1932

Abstract

This article reviews recent progress in the use of stimuli-responsive polymers for soft robotics. First, we introduce different types of representative stimuli-responsive polymers, which include liquid crystal polymers and elastomers, hydrogels, shape memory polymers, magnetic elastomers, electroactive polymers, and thermal expansion actuators. We focus on the mechanisms of actuation and the evaluation of performance and discuss strategies for improvements. We then present examples of soft robotic applications based on stimuli-responsive polymers for bending, grasping, walking, swimming, flying, and sensing control. Finally, we discuss current opportunities and challenges of stimuli-responsive soft robots for future study.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-042920-014327
2022-05-03
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/control/5/1/annurev-control-042920-014327.html?itemId=/content/journals/10.1146/annurev-control-042920-014327&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Brown E, Rodenberg N, Amend J, Mozeika A, Steltz E et al. 2010. Universal robotic gripper based on the jamming of granular material. PNAS 107:18809–14
    [Google Scholar]
  2. 2. 
    Kim Y, Parada GA, Liu S, Zhao X. 2019. Ferromagnetic soft continuum robots. Sci. Robot. 4:eaax7329
    [Google Scholar]
  3. 3. 
    Horchler AD, Kandhari A, Daltorio KA, Moses KC, Ryan JC et al. 2015. Peristaltic locomotion of a modular mesh-based worm robot: precision, compliance, and friction. Soft Robot 2:135–45
    [Google Scholar]
  4. 4. 
    Seok S, Onal CD, Cho K, Wood RJ, Rus D, Kim S 2013. Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans. Mechatron. 18:1485–97
    [Google Scholar]
  5. 5. 
    Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM et al. 2016. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536:451–55
    [Google Scholar]
  6. 6. 
    Zhao Y, Xuan C, Qian X, Alsaid Y, Hua M et al. 2019. Soft phototactic swimmer based on self-sustained hydrogel oscillator. Sci. Robot. 4:eaax7112
    [Google Scholar]
  7. 7. 
    Jafferis NT, Helbling EF, Karpelson M, Wood RJ 2019. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature 570:491–95
    [Google Scholar]
  8. 8. 
    Rich SI, Wood RJ, Majidi C. 2018. Untethered soft robotics. Nat. Electron. 1:102–12
    [Google Scholar]
  9. 9. 
    Hines L, Petersen K, Lum GZ, Sitti M. 2017. Soft actuators for small-scale robotics. Adv. Mater. 29:1603483
    [Google Scholar]
  10. 10. 
    Cianchetti M, Laschi C, Menciassi A, Dario P 2018. Biomedical applications of soft robotics. Nat. Rev. Mater. 3:143–53
    [Google Scholar]
  11. 11. 
    Banerjee H, Tsz Z, Tse H, Ren H. 2018. Soft robotics with compliance and adaptation for biomedical applications and forthcoming challenges. Int. J. Robot. Autom. 33: https://doi.org/10.2316/journal.206.2018.1.206-4981
    [Crossref] [Google Scholar]
  12. 12. 
    O'Neill CT, Phipps NS, Cappello L, Paganoni S, Walsh CJ 2017. A soft wearable robot for the shoulder: design, characterization, and preliminary testing. 2017 International Conference on Rehabilitation Robotics1672–78 Piscataway, NJ: IEEE
    [Google Scholar]
  13. 13. 
    Chen B, Zhao X 2017. PVC gel soft actuator-based wearable assist wear for hip joint support during walking. Smart Mater. Struct. 26:125003
    [Google Scholar]
  14. 14. 
    Cui H, Zhao Q, Wang Y, Du X 2019. Bioinspired actuators based on stimuli-responsive polymers. Chem. Asian J. 14:2369–87
    [Google Scholar]
  15. 15. 
    Yang GZ, Bellingham J, Dupont PE, Fischer P, Floridi L et al. 2018. The grand challenges of science robotics. Sci. Robot. 3:eaar7650
    [Google Scholar]
  16. 16. 
    Jang KI, Chung HU, Xu S, Lee CH, Luan H et al. 2015. Soft network composite materials with deterministic and bio-inspired designs. Nat. Commun. 6:6566
    [Google Scholar]
  17. 17. 
    Wirekoh J, Park Y. 2017. Design of flat pneumatic artificial muscles. Smart Mater. Struct. 26:035009
    [Google Scholar]
  18. 18. 
    Truby RL, Wehner M, Grosskopf AK, Vogt DM, Uzel SGM et al. 2018. Soft somatosensitive actuators via embedded 3D printing. Adv. Mater. 30:1706383
    [Google Scholar]
  19. 19. 
    Fras J, Noh Y, Wurdemann H, Althoefer K. 2017. Soft fluidic rotary actuator with improved actuation properties. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems5610–15 Piscataway, NJ: IEEE
    [Google Scholar]
  20. 20. 
    Wang H, Totaro M, Beccai L. 2018. Toward perceptive soft robots: progress and challenges. Adv. Sci. 5:1800541
    [Google Scholar]
  21. 21. 
    Zhao H, Huang R, Shepherd RF. 2016. Curvature control of soft orthotics via low cost solid-state optics. 2016 IEEE International Conference on Robotics and Automation4008–13 Piscataway, NJ: IEEE
    [Google Scholar]
  22. 22. 
    Miriyev A, Stack K, Lipson H. 2017. Soft material for soft actuators. Nat. Commun. 8:596
    [Google Scholar]
  23. 23. 
    Tolley MT, Shepherd RF, Karpelson M, Bartlett NW, Galloway KC et al. 2014. An untethered jumping soft robot. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems561–66 Piscataway, NJ: IEEE
    [Google Scholar]
  24. 24. 
    Nawroth JC, Lee H, Feinberg AW, Ripplinger CM, McCain ML et al. 2012. A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30:792–97
    [Google Scholar]
  25. 25. 
    Park SJ, Gazzola M, Park KS, Park S, Di Santo V et al. 2016. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353:158–62
    [Google Scholar]
  26. 26. 
    He Q, Wang Z, Wang Y, Song Z, Cai S. 2020. Recyclable and self-repairable fluid-driven liquid crystal elastomer actuator. ACS Appl. Mater. Interfaces 12:35464–74
    [Google Scholar]
  27. 27. 
    Zeng H, Wasylczyk P, Wiersma DS, Priimagi A. 2018. Light robots: bridging the gap between microrobotics and photomechanics in soft materials. Adv. Mater. 30:1703554
    [Google Scholar]
  28. 28. 
    Kim SJ, Kim MS, Kim SI, Spinks GM, Kim BC, Wallace GG 2006. Self-oscillatory actuation at constant DC voltage with pH-sensitive chitosan/polyaniline hydrogel blend. Chem. Mater. 18:5805–9
    [Google Scholar]
  29. 29. 
    Shin B, Ha J, Lee M, Park K, Park GH et al. 2018. Hygrobot: a self-locomotive ratcheted actuator powered by environmental humidity. Sci. Robot. 3:eaar2629
    [Google Scholar]
  30. 30. 
    Bira N, Dhagat P, Davidson JR 2020. A review of magnetic elastomers and their role in soft robotics. Front. Robot. AI 7:588391
    [Google Scholar]
  31. 31. 
    Wu Y, Yim JK, Liang J, Shao Z, Qi M et al. 2019. Insect-scale fast moving and ultrarobust soft robot. Sci. Robot. 4:eaax1594
    [Google Scholar]
  32. 32. 
    Ikeda T, Mamiya JI, Yu Y. 2007. Photomechanics of liquid-crystalline elastomers and other polymers. Angew. Chem. Int. Ed. 46:506–28
    [Google Scholar]
  33. 33. 
    He Q, Wang Z, Song Z, Cai S 2019. Bioinspired design of vascular artificial muscle. Adv. Mater. Technol. 4:1800244
    [Google Scholar]
  34. 34. 
    Yu Y, Nakano M, Ikeda T. 2003. Directed bending of a polymer film by light. Nature 425:145
    [Google Scholar]
  35. 35. 
    White TJ, Broer DJ. 2015. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14:1087–98
    [Google Scholar]
  36. 36. 
    Wang C, Sim K, Chen J, Kim H, Rao Z et al. 2018. Soft ultrathin electronics innervated adaptive fully soft robots. Adv. Mater. 30:1706695
    [Google Scholar]
  37. 37. 
    Kurihara S, Ikeda T, Tazuke S, Seto JE 1991. Isothermal phase transition of liquid crystals induced by photoisomerization of doped spiropyrans. J. Chem. Soc. Faraday Trans. 87:3251–54
    [Google Scholar]
  38. 38. 
    Allinson H, Gleeson HF. 1993. Physical properties of mixtures of low molar mass nematic liquid crystals with photochromic fulgide guest dyes. Liq. Cryst. 14:1469–78
    [Google Scholar]
  39. 39. 
    White TJ, Serak SV, Tabiryan NV, Vaia RA, Bunning TJ. 2009. Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers. J. Mater. Chem. 19:1080–85
    [Google Scholar]
  40. 40. 
    Wang Z, Li K, He Q, Cai S. 2019. A light-powered ultralight tensegrity robot with high deformability and load capacity. Adv. Mater. 31:1806849
    [Google Scholar]
  41. 41. 
    Ahn C, Liang X, Cai S. 2019. Bioinspired design of light-powered crawling, squeezing, and jumping untethered soft robot. Adv. Mater. Technol. 4:1900185
    [Google Scholar]
  42. 42. 
    Tian H, Wang Z, Chen Y, Shao J, Gao T, Cai S. 2018. Polydopamine-coated main-chain liquid crystal elastomer as optically driven artificial muscle. ACS Appl. Mater. Interfaces 10:8307–16
    [Google Scholar]
  43. 43. 
    Liu X, Wei R, Hoang PT, Wang X, Liu T, Keller P 2015. Reversible and rapid laser actuation of liquid crystalline elastomer micropillars with inclusion of gold nanoparticles. Adv. Funct. Mater. 25:3022–32
    [Google Scholar]
  44. 44. 
    Spillmann CM, Naciri J, Ratna BR, Selinger RLB, Selinger JV. 2016. Electrically induced twist in smectic liquid-crystalline elastomers. J. Phys. Chem. B 120:636–72
    [Google Scholar]
  45. 45. 
    Yuan C, Roach DJ, Dunn CK, Mu Q, Kuang X et al. 2017. 3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers. Soft Matter 13:5558–68
    [Google Scholar]
  46. 46. 
    Ding M, Jing L, Yang H, Machnicki CE, Fu X et al. 2020. Multifunctional soft machines based on stimuli-responsive hydrogels: from freestanding hydrogels to smart integrated systems. Mater. Today Adv. 8:100088
    [Google Scholar]
  47. 47. 
    Jeon SJ, Hauser AW, Hayward RC. 2017. Shape-morphing materials from stimuli-responsive hydrogel hybrids. Acc. Chem. Res. 50:161–69
    [Google Scholar]
  48. 48. 
    Paley DA, Wereley NM 2021. Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems. Cham, Switz: Springer
    [Google Scholar]
  49. 49. 
    Taylor M, Tomlins P, Sahota T 2017. Thermoresponsive gels. Gels 3:4
    [Google Scholar]
  50. 50. 
    Xia LW, Xie R, Ju XJ, Wang W, Chen Q, Chu LY 2013. Nano-structured smart hydrogels with rapid response and high elasticity. Nat. Commun. 4:2226
    [Google Scholar]
  51. 51. 
    Kim YS, Liu M, Ishida Y, Ebina Y, Osada M et al. 2015. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 14:1002–7
    [Google Scholar]
  52. 52. 
    Hua M, Wu D, Wu S, Ma Y, Alsaid Y, He X. 2020. 4D printable tough and thermoresponsive hydrogels. ACS Appl. Mater. Interfaces 13:12689–97
    [Google Scholar]
  53. 53. 
    Li C, Iscen A, Sai H, Sato K, Sather NA et al. 2020. Supramolecular-covalent hybrid polymers for light-activated mechanical actuation. Nat. Mater. 19:900–9
    [Google Scholar]
  54. 54. 
    Haq MA, Su Y, Wang D 2017. Mechanical properties of PNIPAM based hydrogels: a review. Mater. Sci. Eng. C 70:842–55
    [Google Scholar]
  55. 55. 
    Zhang JT, Cheng SX, Huang SW, Zhuo RX. 2003. Temperature-sensitive poly (N-isopropylacrylamide) hydrogels with macroporous structure and fast response rate. Macromol. Rapid Commun. 24:447–51
    [Google Scholar]
  56. 56. 
    Deng Z, Guo Y, Ma PX, Guo B 2018. Rapid thermal responsive conductive hybrid cryogels with shape memory properties, photothermal properties and pressure dependent conductivity. J. Colloid Interface Sci. 526:281–94
    [Google Scholar]
  57. 57. 
    Qian X, Zhao Y, Alsaid Y, Wang X, Hua M et al. 2019. Artificial phototropism for omnidirectional tracking and harvesting of light. Nat. Nanotechnol. 14:1048–55
    [Google Scholar]
  58. 58. 
    Haraguchi K. 2007. Nanocomposite hydrogels. Curr. Opin. Solid State Mater. Sci. 11:47–54
    [Google Scholar]
  59. 59. 
    Hua M, Wu S, Ma Y, Zhao Y, Chen Z et al. 2021. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590:594–99
    [Google Scholar]
  60. 60. 
    Wu S, Hua M, Alsaid Y, Du Y, Ma Y et al. 2021. Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the Hofmeister effect. Adv. Mater. 33:2007829
    [Google Scholar]
  61. 61. 
    Zhang JT, Bhat R, Jandt KD. 2009. Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater 5:488–97
    [Google Scholar]
  62. 62. 
    Zhang KY, Liu S, Zhao Q, Huang W. 2016. Stimuli-responsive metallopolymers. Coord. Chem. Rev. 319:180–95
    [Google Scholar]
  63. 63. 
    Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T et al. 2012. Expansion–contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat. Commun. 3:1270
    [Google Scholar]
  64. 64. 
    Satoh T, Sumaru K, Takagi T, Kanamori T. 2011. Fast-reversible light-driven hydrogels consisting of spirobenzopyran-functionalized poly(N-isopropylacrylamide). Soft Matter 7:8030–34
    [Google Scholar]
  65. 65. 
    Ma C, Le X, Tang X, He J, Xiao P et al. 2016. A multiresponsive anisotropic hydrogel with macroscopic 3D complex deformations. Adv. Funct. Mater. 26:8670–76
    [Google Scholar]
  66. 66. 
    Zhang X, Pint CL, Lee MH, Schubert BE, Jamshidi A et al. 2011. Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. Nano Lett 11:3239–44
    [Google Scholar]
  67. 67. 
    Yoon C, Xiao R, Park J, Cha J, Nguyen TD, Gracias DH 2014. Functional stimuli responsive hydrogel devices by self-folding. Smart Mater. Struct. 23:094008
    [Google Scholar]
  68. 68. 
    Ma Y, Hua M, Wu S, Du Y, Pei X et al. 2020. Bioinspired high-power-density strong contractile hydrogel by programmable elastic recoil. Sci. Adv. 6:eabd2520
    [Google Scholar]
  69. 69. 
    Yuk H, Lin S, Ma C, Takaffoli M, Fang NX, Zhao X. 2017. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8:14230
    [Google Scholar]
  70. 70. 
    Calvert P. 2009. Hydrogels for soft machines. Adv. Mater. 21:743–56
    [Google Scholar]
  71. 71. 
    Khodambashi R, Alsaid Y, Rico R, Marvi H, Peet MM et al. 2021. Heterogeneous hydrogel structures with spatiotemporal reconfigurability using addressable and tunable voxels. Adv. Mater 33:2005906
    [Google Scholar]
  72. 72. 
    Alsaid Y, Wu S, Wu D, Du Y, Shi L et al. 2021. Tunable sponge-like hierarchically porous hydrogels with simultaneously enhanced diffusivity and mechanical properties. Adv. Mater. 33:2008235
    [Google Scholar]
  73. 73. 
    Yuk H, Lin S, Ma C, Takaffoli M, Fang NX, Zhao X. 2017. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8:14230
    [Google Scholar]
  74. 74. 
    Zheng SY, Shen Y, Zhu F, Yin J, Qian J, Fu J 2018. Programmed deformations of 3D-printed tough physical hydrogels with high response speed and large output force. Adv. Funct. Mater. 28:1803366
    [Google Scholar]
  75. 75. 
    Yang C, Cheng S, Yao X, Nian G, Liu Q, Suo Z. 2020. Ionotronic luminescent fibers, fabrics, and other configurations. Adv. Mater. 32:2005545
    [Google Scholar]
  76. 76. 
    Chung T, Romo-Uribe A, Mather PT. 2008. Two-way reversible shape memory in a semicrystalline network. Macromolecules 41:184–92
    [Google Scholar]
  77. 77. 
    Li J, Rodgers WR, Xie T. 2011. Semi-crystalline two-way shape memory elastomer. Polymer 52:5320–25
    [Google Scholar]
  78. 78. 
    Gao Y, Liu W, Zhu S. 2017. Polyolefin thermoplastics for multiple shape and reversible shape memory. ACS Appl. Mater. Interfaces 9:4882–89
    [Google Scholar]
  79. 79. 
    Hu W, Lum GZ, Mastrangeli M, Sitti M 2018. Small-scale soft-bodied robot with multimodal locomotion. Nature 554:81–85
    [Google Scholar]
  80. 80. 
    Amjadi M, Sitti M. 2018. Self-sensing paper actuators based on graphite-carbon nanotube hybrid films. Adv. Sci. 5:1800239
    [Google Scholar]
  81. 81. 
    Gao Y, Liu W, Zhu S. 2018. Reversible shape memory polymer from semicrystalline poly(ethylene-co-vinyl acetate) with dynamic covalent polymer networks. Macromolecules 51:8956–63
    [Google Scholar]
  82. 82. 
    Behl M, Kratz K, Zotzmann J, Nöchel U, Lendlein A. 2013. Reversible bidirectional shape-memory polymers. Adv. Mater. 25:4466–69
    [Google Scholar]
  83. 83. 
    Ge F, Lu X, Xiang J, Tong X, Zhao Y. 2017. An optical actuator based on gold-nanoparticle-containing temperature-memory semicrystalline polymers. Angew. Chem. Int. Ed. 56:6126–30
    [Google Scholar]
  84. 84. 
    Wang K, Zhu XX. 2018. Two-way reversible shape memory polymers containing polydopamine nanospheres: light actuation, robotic locomotion, and artificial muscles. ACS Biomater. Sci. Eng. 4:3099–106
    [Google Scholar]
  85. 85. 
    Wang X, Sparkman J, Gou J. 2017. Electrical actuation and shape memory behavior of polyurethane composites incorporated with printed carbon nanotube layers. Compos. Sci. Technol. 141:8–15
    [Google Scholar]
  86. 86. 
    Zhang F, Xia Y, Wang L, Liu L, Liu Y, Leng J. 2018. Conductive shape memory microfiber membranes with core-shell structures and electroactive performance. ACS Appl. Mater. Interfaces 10:35526–32
    [Google Scholar]
  87. 87. 
    Joyee EB, Pan Y. 2019. A fully three-dimensional printed inchworm-inspired soft robot with magnetic actuation. Soft Robot 6:333–45
    [Google Scholar]
  88. 88. 
    Almansouri AS, Alsharif NA, Khan MA, Swanepoel L, Kaidarova A et al. 2019. An imperceptible magnetic skin. Adv. Mater. Technol. 4:1900493
    [Google Scholar]
  89. 89. 
    Tang J, Tong Z, Xia Y, Liu M, Lv Z et al. 2018. Super tough magnetic hydrogels for remotely triggered shape morphing. J. Mater. Chem. B 6:2713–22
    [Google Scholar]
  90. 90. 
    Maffli L, Rosset S, Ghilardi M, Carpi F, Shea H. 2015. Ultrafast all-polymer electrically tunable silicone lenses. Adv. Funct. Mater. 25:1656–65
    [Google Scholar]
  91. 91. 
    Shintake J, Rosset S, Schubert B, Floreano D, Shea H 2016. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv. Mater. 28:231–38
    [Google Scholar]
  92. 92. 
    Ji X, Liu X, Cacucciolo V, Imboden M, Civet Y et al. 2019. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 4:eaaz6451
    [Google Scholar]
  93. 93. 
    Poulin A, Rosset S, Shea HR. 2015. Printing low-voltage dielectric elastomer actuators. Appl. Phys. Lett. 107:244104
    [Google Scholar]
  94. 94. 
    Niu X, Stoyanov H, Hu W, Leo R, Brochu P, Pei Q. 2013. Synthesizing a new dielectric elastomer exhibiting large actuation strain and suppressed electromechanical instability without prestretching. J. Polym. Sci. B 51:197–206
    [Google Scholar]
  95. 95. 
    Risse S, Kussmaul B, Krüger H, Kofod G. 2012. Synergistic improvement of actuation properties with compatibilized high permittivity filler. Adv. Funct. Mater. 22:3958–62
    [Google Scholar]
  96. 96. 
    Dünki SJ, Ko YS, Nüesch FA, Opris DM. 2015. Self-repairable, high permittivity dielectric elastomers with large actuation strains at low electric fields. Adv. Funct. Mater. 25:2467–75
    [Google Scholar]
  97. 97. 
    Rothemund P, Kellaris N, Mitchell SK, Acome E, Keplinger C 2020. HASEL artificial muscles for a new generation of lifelike robots—recent progress and future opportunities. Adv. Mater. 33:2003375
    [Google Scholar]
  98. 98. 
    Li T, Zou Z, Mao G, Yang X, Liang Y et al. 2019. Agile and resilient insect-scale robot. Soft Robot 6:133–41
    [Google Scholar]
  99. 99. 
    Li T, Li G, Liang Y, Cheng T, Dai J et al. 2017. Fast-moving soft electronic fish. Sci. Adv. 3:e1602045
    [Google Scholar]
  100. 100. 
    Chen Y, Zhao H, Mao J, Chirarattananon P, Helbling EF et al. 2019. Controlled flight of a microrobot powered by soft artificial muscles. Nature 575:324–29
    [Google Scholar]
  101. 101. 
    Kruusamäe K, Punning A, Aabloo A, Asaka K 2015. Self-sensing ionic polymer actuators: a review. Actuators 4:17–38
    [Google Scholar]
  102. 102. 
    Madden JD, Cush RA, Kanigan TS, Hunter I. 2000. Fast contracting polypyrrole actuators. Synth. Met. 133:185–92
    [Google Scholar]
  103. 103. 
    Hu F, Xue Y, Xu J, Lu B. 2019. PEDOT-based conducting polymer actuators. Front. Robot. AI 6:114
    [Google Scholar]
  104. 104. 
    Melling D, Martinez JG, Jager EWH. 2019. Conjugated polymer actuators and devices: progress and opportunities. Adv. Mater. 31:1808210
    [Google Scholar]
  105. 105. 
    Otero TF, Martinez JG. 2015. Physical and chemical awareness from sensing polymeric artificial muscles. Experiments and modeling. Prog. Polym. Sci. 44:62–78
    [Google Scholar]
  106. 106. 
    Yang M, Yuan Z, Liu J, Fang Z, Fang L et al. 2019. Photoresponsive actuators built from carbon-based soft materials. Adv. Opt. Mater. 7:1900069
    [Google Scholar]
  107. 107. 
    Kim H, Lee H, Ha I, Jung J, Won P et al. 2018. Biomimetic color changing anisotropic soft actuators with integrated metal nanowire percolation network transparent heaters for soft robotics. Adv. Funct. Mater. 28:1801847
    [Google Scholar]
  108. 108. 
    Yoon CK. 2019. Advances in biomimetic stimuli responsive soft grippers. Nano Converg 6:20
    [Google Scholar]
  109. 109. 
    Wani OM, Zeng H, Priimagi A. 2017. A light-driven artificial flytrap. Nat. Commun. 8:15546
    [Google Scholar]
  110. 110. 
    Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. 2016. Biomimetic 4D printing. Nat. Mater. 15:413–18
    [Google Scholar]
  111. 111. 
    Zhuo S, Zhao Z, Xie Z, Hao Y, Xu Y et al. 2020. Complex multiphase organohydrogels with programmable mechanics toward adaptive soft-matter machines. Sci. Adv. 6:eaax1464
    [Google Scholar]
  112. 112. 
    Tian H, Liu H, Shao J, Li S, Li X, Chen X 2020. An electrically active gecko-effect soft gripper under a low voltage by mimicking gecko's adhesive structures and toe muscles. Soft Matter 16:5599–5608
    [Google Scholar]
  113. 113. 
    Fang X, Liu Z, Hao Y, Yang H, Liu J et al. 2019. A soft actuator with tunable mechanical configurations for object grasping based on sensory feedback. 2019 2nd IEEE International Conference on Soft Robotics25–30 Piscataway, NJ: IEEE
    [Google Scholar]
  114. 114. 
    Zeng H, Wani OM, Wasylczyk P, Kaczmarek R, Priimagi A. 2017. Self-regulating iris based on light-actuated liquid crystal elastomer. Adv. Mater. 29:1701814
    [Google Scholar]
  115. 115. 
    Wani OM, Zeng H, Wasylczyk P, Priimagi A 2018. Programming photoresponse in liquid crystal polymer actuators with laser projector. Adv. Opt. Mater. 6:1700949
    [Google Scholar]
  116. 116. 
    Jung K, Koo JC, Nam J, Lee YK, Choi HR 2007. Artificial annelid robot driven by soft actuators. Bioinspir. Biomim. 2:S42
    [Google Scholar]
  117. 117. 
    Menciassi A, Gorini S, Pernorio G, Liu W, Valvo F, Dario P. 2004. Design, fabrication and performances of a biomimetic robotic earthworm. 2004 IEEE International Conference on Robotics and Biomimetics274–78 Piscataway, NJ: IEEE
    [Google Scholar]
  118. 118. 
    Rogóż M, Zeng H, Xuan C, Wiersma DS, Wasylczyk P 2016. Light-driven soft robot mimics caterpillar locomotion in natural scale. Adv. Opt. Mater. 4:1689–94
    [Google Scholar]
  119. 119. 
    Gelebart AH, Mulder DJ, Varga M, Konya A, Vantomme G et al. 2017. Making waves in a photoactive polymer film. Nature 546:632–36
    [Google Scholar]
  120. 120. 
    Lu X, Guo S, Tong X, Xia H, Zhao Y. 2017. Tunable photocontrolled motions using stored strain energy in malleable azobenzene liquid crystalline polymer actuators. Adv. Mater. 29:1606467
    [Google Scholar]
  121. 121. 
    Hu Y, Liu J, Chang L, Yang L, Xu A et al. 2017. Electrically and sunlight-driven actuator with versatile biomimetic motions based on rolled carbon nanotube bilayer composite. Adv. Funct. Mater. 27:1704388
    [Google Scholar]
  122. 122. 
    Zeng H, Wasylczyk P, Parmeggiani C, Martella D, Burresi M, Wiersma DS. 2015. Light-fueled microscopic walkers. Adv. Mater. 27:3883–87
    [Google Scholar]
  123. 123. 
    Zeng H, Wani OM, Wasylczyk P, Priimagi A. 2018. Light-driven, caterpillar-inspired miniature inching robot. Macromol. Rapid Commun. 39:1700224
    [Google Scholar]
  124. 124. 
    Wie JJ, Shankar MR, White TJ. 2016. Photomotility of polymers. Nat. Commun. 7:13260
    [Google Scholar]
  125. 125. 
    Purcell EM. 1977. Life at low Reynolds number. Am. J. Phys. 45:3–11
    [Google Scholar]
  126. 126. 
    Zhang H, Mourran A, Möller M. 2017. Dynamic switching of helical microgel ribbons. Nano Lett 17:2010–14
    [Google Scholar]
  127. 127. 
    Mourran A, Zhang H, Vinokur R, Möller M. 2017. Soft microrobots employing nonequilibrium actuation via plasmonic heating. Adv. Mater. 29:1604825
    [Google Scholar]
  128. 128. 
    Palagi S, Mark AG, Reigh SY, Melde K, Qiu T et al. 2016. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15:647–53
    [Google Scholar]
  129. 129. 
    Diller E, Zhuang J, Zhan Lum G, Edwards MR, Sitti M 2014. Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming. Appl. Phys. Lett. 104:174101
    [Google Scholar]
  130. 130. 
    Huang C, Lv JA, Tian X, Wang Y, Yu Y, Liu J 2015. Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals. Sci. Rep. 5:17414
    [Google Scholar]
  131. 131. 
    Zhang L, Abbott JJ, Dong L, Kratochvil BE, Bell D, Nelson BJ. 2009. Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94:2007–10
    [Google Scholar]
  132. 132. 
    Kim B, Kim D, Jung J 2005. A biomimetic undulatory tadpole robot using ionic polymer–metal composite. Smart Mater. Struct. 14:1579
    [Google Scholar]
  133. 133. 
    Tan X, Kim D, Usher N, Laboy D, Jackson J et al. 2006. An autonomous robotic fish for mobile sensing. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems5424–29 Piscataway, NJ: IEEE
    [Google Scholar]
  134. 134. 
    Gu H, Boehler Q, Cui H, Secchi E, Savorana G et al. 2020. Magnetic cilia carpets with programmable metachronal waves. Nat. Commun. 11:2637
    [Google Scholar]
  135. 135. 
    Gelebart AH, Vantomme G, Meijer EW, Broer DJ. 2017. Mastering the photothermal effect in liquid crystal networks: a general approach for self-sustained mechanical oscillators. Adv. Mater. 29:1606712
    [Google Scholar]
  136. 136. 
    Serak S, Tabiryan N, Vergara R, White TJ, Vaia RA, Bunning TJ. 2010. Liquid crystalline polymer cantilever oscillators fueled by light. Soft Matter 6:779–83
    [Google Scholar]
  137. 137. 
    Yang L, Chang L, Hu Y, Huang M, Ji Q et al. 2020. An autonomous soft actuator with light-driven self-sustained wavelike oscillation for phototactic self-locomotion and power generation. Adv. Funct. Mater. 30:1908842
    [Google Scholar]
  138. 138. 
    White TJ, Tabiryan NV, Serak SV, Hrozhyk UA, Tondiglia VP et al. 2008. A high frequency photodriven polymer oscillator. Soft Matter 4:1796
    [Google Scholar]
  139. 139. 
    Lee KM, Smith ML, Koerner H, Tabiryan N, Vaia RA et al. 2011. Photodriven, flexural-torsional oscillation of glassy azobenzene liquid crystal polymer networks. Adv. Funct. Mater. 21:2913–18
    [Google Scholar]
  140. 140. 
    Kumar K, Knie C, Bléger D, Peletier MA, Friedrich H et al. 2016. A chaotic self-oscillating sunlight-driven polymer actuator. Nat. Commun. 7:11975
    [Google Scholar]
  141. 141. 
    Wang XQ, Tan CF, Chan KH, Lu X, Zhu L et al. 2018. In-built thermo-mechanical cooperative feedback mechanism for self-propelled multimodal locomotion and electricity generation. Nat. Commun. 9:3438
    [Google Scholar]
  142. 142. 
    Chen Y, Wang H, Helbling EF, Jafferis NT, Zufferey R et al. 2017. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci. Robot. 2:eaao5619
    [Google Scholar]
  143. 143. 
    Ma KY, Chirarattananon P, Fuller SB, Wood RJ. 2013. Controlled flight of a biologically inspired, insect-scale robot. Science 340:603–7
    [Google Scholar]
  144. 144. 
    Yuan X, Liu H, Zou J, Jin G, Sun L 2019. Soft tactile sensor and curvature sensor for caterpillar-like soft robot's adaptive motion. RICAI 2019: Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence690–95 New York: ACM
    [Google Scholar]
  145. 145. 
    Zhao H, O'Brien K, Li S, Shepherd RF 2016. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 1:eaai7529
    [Google Scholar]
  146. 146. 
    Zhao Y, Lo C-Y, Ruan L, Pi C-H, Kim C et al. 2021. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel. Sci. Robot 6:eabd5483
    [Google Scholar]
  147. 147. 
    Larson C, Peele B, Li S, Robinson S, Totaro M et al. 2016. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351:1071–74
    [Google Scholar]
  148. 148. 
    Cheng H, Zhao F, Xue J, Shi G, Jiang L, Qu L. 2016. One single graphene oxide film for responsive actuation. ACS Nano 10:9529–35
    [Google Scholar]
  149. 149. 
    Wang XQ, Chan KH, Cheng Y, Ding T, Li T et al. 2020. Somatosensory, light-driven, thin-film robots capable of integrated perception and motility. Adv. Mater. 32:2000351
    [Google Scholar]
  150. 150. 
    Li S, Bai H, Liu Z, Zhang X, Huang Cet al 2021. Digital light processing of liquid crystal elastomers for self-sensing artificial muscles. Sci. Adv 7:eabg3677
    [Google Scholar]
/content/journals/10.1146/annurev-control-042920-014327
Loading
/content/journals/10.1146/annurev-control-042920-014327
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error