1932

Abstract

The design and control of drones remain areas of active research, and here we review recent progress in this field. In this article, we discuss the design objectives and related physical scaling laws, focusing on energy consumption, agility and speed, and survivability and robustness. We divide the control of such vehicles into low-level stabilization and higher-level planning such as motion planning, and we argue that a highly relevant problem is the integration of sensing with control and planning. Lastly, we describe some vehicle morphologies and the trade-offs that they represent. We specifically compare multicopters with winged designs and consider the effects of multivehicle teams.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-042920-012045
2022-05-03
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/control/5/1/annurev-control-042920-012045.html?itemId=/content/journals/10.1146/annurev-control-042920-012045&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Natl. Acad. Sci. Eng. Med 2020. Advancing Aerial Mobility: A National Blueprint Washington, DC: Natl. Acad. Press
    [Google Scholar]
  2. 2. 
    Kim HD, Perry AT, Ansell PJ 2018. A review of distributed electric propulsion concepts for air vehicle technology. 2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS)1–21 Piscataway, NJ: IEEE
    [Google Scholar]
  3. 3. 
    de Bothezat G. 1924. Helicopter US Patent 1,749,471
    [Google Scholar]
  4. 4. 
    Bucki N, Lee J, Mueller MW 2020. Rectangular pyramid partitioning using integrated depth sensors (RAPPIDS): a fast planner for multicopter navigation. IEEE Robot. Autom. Lett. 5:4626–33
    [Google Scholar]
  5. 5. 
    Traub LW. 2021. Propeller characterization for distributed propulsion. J. Aerosp. Eng. 34:04021020
    [Google Scholar]
  6. 6. 
    Faessler M, Falanga D, Scaramuzza D 2017. Thrust mixing, saturation, and body-rate control for accurate aggressive quadrotor flight. IEEE Robot. Autom. Lett. 2:476–82
    [Google Scholar]
  7. 7. 
    Gill R, D'Andrea R. 2019. Computationally efficient force and moment models for propellers in UAV forward flight applications. Drones 3:77
    [Google Scholar]
  8. 8. 
    Mueller MW, D'Andrea R. 2015. Relaxed hover solutions for multicopters: application to algorithmic redundancy and novel vehicles. Int. J. Robot. Res. 35:873–89
    [Google Scholar]
  9. 9. 
    Zhang W, Mueller MW, D'Andrea R. 2019. Design, modeling and control of a flying vehicle with a single moving part that can be positioned anywhere in space. Mechatronics 61:117–30
    [Google Scholar]
  10. 10. 
    Mahony R, Kumar V, Corke P. 2012. Aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 19:320–32
    [Google Scholar]
  11. 11. 
    McCormick BW. 1995. Aerodynamics, Aeronautics, and Flight Mechanics New York: Wiley & Sons
    [Google Scholar]
  12. 12. 
    Jain KP, Tang J, Sreenath K, Mueller MW. 2020. Staging energy sources to extend flight time of a multirotor UAV. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)1132–39 Piscataway, NJ: IEEE
    [Google Scholar]
  13. 13. 
    Delmerico J, Cieslewski T, Rebecq H, Faessler M, Scaramuzza D. 2019. Are we ready for autonomous drone racing? The UZH-FPV drone racing dataset. 2019 International Conference on Robotics and Automation (ICRA)6713–19 Piscataway, NJ: IEEE
    [Google Scholar]
  14. 14. 
    Kaufmann E, Loquercio A, Ranftl R, Dosovitskiy A, Koltun V, Scaramuzza D 2018. Deep drone racing: learning agile flight in dynamic environments. Proceedings of The 2nd Conference on Robot Learning A Billard, A Dragan, J Peters, J Morimoto 133–45 Proc. Mach. Learn. Res 87 N.p.: PMLR
    [Google Scholar]
  15. 15. 
    Pfeiffer C, Scaramuzza D. 2021. Human-piloted drone racing: visual processing and control. IEEE Robot. Autom. Lett. 6:3467–74
    [Google Scholar]
  16. 16. 
    Kushleyev A, Mellinger D, Powers C, Kumar V. 2013. Towards a swarm of agile micro quadrotors. Auton. Robots 35:287–300
    [Google Scholar]
  17. 17. 
    Brescianini D, D'Andrea R. 2018. Tilt-prioritized quadrocopter attitude control. IEEE Trans. Control Syst. Technol. 28:376–87
    [Google Scholar]
  18. 18. 
    Lee T, Leok M, McClamroch NH. 2010. Geometric tracking control of a quadrotor UAV on SE(3). 2010 49th IEEE Conference on Decision and Control (CDC)5420–25 Piscataway, NJ: IEEE
    [Google Scholar]
  19. 19. 
    Yu Y, Yang S, Wang M, Li C, Li Z 2015. High performance full attitude control of a quadrotor on SO(3). 2015 IEEE International Conference on Robotics and Automation (ICRA)1698–703 Piscataway, NJ: IEEE
    [Google Scholar]
  20. 20. 
    Yel E, Bezzo N 2020. GP-based runtime planning, learning, and recovery for safe UAV operations under unforeseen disturbances. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)2173–80 Piscataway, NJ: IEEE
    [Google Scholar]
  21. 21. 
    Sankaranarayanan VN, Roy S, Baldi S 2020. Aerial transportation of unknown payloads: adaptive path tracking for quadrotors. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)7710–15 Piscataway, NJ: IEEE
    [Google Scholar]
  22. 22. 
    Dhadekar DD, Sanghani PD, Mangrulkar K, Talole S 2021. Robust control of quadrotor using uncertainty and disturbance estimation. J. Intell. Robot. Syst. 101:60
    [Google Scholar]
  23. 23. 
    Jarin-Lipschitz L, Li R, Nguyen T, Kumar V, Matni N. 2020. Robust, perception based control with quadrotors. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)7737–43 Piscataway, NJ: IEEE
    [Google Scholar]
  24. 24. 
    Patrikar J, Moon BG, Scherer S. 2020. Wind and the city: utilizing UAV-based in-situ measurements for estimating urban wind fields. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)1254–60 Piscataway, NJ: IEEE
    [Google Scholar]
  25. 25. 
    Tagliabue A, Paris A, Kim S, Kubicek R, Bergbreiter S, How JP. 2020. Touch the wind: simultaneous airflow, drag and interaction sensing on a multirotor. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)1645–52 Piscataway, NJ: IEEE
    [Google Scholar]
  26. 26. 
    Fei F, Tu Z, Xu D, Deng X. 2020. Learn-to-recover: retrofitting UAVs with reinforcement learning-assisted flight control under cyber-physical attacks. 2020 IEEE International Conference on Robotics and Automation (ICRA)7358–64 Piscataway, NJ: IEEE
    [Google Scholar]
  27. 27. 
    Mueller MW, D'Andrea R. 2019. Trajectory generation for aerial multicopters. Encyclopedia of Systems and Control J Baillieul, T Samad London: Springer https://doi.org/10.1007/978-1-4471-5102-9_100037-1
    [Crossref] [Google Scholar]
  28. 28. 
    Luo Y, Yu Y, Jin Z, Li Y, Ding Z et al. 2020. Privacy-aware UAV flights through self-configuring motion planning. 2020 IEEE International Conference on Robotics and Automation (ICRA)1169–75 Piscataway, NJ: IEEE
    [Google Scholar]
  29. 29. 
    Falanga D, Foehn P, Lu P, Scaramuzza D 2018. PAMPC: perception-aware model predictive control for quadrotors. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Piscataway, NJ: IEEE https://doi.org/10.1109/IROS.2018.8593739
    [Crossref] [Google Scholar]
  30. 30. 
    Bartolomei L, Pinto Teixeira L, Chli M 2020. Perception-aware path planning for UAVs using semantic segmentation. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)5808–15 Piscataway, NJ: IEEE
    [Google Scholar]
  31. 31. 
    Jacquet M, Corsini G, Bicego D, Franchi A. 2020. Perception-constrained and motor-level nonlinear MPC for both underactuated and tilted-propeller UAVS. 2020 IEEE International Conference on Robotics and Automation (ICRA)4301–6 Piscataway, NJ: IEEE
    [Google Scholar]
  32. 32. 
    Jeon B, Lee Y, Kim HJ 2020. Integrated motion planner for real-time aerial videography with a drone in a dense environment. 2020 IEEE International Conference on Robotics and Automation (ICRA)1243–49 Piscataway, NJ: IEEE
    [Google Scholar]
  33. 33. 
    Jeon BF, Shim D, Kim HJ. 2020. Detection-aware trajectory generation for a drone cinematographer. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)1450–57 Piscataway, NJ: IEEE
    [Google Scholar]
  34. 34. 
    Hardouin G, Moras J, Morbidi F, Marzat J, Mouaddib E 2020. Next-Best-View planning for surface reconstruction of large-scale 3D environments with multiple UAVs. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)1567–74 Piscataway, NJ: IEEE
    [Google Scholar]
  35. 35. 
    Jing W, Deng D, Wu Y, Shimada K. 2020. Multi-UAV coverage path planning for the inspection of large and complex structures. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)1480–86 Piscataway, NJ: IEEE
    [Google Scholar]
  36. 36. 
    Kuang Q, Wu J, Pan J, Zhou B. 2020. Real-time UAV path planning for autonomous urban scene reconstruction. 2020 IEEE International Conference on Robotics and Automation (ICRA)1156–62 Piscataway, NJ: IEEE
    [Google Scholar]
  37. 37. 
    Reinhart R, Dang T, Hand E, Papachristos C, Alexis K 2020. Learning-based path planning for autonomous exploration of subterranean environments. 2020 IEEE International Conference on Robotics and Automation (ICRA)1215–21 Piscataway, NJ: IEEE
    [Google Scholar]
  38. 38. 
    Yadav I, Tanner HG 2020. Reactive receding horizon planning and control for quadrotors with limited on-board sensing. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)7058–63 Piscataway, NJ: IEEE
    [Google Scholar]
  39. 39. 
    Zhang J, Hu C, Chadha RG, Singh S. 2019. Maximum likelihood path planning for fast aerial maneuvers and collision avoidance. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)2805–12 Piscataway, NJ: IEEE
    [Google Scholar]
  40. 40. 
    Viswanathan VK, Dexheimer E, Li G, Loianno G, Kaess M, Scherer S 2020. Efficient trajectory library filtering for quadrotor flight in unknown environments. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)2510–17 Piscataway, NJ: IEEE
    [Google Scholar]
  41. 41. 
    Yu H, Zhang F, Huang P, Wang C, Yuanhao L 2020. Autonomous obstacle avoidance for UAV based on fusion of radar and monocular camera. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)5954–61 Piscataway, NJ: IEEE
    [Google Scholar]
  42. 42. 
    Karaman S, Frazzoli E. 2011. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30:846–94
    [Google Scholar]
  43. 43. 
    Sanket NJ, Parameshwara CM, Singh CD, Kuruttukulam AV, Fermüller C et al. 2020. EVDodgeNet: deep dynamic obstacle dodging with event cameras. 2020 IEEE International Conference on Robotics and Automation (ICRA)10651–57 Piscataway, NJ: IEEE
    [Google Scholar]
  44. 44. 
    Falanga D, Kleber K, Scaramuzza D. 2020. Dynamic obstacle avoidance for quadrotors with event cameras. Sci. Robot. 5:eaaz9712
    [Google Scholar]
  45. 45. 
    Bucki N, Mueller MW. 2019. Rapid collision detection for multicopter trajectories. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)7234–39 Piscataway, NJ: IEEE
    [Google Scholar]
  46. 46. 
    Lindqvist B, Mansouri SS, Agha-mohammadi A, Nikolakopoulos G. 2020. Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles. IEEE Robot. Autom. Lett. 5:6001–8
    [Google Scholar]
  47. 47. 
    Theile M, Bayerlein H, Nai R, Gesbert D, Caccamo M 2020. UAV coverage path planning under varying power constraints using deep reinforcement learning. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)1444–49 Piscataway, NJ: IEEE
    [Google Scholar]
  48. 48. 
    Wu X, Mueller MW. 2020. In-flight range optimization of multicopters using multivariable extremum seeking with adaptive step size. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)1545–50 Piscataway, NJ: IEEE
    [Google Scholar]
  49. 49. 
    Won M. 2020. UBAT: on jointly optimizing UAV trajectories and placement of battery swap stations. 2020 IEEE International Conference on Robotics and Automation (ICRA)427–33 Piscataway, NJ: IEEE
    [Google Scholar]
  50. 50. 
    Zheng P, Tan X, Kocer BB, Yang E, Kovac M 2020. TiltDrone: a fully-actuated tilting quadrotor platform. IEEE Robot. Autom. Lett. 5:6845–52
    [Google Scholar]
  51. 51. 
    Brescianini D, D'Andrea R. 2018. Design, modeling and control of an omni-directional aerial vehicle. 2016 IEEE International Conference on Robotics and Automation (ICRA)3261–66 Piscataway, NJ: IEEE
    [Google Scholar]
  52. 52. 
    Lee SJ, Jang I, Kim HJ 2020. Fail-safe flight of a fully-actuated quadrotor in a single motor failure. IEEE Robot. Autom. Lett. 5:6403–10
    [Google Scholar]
  53. 53. 
    Falanga D, Kleber K, Mintchev S, Floreano D, Scaramuzza D 2018. The foldable drone: a morphing quadrotor that can squeeze and fly. IEEE Robot. Autom. Lett. 4:209–16
    [Google Scholar]
  54. 54. 
    Bucki N, Mueller MW. 2019. Design and control of a passively morphing quadcopter. 2019 International Conference on Robotics and Automation (ICRA)9116–22 Piscataway, NJ: IEEE
    [Google Scholar]
  55. 55. 
    Pose C, Giribet J, Mas I 2020. Fault tolerance analysis of a hexarotor with reconfigurable tilted rotors. 2020 IEEE International Conference on Robotics and Automation (ICRA)9359–65 Piscataway, NJ: IEEE
    [Google Scholar]
  56. 56. 
    Patnaik K, Mishra S, Sorkhabadi SMR, Zhang W. 2020. Design and control of SQUEEZE: a Spring-augmented QUadrotor for intEractions with the Environment to squeeZE-and-fly. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)1364–70 Piscataway, NJ: IEEE
    [Google Scholar]
  57. 57. 
    Zha J, Wu X, Kroeger J, Perez N, Mueller MW. 2020. A collision-resilient aerial vehicle with icosahedron tensegrity structure. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)1407–12 Piscataway, NJ: IEEE
    [Google Scholar]
  58. 58. 
    Salaan CJ, Tadakuma K, Okada Y, Sakai Y, Ohno K, Tadokoro S 2019. Development and experimental validation of aerial vehicle with passive rotating shell on each rotor. IEEE Robot. Autom. Lett. 4:2568–75
    [Google Scholar]
  59. 59. 
    Kumar R, Deshpande AM, Wells JZ, Kumar M. 2020. Flight control of sliding arm quadcopter with dynamic structural parameters. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)1358–63 Piscataway, NJ: IEEE
    [Google Scholar]
  60. 60. 
    Tao P. 2016. Design, prototyping and autonomous control of gasoline-engine variable-pitch quadcopter PhD Thesis Natl. Univ. Singap. Singapore:
    [Google Scholar]
  61. 61. 
    Apeland J, Pavlou D, Hemmingsen T 2020. State-of-technology and barriers for adoption of fuel cell powered multirotor drones. 2020 International Conference on Unmanned Aircraft Systems (ICUAS)1359–67 Piscataway, NJ: IEEE
    [Google Scholar]
  62. 62. 
    Gill R, D'Andrea R. 2020. An annular wing VTOL UAV: flight dynamics and control. Drones 4:14
    [Google Scholar]
  63. 63. 
    Sindhwani V, Sidahmed H, Choromanski K, Jones B 2020. Unsupervised anomaly detection for self-flying delivery drones. 2020 IEEE International Conference on Robotics and Automation (ICRA)186–92 Piscataway, NJ: IEEE
    [Google Scholar]
  64. 64. 
    Basescu M, Moore J. 2020. Direct NMPC for post-stall motion planning with fixed-wing UAVs. 2020 IEEE International Conference on Robotics and Automation (ICRA)9592–98 Piscataway, NJ: IEEE
    [Google Scholar]
  65. 65. 
    Zogopoulos-Papaliakos G, Kyriakopoulos KJ. 2020. A flight envelope determination and protection system for fixed-wing UAVs. 2020 IEEE International Conference on Robotics and Automation (ICRA)9599–605 Piscataway, NJ: IEEE
    [Google Scholar]
  66. 66. 
    Ritz R, D'Andrea R 2018. A global strategy for tailsitter hover control. Robotics Research 1 A Bicchi, W Burgard 21–37 Cham, Switz.: Springer
    [Google Scholar]
  67. 67. 
    Kriegleder M, Oung R, D'Andrea R. 2013. Asynchronous implementation of a distributed average consensus algorithm. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)1836–41 Piscataway, NJ: IEEE
    [Google Scholar]
  68. 68. 
    Gabrich B, Li G, Yim M 2020. ModQuad-DoF: a novel yaw actuation for modular quadrotors. 2020 IEEE International Conference on Robotics and Automation (ICRA)8267–73 Piscataway, NJ: IEEE
    [Google Scholar]
  69. 69. 
    Jain KP, Mueller MW. 2020. Flying batteries: in-flight battery switching to increase multirotor flight time. 2020 IEEE International Conference on Robotics and Automation (ICRA)3510–16 Piscataway, NJ: IEEE
    [Google Scholar]
  70. 70. 
    Balaram J, Aung M, Golombek MP 2021. The ingenuity helicopter on the perseverance rover. Space Sci. Rev. 217:56
    [Google Scholar]
  71. 71. 
    Chen C, Wan Y, Li B, Wang C, Xie G, Jiang H. 2020. Motion planning for heterogeneous unmanned systems under partial observation from UAV. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)1474–79 Piscataway, NJ: IEEE
    [Google Scholar]
  72. 72. 
    Booth KE, Piacentini C, Bernardini S, Beck JC 2020. Target search on road networks with range-constrained UAVs and ground-based mobile recharging vehicles. IEEE Robot. Autom. Lett. 5:6702–9
    [Google Scholar]
  73. 73. 
    Choudhury S, Solovey K, Kochenderfer MJ, Pavone M. 2021. Efficient large-scale multi-drone delivery using transit networks. J. Artif. Intell. Res. 70:757–88
    [Google Scholar]
  74. 74. 
    Muskardin T, Coelho A, Della Noce ER, Ollero A, Kondak K 2020. Energy-based cooperative control for landing fixed-wing UAVs on mobile platforms under communication delays. IEEE Robot. Autom. Lett. 5:5081–88
    [Google Scholar]
  75. 75. 
    Kotaru P, Sreenath K. 2020. Multiple quadrotors carrying a flexible hose: dynamics, differential flatness and control. IFAC-PapersOnLine 53:28832–39
    [Google Scholar]
  76. 76. 
    Wehbeh J, Rahman S, Sharf I. 2020. Distributed model predictive control for UAVs collaborative payload transport. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)11666–72 Piscataway, NJ: IEEE
    [Google Scholar]
  77. 77. 
    Oung R, D'Andrea R. 2011. The distributed flight array. Mechatronics 21:908–17
    [Google Scholar]
  78. 78. 
    Gabrich B, Saldana D, Kumar V, Yim M. 2018. A flying gripper based on cuboid modular robots. 2018 IEEE International Conference on Robotics and Automation (ICRA)7024–30 Piscataway, NJ: IEEE
    [Google Scholar]
  79. 79. 
    Saldana D, Gabrich B, Li G, Yim M, Kumar V. 2018. ModQuad: the flying modular structure that self-assembles in midair. 2018 IEEE International Conference on Robotics and Automation (ICRA)691–98 Piscataway, NJ: IEEE
    [Google Scholar]
  80. 80. 
    Li G, Gabrich B, Saldana D, Das J, Kumar V, Yim M. 2019. ModQuad-Vi: a vision-based self-assembling modular quadrotor. 2019 International Conference on Robotics and Automation (ICRA)346–52 Piscataway, NJ: IEEE
    [Google Scholar]
  81. 81. 
    Shankar A, Elbaum S, Detweiler C 2020. Towards in-flight transfer of payloads between multirotors. IEEE Robot. Autom. Lett. 5:6201–8
    [Google Scholar]
  82. 82. 
    Fisac JF, Akametalu AK, Zeilinger MN, Kaynama S, Gillula J, Tomlin CJ 2018. A general safety framework for learning-based control in uncertain robotic systems. IEEE Trans. Autom. Control 64:2737–52
    [Google Scholar]
/content/journals/10.1146/annurev-control-042920-012045
Loading
/content/journals/10.1146/annurev-control-042920-012045
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error