6 https://www.nasa.gov/feature/geminis-first-docking-turns-to-wild-ride-in-orbit
    [Google Scholar]
  19. 19. 
    Can. Space Agency 2021. Flight history of Canadarm. Canadian Space Agency Mar. 31. https://www.asc-csa.gc.ca/eng/canadarm/flight.asp
    [Google Scholar]
  20. 20. 
    Natl. Aeronaut. Space Adm 2021. About - Hubble servicing missions. National Aeronautics and Space Administration https://www.nasa.gov/mission_pages/hubble/servicing
    [Google Scholar]
  21. 21. 
    Currie NJ, Peacock B. 2002. International Space Station robotic systems operations - a human factors perspective. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 46:26–30
    [Google Scholar]
  22. 22. 
    Can. Space Agency 2018. The history of Canadarm2. Canadian Space Agency June 12. https://www.asc-csa.gc.ca/eng/iss/canadarm2/history-of-canadarm2.asp
    [Google Scholar]
  23. 23. 
    Chang ML, Marquez JJ. 2018. Human-automation allocations for current robotic space operations: space station remote manipulator system Tech. Memo. 2020003149 Natl. Aeronaut. Space Adm. Washington, DC:
  24. 24. 
    Nguyen PK, Hughes PC. 1994. Teleoperation: from the Space Shuttle to the Space Station. See Ref 6:353–410
    [Google Scholar]
  25. 25. 
    Jpn. Aerosp. Explor. Agency 2003. About Engineering Test Satellite VII “KIKU-7” (ETS-VII). Japan Aerospace Exploration Agency https://global.jaxa.jp/projects/sat/ets7
    [Google Scholar]
  26. 26. 
    Kawano I, Mokuno M, Kasai T, Suzuki T 2001. Result of autonomous rendezvous docking experiment of Engineering Test Satellite-VII. J. Spacecr. Rockets 38:105–11
    [Google Scholar]
  27. 27. 
    Oda M. 1999. Space robot experiments on NASDA's ETS–VII satellite-preliminary overview of the experiment results. Proceedings of the 1999 IEEE International Conference on Robotics and Automation 21390–95 Piscataway, NJ: IEEE
  28. 28. 
    Yoshida K. 2003. Engineering Test Satellite VII flight experiments for space robot dynamics and control: theories on laboratory test beds ten years ago, now in orbit. Int. J. Robot. Res. 22:321–35
    [Google Scholar]
  29. 29. 
    Oda M. 2000. Experiences and lessons learned from the ETS-VII robot satellite. Proceedings of the 2000 ICRA: IEEE International Conference on Robotics and Automation 1914–19 Piscataway, NJ: IEEE
  30. 30. 
    Inaba N, Oda M. 2000. Autonomous satellite capture by a space robot: world first on-orbit experiment on a Japanese robot satellite ETS-VII. Proceedings of the 2000 ICRA: IEEE International Conference on Robotics and Automation 21169–74 Piscataway, NJ: IEEE
  31. 31. 
    Friend RB. 2008. Orbital express program summary and mission overview. Sensors and Systems for Space Applications II RT Howard, P Motaghedi, pap. 695803. SPIE Proc. 6958 Bellingham, WA: SPIE
    [Google Scholar]
  32. 32. 
    Def. Adv. Proj. Res. Agency 2021. Orbital Express. Defense Advanced Projects Research Agency https://www.darpa.mil/about-us/timeline/orbital-express
    [Google Scholar]
  33. 33. 
    Granade SR. 2004. Advanced Video Guidance Sensor and next-generation autonomous docking sensors. Spaceborne Sensors RD Habbit Jr., P Tchoryk Jr. 38–49 Proc. SPIE Vol. 5418 Bellingham, WA: SPIE
    [Google Scholar]
  34. 34. 
    Pinson R, Howard R, Heaton A 2008. Orbital Express Advanced Video Guidance Sensor: ground testing, flight results and comparisons. Proceedings of the 2008 AIAA Guidance, Navigation and Control Conference and Exhibit pap. 2008–7318 Reston, VA: Am. Inst. Aeronaut. Astronaut.
  35. 35. 
    Leinz MR, Chen CT, Scott P, Gaumer W, Sabasteanski P, Beaven M. 2008. Modeling, simulation, testing, and verification of the Orbital Express autonomous rendezvous and capture sensor system (ARCSS). Sensors and Systems for Space Applications II RT Howard, pap. 69580C. Proc. SPIE Vol. 6958 Bellingham, WA: SPIE
    [Google Scholar]
  36. 36. 
    Weismuller T, Leinz M 2006. GN&C technology demonstrated by the Orbital Express Autonomous Rendezvous and Capture Sensor System. Guidance and Control 2006: Proceedings of the 29th Annual AAS Rocky Mountain Guidance and Control Conference SD Jolly, RD Culp, pap. AAS 06-016 San Diego, CA: Univelt
  37. 37. 
    Christiansen S, Nilson T. 2008. Docking system for autonomous, un-manned docking operations. 2008 IEEE Aerospace Conference Piscataway, NJ: IEEE https://doi.org/10.1109/AERO.2008.4526517
  38. 38. 
    Mulder T. 2008. Orbital express autonomous rendezvous and capture flight operations: part 2 of 2: AR&C exercise 4, 5, and end-of-life. AIAA/AAS Astrodynamics Specialist Conference and Exhibit pap 2008–6768 Reston, VA: Am. Inst. Aeronaut. Astronaut.
  39. 39. 
    Ogilvie A, Allport J, Hannah M, Lymer J 2008. Autonomous satellite servicing using the Orbital Express Demonstration Manipulator System Paper presented at the 9th International Symposium on Artificial Intelligence, Robotics, and Automation in Space Universal City, LA: Feb. 26–29
    [Google Scholar]
  40. 40. 
    Saplan A. 2021. Robotic servicing of geosynchronous satellites (RSGS). Defense Advanced Research Projects Agency https://www.darpa.mil/program/robotic-servicing-of-geosynchronous-satellites
    [Google Scholar]
  41. 41. 
    NExIS (NASA Explor. In-Space Serv.) 2021. OSAM-1: On-Orbit Servicing, Assembly and Manufacturing-1. NExIS https://nexis.gsfc.nasa.gov/OSAM-1.html
    [Google Scholar]
  42. 42. 
    Can. Space Agency 2021. Canadarm2’s data sheet. Canadian Space Agency https://www.asc-csa.gc.ca/eng/iss/canadarm2/data-sheet.asp
    [Google Scholar]
  43. 43. 
    Creamer NG. 2007. The SUMO/FREND project: technology development for autonomous grapple of geosynchronous satellites. Adv. Astronaut. Sci. 128:895–910
    [Google Scholar]
  44. 44. 
    Jorgensen G, Bains E. 2011. SRMS history, evolution and lessons learned. AIAA SPACE 2011 Conference and Exposition pap. 2011–7277 Reston, VA: Am. Inst. Aeronaut. Astronaut.
  45. 45. 
    Sachdev SS, Fuller BR. 1983. The Shuttle Remote Manipulator System and its use in orbital operations. The Space Congress Proceedings, pap. 3. Daytona Beach FL: Embry-Riddle Aeronaut. Univ https://commons.erau.edu/space-congress-proceedings/proceedings-1983-20th/session-ic/3
    [Google Scholar]
  46. 46. 
    Kawano I, Mokuno M, Kasai T, Suzuki T 2001. Result of autonomous rendezvous docking experiment of Engineering Test Satellite-VII. J. Spacecr. Rockets 38:105–11
    [Google Scholar]
  47. 47. 
    Ogilvie A, Allport J, Hannah M, Lymer J 2008. Autonomous robotic operations for on-orbit satellite servicing. Sensors and Systems for Space Applications II RT Howard, pap. 695809. Proc. SPIE Vol. 6958 Bellingham, WA: SPIE
    [Google Scholar]
  48. 48. 
    Def. Adv. Res. Proj. Agency 2020. Parts come together this year for DARPA's robotic in-space mechanic. Defense Advanced Research Projects Agency July 17. https://www.darpa.mil/news-events/2020-07-17
    [Google Scholar]
  49. 49. 
    IEEE 2021. The Shuttle Remote Manipulator System – the Canadarm. IEEE https://ewh.ieee.org/reg/7/millennium/canadarm/canadarm_technical.html
    [Google Scholar]
  50. 50. 
    Stamm S, Motaghedi P 2004. Orbital Express capture system: concept to reality. Spacecraft Platforms and Infrastructure P Tchoryk Jr., M Wright 78–91 SPIE Proc. Vol. 5419 Bellingham, WA: SPIE
    [Google Scholar]
  51. 51. 
    Luo Y, Zhang J, Tang G. 2014. Survey of orbital dynamics and control of space rendezvous. Chin. J. Aeronaut. 27:1–11
    [Google Scholar]
  52. 52. 
    Vavrina MA, Skelton CE, DeWeese KD, Naasz BJ, Gaylor DE, D'Souza C 2019. Safe rendezvous trajectory design for the RESTORE-L mission. Spaceflight Mechanics 2019 F Topputo, AJ Sinclair, MP Wilkins, R Zanetti 3649–68 San Diego, CA: Univelt
    [Google Scholar]
  53. 53. 
    Goodman JL. 2006. History of Space Shuttle rendezvous and proximity operations. J. Spacecr. Rockets 43:944–59
    [Google Scholar]
  54. 54. 
    Woffinden D, Geller D. 2007. Navigating the road to autonomous orbital rendezvous. J. Spacecr. Rockets 44:898–909
    [Google Scholar]
  55. 55. 
    Mult. Config. Board 2019. International Rendezvous System Interoperability Standards (IRSIS): Baseline – March 2019 Stand. Doc., Natl. Aeronaut. Space Adm. Washington, DC: https://nasasitebuilder.nasawestprime.com/wp-content/uploads/sites/45/2019/09/rendezvous_baseline_final_3-2019.pdf
  56. 56. 
    Kim SG, Crassidis JL, Cheng Y, Fosbury AM, Junkins JL. 2007. Kalman filtering for relative spacecraft attitude and position estimation. J. Guid. Control Dyn. 30:133–43
    [Google Scholar]
  57. 57. 
    Carpenter JR, D'Souza CN 2018. Navigation filter best practices. Tech. Rep. NASA/TP-2018-219822 Eng. Saf. Cent., Natl. Aeronaut. Space Adm. Hampton, VA: https://ntrs.nasa.gov/api/citations/20180003657/downloads/20180003657.pdf
    [Google Scholar]
  58. 58. 
    Chai R, Tsourdos A, Savvaris A, Chai S, Xia Y, Chen CP. 2021. Review of advanced guidance and control algorithms for space/aerospace vehicles. Prog. Aerosp. Sci. 122:100696
    [Google Scholar]
  59. 59. 
    Tipaldi M, Glielmo L. 2017. A survey on model-based mission planning and execution for autonomous spacecraft. IEEE Syst. J. 12:3893–905
    [Google Scholar]
  60. 60. 
    Chien S, Sherwood R, Tran D, Cichy B, Rabideau G et al. 2005. Using autonomy flight software to improve science return on Earth Observing One. J. Aerosp. Comput. Inf. Commun. 2:196–216
    [Google Scholar]
  61. 61. 
    Wander A, Förstner R. 2012. Innovative fault detection, isolation and recovery strategies on-board spacecraft: state of the art and research challenges Paper presented at the German Aerospace Congress Berlin: Sept. 10–12
  62. 62. 
    Tipaldi M, Bruenjes B. 2014. Spacecraft health monitoring and management systems. 2014 IEEE Metrology for Aerospace (MetroAeroSpace)68–72 Piscataway, NJ: IEEE
    [Google Scholar]
  63. 63. 
    D'Amico S, Carpenter JR 2020. Satellite formation flying and rendezvous. Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications1921–46 Piscataway, NJ: IEEE
    [Google Scholar]
  64. 64. 
    Abraham M, Jasiobedzki P, Umasuthan M 2001. Robust 3D vision for autonomous space robotic operations Paper presented at the 6th International Symposium on Artificial Intelligence, Robotics, and Automation in Space Saint-Hubert, Can: June 18–22
    [Google Scholar]
  65. 65. 
    Galante JM, Van Eepoel J, D'Souza C, Patrick B 2016. Fast Kalman filtering for relative spacecraft position and attitude estimation for the Raven ISS hosted payload. Guidance, Navigation, and Control 2016: Proceedings of the 39th Annual AAS Rocky Mountain Section Guidance and Control Conference DA Chart 5–10 San Diego, CA: Univelt
  66. 66. 
    Opromolla R, Fasano G, Rufino G, Grassi M. 2017. A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations. Prog. Aerosp. Sci. 93:53–72
    [Google Scholar]
  67. 67. 
    Papadopoulos E, Moosavian S 1994. Dynamics and control of space free-flyers with multiple manipulators. Adv. Robot. 9:603–24
    [Google Scholar]
  68. 68. 
    Yoshida K. 1994. Experimental study on the dynamics and control of a space robot with experimental free-floating robot satellite. Adv. Robot. 9:583–602
    [Google Scholar]
  69. 69. 
    Dubowsky S, Papadopoulos E. 1993. The kinematics, dynamics, and control of free-flying and free-floating space robotic systems. IEEE Trans. Robot. Autom. 9:531–43
    [Google Scholar]
  70. 70. 
    Wang H, Xie Y 2009. Passivity based adaptive Jacobian tracking for free-floating space manipulators without using spacecraft acceleration. Automatica 45:1510–17
    [Google Scholar]
  71. 71. 
    Sanner RM, Vance EE. 1995. Adaptive control of free-floating space robots using “neural” networks. Proceedings of the 1995 American Control Conference 42790–94 Piscataway, NJ: IEEE
  72. 72. 
    Gu YL, Xu Y. 1995. A normal form augmentation approach to adaptive control of space robot systems. Dyn. Control 5:275–94
    [Google Scholar]
  73. 73. 
    Kaplan MH. 2020. Modern Spacecraft Dynamics and Control. Garden City NY: Dover
    [Google Scholar]
  74. 74. 
    Oda M. 1996. Coordinated control of spacecraft attitude and its manipulator. Proceedings of the 1996 IEEE International Conference on Robotics and Automation 1732–38 Piscataway, NJ: IEEE
  75. 75. 
    Giordano AM, Ott C, Albu-Schäffer A. 2019. Coordinated control of spacecraft's attitude and end-effector for space robots. IEEE Robot. Autom. Lett. 4:2108–15
    [Google Scholar]
  76. 76. 
    Alexander HL, Cannon RH Jr 1990. An extended operational-space control algorithm for satellite manipulators. J. Astronaut. Sci. 38:473–86
    [Google Scholar]
  77. 77. 
    Zhou Y, Luo J, Wang M 2019. Dynamic coupling analysis of multi-arm space robot. Acta Astronaut 160:583–93
    [Google Scholar]
  78. 78. 
    Vafa Z, Dubowsky S. 1990. The kinematics and dynamics of space manipulators: the virtual manipulator approach. Int. J. Robot. Res. 9:3–21
    [Google Scholar]
  79. 79. 
    Shi JF, Ulrich S, Allen A 2015. Spacecraft adaptive attitude control with application to space station free-flyer robotic capture. AIAA Guidance, Navigation, and Control Conference pap 2015–1780 Reston, VA: Am. Inst. Aeronaut. Astronaut.
  80. 80. 
    Nanos K, Papadopoulos EG. 2015. On the dynamics and control of flexible joint space manipulators. Control Eng. Pract. 45:230–43
    [Google Scholar]
  81. 81. 
    Meng D, Wang X, Xu W, Liang B. 2017. Space robots with flexible appendages: dynamic modeling, coupling measurement, and vibration suppression. J. Sound Vib. 396:30–50
    [Google Scholar]
  82. 82. 
    Alder LJ, Rock SM. 1994. Experiments in control of a flexible-link robotic manipulator with unknown payload dynamics: an adaptive approach. Int. J. Robot. Res. 13:481–95
    [Google Scholar]
  83. 83. 
    Abiko S, Yoshida K 2010. Adaptive reaction control for space robotic applications with dynamic model uncertainty. Adv. Robot. 24:1099–126
    [Google Scholar]
  84. 84. 
    Sanner R, Slotine JJ. 1995. Stable adaptive control of robot manipulators using “neural” networks. Neural Comput 7:753–90
    [Google Scholar]
  85. 85. 
    Nenchev D, Umetani Y, Yoshida K. 1992. Analysis of a redundant free-flying spacecraft/manipulator system. IEEE Trans. Robot. Autom. 8:1–6
    [Google Scholar]
  86. 86. 
    Papadopoulos E, Dubowsky S. 1993. Dynamic singularities in free-floating space manipulators. Space Robotics: Dynamics and Control Y Xu, T Kanade 77–100 Boston: Springer
    [Google Scholar]
  87. 87. 
    Papadopoulos EG. 1992. Path planning for space manipulators exhibiting nonholonomic behavior. Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems669–75 Piscataway, NJ: IEEE
  88. 88. 
    Huang P, Xu Y, Liang B. 2006. Tracking trajectory planning of space manipulator for capturing operation. Int. J. Adv. Robot. Syst. 3: https://doi.org/10.5772/5735
    [Crossref] [Google Scholar]
  89. 89. 
    Pathak PM, Kumar RP, Mukherjee A, Dasgupta A. 2008. A scheme for robust trajectory control of space robots. Simul. Model. Pract. Theory 16:1337–49
    [Google Scholar]
  90. 90. 
    Siciliano B, Villani L. 1999. Robot Force Control Boston: Kluwer Acad.
  91. 91. 
    Gorinevsky D, Formalsy A, Schneider A 1997. Force Control of Robotic Systems Boca Raton, FL: CRC
  92. 92. 
    Craig JJ. 2005. Introduction to Robotics: Mechanics and Control Upper Saddle River, NJ: Pearson
  93. 93. 
    Palmer G, Mitchell D 1966. Analysis and simulation of a high accuracy spacecraft separation system. J. Spacecr. Rockets 3:458–63
    [Google Scholar]
  94. 94. 
    Stieber M, Trudel C. 1992. Advanced control system features of the space station remote manipulator system. IFAC Proc. Vol. 25:22279–86
    [Google Scholar]
  95. 95. 
    Mukherji R, DA Ray, Stieber M, Lymer J. 2001. Special Purpose Dexterous Manipulator (SPDM) advanced control features and development test results Paper presented at the 6th International Symposium on Artificial Intelligence, Robotics, and Automation in Space Saint-Hubert, Can.: June 18–22
  96. 96. 
    Stieber M, Trudel C, Hunter D. 1997. Robotic systems for the International Space Station. Proceedings of the 1997 International Conference on Robotics and Automation 43068–73 Piscataway, NJ: IEEE
  97. 97. 
    Oda M, Kibe K, Yamagata F 1996. ETS–VII, space robot in-orbit experiment satellite. Proceedings of the 1996 IEEE International Conference on Robotics and Automation 1:739–44 Piscataway, NJ: IEEE
    [Google Scholar]
  98. 98. 
    Hogan N. 1985. Impedance control: an approach to manipulation: part I—theory. J. Dyn. Syst. Meas. Control 107:1–7
    [Google Scholar]
  99. 99. 
    Hogan N. 1985. Impedance control: an approach to manipulation: part II—implementation. J. Dyn. Syst. Meas. Control 107:8–16
    [Google Scholar]
  100. 100. 
    Shapiro L, Stockman G. 2001. Computer Vision Upper Saddle River, NJ: Prentice Hall
  101. 101. 
    Abawi DF, Bienwald J, Dorner R. 2004. Accuracy in optical tracking with fiducial markers: an accuracy function for ARToolKit. Third IEEE and ACM International Symposium on Mixed and Augmented Reality260–61 Piscataway, NJ: IEEE
  102. 102. 
    Reed BB, Bacon C, Naasz BJ. 2017. Designing spacecraft to enable robotic servicing. AIAA SPACE and Astronautics Forum and Exposition pap. 2017–5255 Reston, VA: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  103. 103. 
    Obermark J, Creamer G, Kelm BE, Wagner W, Henshaw CG 2007. SUMO/FREND: vision system for autonomous satellite grapple. Sensors and Systems for Space Applications RT Howard, RD Richards, pap. 65550Y. Proc. SPIE Vol. 6555 Bellingham, WA: SPIE
    [Google Scholar]
  104. 104. 
    Hashimoto K. 1993. Visual Servoing: Real-Time Control of Robot Manipulators Based on Visual Sensory Feedback Singapore: World Scientific
  105. 105. 
    Latombe JC. 1991. Robot Motion Planning Boston: Kluwer Acad.
  106. 106. 
    Choset H. 2005. Principles of Robot Motion: Theory, Algorithms, and Implementation Cambridge, MA: MIT Press
  107. 107. 
    Lampariello R. 2021. Optimal motion planning for object interception and capture. PhD Thesis Tech. Univ. Darmstadt Darmstadt, Ger:.
    [Google Scholar]
  108. 108. 
    Wang M, Luo J, Walter U 2015. Trajectory planning of free-floating space robot using particle swarm optimization (PSO). Acta Astronaut 112:77–88
    [Google Scholar]
  109. 109. 
    Nakamura Y, Mukherjee R. 1990. Nonholonomic path planning of space robots via bi-directional approach. Proceedings of the 1990 IEEE International Conference on Robotics and Automation 31764–69 Piscataway, NJ: IEEE
  110. 110. 
    Dubowsky S, Torres MA. 1991. Path planning for space manipulators to minimize spacecraft attitude disturbances. Proceedings of the 1991 IEEE International Conference on Robotics and Automation 32522–28 Piscataway, NJ: IEEE
  111. 111. 
    Yoshida K, Hashizume K, Abiko S. 2001. Zero reaction maneuver: flight validation with ETS–VII space robot and extension to kinematically redundant arm. Proceedings of the 2001 IEEE International Conference on Robotics and Automation 1441–46 Piscataway, NJ: IEEE
  112. 112. 
    Burdick JW 1989. On the inverse kinematics of redundant manipulators: characterization of the self-motion manifolds. Advanced Robotics: 1989 KJ Waldron 25–34 Berlin: Springer
    [Google Scholar]
  113. 113. 
    Aristidou A, Lasenby J. 2009. Inverse kinematics: a review of existing techniques and introduction of a new fast iterative solver. Tech. Rep. CUED/F-INFENG/TR-632 Univ. Cambridge Cambridge, UK:
    [Google Scholar]
  114. 114. 
    Whitney D. 1969. Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man-Machine Syst. 10:47–53
    [Google Scholar]
  115. 115. 
    Buss SR. 2009. Introduction to inverse kinematics with Jacobian transpose, pseudoinverse and damped least squares methods Rep., Univ. Calif. San Diego: originally written in 2004). http://math.ucsd.edu/sbuss/ResearchWeb/ikmethods/iksurvey.pdf
  116. 116. 
    Marani G, Kim J, Yuh J, Chung WK 2002. A real-time approach for singularity avoidance in resolved motion rate control of robotic manipulators. Proceedings of the 2002 IEEE International Conference on Robotics and Automation 21973–78 Piscataway, NJ: IEEE
  117. 117. 
    Russell S, Norvig P. 2002. Artificial Intelligence: A Modern Approach Hoboken, NJ: Pearson
  118. 118. 
    Bonasso RP, Firby RJ, Gat E, Kortenkamp D, Miller DP, Slack MG. 1997. Experiences with an architecture for intelligent, reactive agents. J. Exp. Theor. Artif. Intell. 9:237–56
    [Google Scholar]
  119. 119. 
    Nayak PP, Bernard DE, Dorais G, Gamble EB Jr.,, Kanefsky B et al. 1999. Validating the DS1 remote agent experiment. Artificial Intelligence, Robotics and Automation in Space: Proceedings of the Fifth International Symposium M Perry 349–56 Paris: Eur. Space Agency
  120. 120. 
    Knight S, Rabideau G, Chien S, Engelhardt B, Sherwood R. 2001. Casper: space exploration through continuous planning. IEEE Intell. Syst. 16:70–75
    [Google Scholar]
  121. 121. 
    Bosse AB, Barnds WJ, Brown MA, Creamer NG, Feerst A et al. 2004. SUMO: Spacecraft for the Universal Modification of Orbits. Spacecraft Platforms and Infrastructure P Tchoryk Jr., M Wright 36–46 Proc. SPIE Vol. 5419 Bellingham, WA: SPIE
    [Google Scholar]
  122. 122. 
    Lennon J, Henshaw CG, Purdy W. 2008. An architecture for autonomous control of a robotic satellite grappling mission. AIAA Guidance, Navigation and Control Conference and Exhibit pap 2008–7259 Reston, VA: Am. Inst. Aeronaut. Astronaut.
  123. 123. 
    Bonasso R, Kerri R, Jenks K, Johnson G 1998. Using the 3T architecture for tracking Shuttle RMS procedures. Proceedings of the 1998 IEEE International Joint Symposia on Intelligence and Systems180–87 Piscataway, NJ: IEEE
  124. 124. 
    Hayden S, Sweet A, Christa S. 2004. Livingstone model-based diagnosis of Earth Observing One. AIAA 1st Intelligent Systems Technical Conference pap. 2004–6225 Reston, VA: Am. Inst. Aeronaut. Astronaut.
  125. 125. 
    Schwabacher MA. 2005. A survey of data-driven prognostics. Proceedings of the 2005 AIAA Infotech@Aerospace Conference pap 2005–7002 Reston, VA: Am. Inst. Aeronaut. Astronaut.
  126. 126. 
    Ueno H, Doi S, Morimoto H. 2010. JEMRMS initial checkout and payload berthing. Paper presented at the 10th International Symposium on Artificial Intelligence, Robotics, and Automation in Space Sapporo, Jpn.: Aug. 29–Sept. 1
    [Google Scholar]
  127. 127. 
    Gefke G, Carignan CR, Roberts BE, Lane JC 2002. Ranger telerobotic shuttle experiment: a status report. Telemanipulator and Telepresence Technologies VIII MR Stein 123–32 Proc. SPIE Vol. 4570 Bellingham, WA: SPIE
    [Google Scholar]
  128. 128. 
    Carignan CR, Akin DL. 1997. Achieving impedance objectives in robot teleoperation. Proceedings of the 1997 IEEE International Conference on Robotics and Automation 43487–92 Piscataway, NJ: IEEE
  129. 129. 
    Parrish JC 1999. The Ranger telerobotic shuttle experiment: an on-orbit satellite servicer. Artificial Intelligence, Robotics and Automation in Space: Proceedings of the Fifth International Symposium M Perry 225–32 Paris: Eur. Space Agency
  130. 130. 
    Bluethmann W, Ambrose R, Diftler M, Askew S, Huber E et al. 2003. Robonaut: a robot designed to work with humans in space. Auton. Robots 14:179–97
    [Google Scholar]
  131. 131. 
    Diftler MA, Culbert C, Ambrose RO, Platt R, Bluethmann W. 2003. Evolution of the NASA/DARPA Robonaut control system. Proceedings of the 2003 IEEE International Conference on Robotics and Automation 22543–48 Piscataway, NJ: IEEE
  132. 132. 
    Goza SM, Ambrose RO, Diftler MA, Spain IM. 2004. Telepresence control of the NASA/DARPA Robonaut on a mobility platform. CHI '04: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems623–29 New York: ACM
  133. 133. 
    Fong T, Thorpe C. 2001. Vehicle teleoperation interfaces. Auton. Robots 11:9–18
    [Google Scholar]
  134. 134. 
    Hannaford B, Okamura AM 2016. Haptics. Springer Handbook of Robotics B Siciliano, O Khatib 719–39 Berlin: Springer
    [Google Scholar]
  135. 135. 
    Yoon WK, Goshozono T, Kawabe H, Kinami M, Tsumaki Y et al. 2004. Model-based space robot teleoperation of ETS–VII manipulator. IEEE Trans. Robot. Autom. 20:602–12
    [Google Scholar]
  136. 136. 
    Imaida T, Yokokohji Y, Doi T, Oda M, Yoshikawa T 2004. Ground-space bilateral teleoperation of ETS–VII robot arm by direct bilateral coupling under 7-s time delay condition. IEEE Trans. Robot. Autom. 20:499–511
    [Google Scholar]
  137. 137. 
    Wilde M, Clark C, Romano M 2019. Historical survey of kinematic and dynamic spacecraft simulators for laboratory experimentation of on-orbit proximity maneuvers. Prog. Aerosp. Sci. 110:100552
    [Google Scholar]
  138. 138. 
    Henshaw CG, Tasker F. 2008. Managing contact dynamics for orbital robotic servicing missions. AIAA SPACE 2008 Conference and Exposition pap 2008–7908 Reston, VA: Am. Inst. Aeronaut. Astronaut.
  139. 139. 
    Schwartz JL, Peck MA, Hall CD. 2003. Historical review of air-bearing spacecraft simulators. J. Guid. Control Dyn. 26:513–22
    [Google Scholar]
  140. 140. 
    Stamm S, Motaghedi P 2004. Orbital Express capture system: concept to reality. Spacecraft Platforms and Infrastructure P Tchoryk Jr., M Wright 78–91 Proc. SPIE Vol. 5419 Bellingham, WA: SPIE
    [Google Scholar]
  141. 141. 
    Ticker RL, Cepollina F, Reed BB. 2015. NASA's in-space robotic servicing. AIAA SPACE 2015 Conference and Exposition pap 2015–4644 Reston, VA: Am. Inst. Aeronaut. Astronaut
  142. 142. 
    Papadopoulos E, Aghili F, Ma O, Lampariello R 2021. Robotic manipulation and capture in space: a survey. Front. Robot. AI 8228

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error