1932

Abstract

The so-called Stefan system describes the dynamical model of the liquid–solid phase change in materials ranging from water and ice in the polar caps to metal casting and additive manufacturing (3D printing). The mathematical structure is given by a partial differential equation (PDE) with a moving boundary governed by a scalar ordinary differential equation. Because of the system's moving-boundary nature, control of the Stefan model is unconventional even within the class of otherwise challenging PDE control problems. The second decade of the twenty-first century has witnessed remarkable advances in control design for the Stefan system. Such advances carry significant potential in several areas of technology. In this article, we briefly review the principal literature on control of the Stefan model, along with the associated basics of the PDE analysis of the model and select applications. Principal ideas from our work on control design, stability analysis, and the maintenance of physical phase constraints are given sufficient attention and tutorial treatment so that the article can serve as a self-contained point of entry into the growing subject of boundary control of the Stefan system using the method of PDE backstepping.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-042920-014825
2022-05-03
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/control/5/1/annurev-control-042920-014825.html?itemId=/content/journals/10.1146/annurev-control-042920-014825&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Maykut GA, Untersteiner N. 1971. Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res. 76:1550–75
    [Google Scholar]
  2. 2. 
    Meng Y, Thomas BG. 2003. Heat-transfer and solidification model of continuous slab casting: CON1D. Metall. Mater. Trans. B 34:685–705
    [Google Scholar]
  3. 3. 
    Valkenaers H, Vogeler F, Ferraris E, Voet A, Kruth J 2013. A novel approach to additive manufacturing: screw extrusion 3D-printing. Proceedings of the 10th International Conference on Multi-Material Micro Manufacture, ed. S Azcárate, S Dimov235–38 Singapore: Res. Publ. Serv.
    [Google Scholar]
  4. 4. 
    Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J 1995. Direct selective laser sintering of metals. Rapid Prototyp. J. 1:26–36
    [Google Scholar]
  5. 5. 
    Rabin Y, Shitzer A. 1998. Numerical solution of the multidimensional freezing problem during cryosurgery. J. Biomech. Eng. 120:32–37
    [Google Scholar]
  6. 6. 
    Sharma A, Tyagi VV, Chen C, Buddhi D 2009. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13:318–45
    [Google Scholar]
  7. 7. 
    Spangler B, Fontaine SD, Shi Y, Sambucetti L, Mattis AN et al. 2016. A novel tumor-activated prodrug strategy targeting ferrous iron is effective in multiple preclinical cancer models. J. Med. Chem. 59:11161–70
    [Google Scholar]
  8. 8. 
    Diehl S, Henningsson E, Heyden A, Perna S. 2014. A one-dimensional moving-boundary model for tubulin-driven axonal growth. J. Theor. Biol. 358:194–207
    [Google Scholar]
  9. 9. 
    Thomas KE, Newman J, Darling RM 2002. Mathematical modeling of lithium batteries. Advances in Lithium-Ion Batteries, ed. W van Schalkwijk, B Scrosati345–92 New York: Springer
    [Google Scholar]
  10. 10. 
    McGilly L, Yudin P, Feigl L, Tagantsev A, Setter N 2015. Controlling domain wall motion in ferroelectric thin films. Nat. Nanotechnol. 10:145–50
    [Google Scholar]
  11. 11. 
    Du Y, Lin Z. 2010. Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary. SIAM J. Math. Anal. 42:377–405
    [Google Scholar]
  12. 12. 
    Weber H. 1901. Vordringen des Frostes. Die partiellen Differential-Gleichung der Mathematischen Physik: nach Riemann's Vorlesungen 2118–122 Braunschweig, Ger: Vieweg
    [Google Scholar]
  13. 13. 
    Stefan J. 1891. Ueber die Theorie der Eisbilfung, insbesondere über die Eisbildung im Polarmeere. Ann. Phys. Chem. 42:269–86
    [Google Scholar]
  14. 14. 
    Crepeau J. 2007. Josef Stefan: his life and legacy in the thermal sciences. Exp. Therm. Fluid Sci. 31:795–803
    [Google Scholar]
  15. 15. 
    Friedman A. 1959. Free boundary problems for parabolic equations I. Melting of solids. J. Math. Mech. 8:499–517
    [Google Scholar]
  16. 16. 
    Cannon JR. 1984. The One-Dimensional Heat Equation Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  17. 17. 
    Fasano A, Primicerio M. 1977. General free-boundary problems for the heat equation. J. Math. Anal. Appl. 57:694–723
    [Google Scholar]
  18. 18. 
    Kolodner I. 1956. Free boundary problem for the heat equation with applications to problems of change of phase. Commun. Pure Appl. Math. 9:1–31
    [Google Scholar]
  19. 19. 
    Rubinšten LI. 1971. The Stefan Problem Providence, RI: Am. Math. Soc.
    [Google Scholar]
  20. 20. 
    Cannon JR, Primicerio M. 1971. A two phase Stefan problem with temperature boundary conditions. Ann. Mat. Pura Appl. 88:177–91
    [Google Scholar]
  21. 21. 
    Cannon JR, Primicerio M. 1971. A two phase Stefan problem with flux boundary conditions. Ann. Mat. Pura Appl. 88:193–205
    [Google Scholar]
  22. 22. 
    Kutluay S, Bahadir A, Özdeş A. 1997. The numerical solution of one-phase classical Stefan problem. J. Comput. Appl. Math. 81:135–44
    [Google Scholar]
  23. 23. 
    Bonnerot R, Jamet P. 1977. Numerical computation of the free boundary for the two-dimensional Stefan problem by space-time finite elements. J. Comput. Phys. 25:163–81
    [Google Scholar]
  24. 24. 
    Javierre E, Vuik C, Vermolen F, Van der Zwaag S. 2006. A comparison of numerical models for one-dimensional Stefan problems. J. Comput. Appl. Math. 192:445–59
    [Google Scholar]
  25. 25. 
    Hoffmann KH, Sprekels J. 1982. Real-time control of the free boundary in a two-phase Stefan problem. Numer. Funct. Anal. Optim. 5:47–76
    [Google Scholar]
  26. 26. 
    Zabaras N, Mukherjee S, Richmond O 1988. An analysis of inverse heat transfer problems with phase changes using an integral method. ASME J. Heat Transf. 110:554–61
    [Google Scholar]
  27. 27. 
    Pawlow I 1987. Optimal control of two-phase Stefan problems—numerical solutions. Optimal Control of Partial Differential Equations II: Theory and Applications, ed. KH Hoffmann, W Krabs179–206 Basel: Birkhaüser
    [Google Scholar]
  28. 28. 
    Pawłow I. 1990. Optimal control of dynamical processes in two-phase systems of solid-liquid type. Banach Cent. Publ. 24:293–319
    [Google Scholar]
  29. 29. 
    Zabaras N, Ruan Y, Richmond O. 1992. Design of two-dimensional Stefan processes with desired freezing front motions. Numer. Heat Transf. B 21:307–25
    [Google Scholar]
  30. 30. 
    Kang S, Zabaras N. 1995. Control of the freezing interface motion in two-dimensional solidification processes using the adjoint method. Int. J. Numer. Methods Eng. 38:63–80
    [Google Scholar]
  31. 31. 
    Barbu V, Kunisch K, Ring W 1996. Control and estimation of the boundary heat transfer function in Stefan problems. ESAIM Math. Model. Numer. Anal. 30:671–710
    [Google Scholar]
  32. 32. 
    Colli P, Grasselli M, Sprekels J. 1999. Automatic control via thermostats of a hyperbolic Stefan problem with memory. Appl. Math. Optim. 39:229–55
    [Google Scholar]
  33. 33. 
    Petit N 2010. Control problems for one-dimensional fluids and reactive fluids with moving interfaces. Advances in the Theory of Control, Signals and Systems with Physical Modeling, ed. J Lévine, P Müllhaupt323–37 Berlin: Springer
    [Google Scholar]
  34. 34. 
    Hinze M, Ziegenbalg S. 2007. Optimal control of the free boundary in a two-phase Stefan problem. J. Comput. Phys. 223:657–84
    [Google Scholar]
  35. 35. 
    Hinze M, Ziegenbalg S. 2007. Optimal control of the free boundary in a two-phase Stefan problem with flow driven by convection. Z. Angew. Math. Mech. 87:430–48
    [Google Scholar]
  36. 36. 
    Bernauer MK, Herzog R. 2011. Optimal control of the classical two-phase Stefan problem in level set formulation. SIAM J. Sci. Comput. 33:342–63
    [Google Scholar]
  37. 37. 
    Alessandri A, Bagnerini P, Gaggero M. 2018. Optimal control of propagating fronts by using level set methods and neural approximations. IEEE Trans. Neural Netw. Learn. Syst. 30:902–12
    [Google Scholar]
  38. 38. 
    Maidi A, Corriou JP. 2014. Boundary geometric control of a linear Stefan problem. J. Process Control 24:939–46
    [Google Scholar]
  39. 39. 
    Ecklebe S, Woittennek F, Winkler J, Frank-Rotsch C, Dropka N. 2019. Towards model based control of the vertical gradient freeze crystal growth process. arXiv:1908.02519 [math.OC]
  40. 40. 
    Ecklebe S, Woittennek F, Winkler J. 2020. Control of the vertical gradient freeze crystal growth process via backstepping. arXiv:2002.11447 [math.OC]
  41. 41. 
    Petrus B, Bentsman J, Thomas BG. 2010. Feedback control of the two-phase Stefan problem, with an application to the continuous casting of steel. 49th IEEE Conference on Decision and Control1731–36 Piscataway, NJ: IEEE
    [Google Scholar]
  42. 42. 
    Petrus B, Bentsman J, Thomas BG. 2012. Enthalpy-based feedback control algorithms for the Stefan problem. 2012 IEEE 51st IEEE Conference on Decision and Control7037–42 Piscataway, NJ: IEEE
    [Google Scholar]
  43. 43. 
    Petrus B, Bentsman J, Thomas BG. 2014. Application of enthalpy-based feedback control methodology to the two-sided Stefan problem. 2014 American Control Conference1015–20 Piscataway, NJ: IEEE
    [Google Scholar]
  44. 44. 
    Petrus B, Chen Z, Bentsman J, Thomas BG 2017. Online recalibration of the state estimators for a system with moving boundaries using sparse discrete-in-time temperature measurements. IEEE Trans. Autom. Control 63:1090–96
    [Google Scholar]
  45. 45. 
    Chen Z, Bentsman J, Thomas BG. 2018. Bang-bang free boundary control of a Stefan problem for metallurgical length maintenance. 2018 American Control Conference116–21 Piscataway, NJ: IEEE
    [Google Scholar]
  46. 46. 
    Chen Z, Bentsman J, Thomas BG. 2019. Optimal control of free boundary of a Stefan problem for metallurgical length maintenance in continuous steel casting. 2019 American Control Conference3206–11 Piscataway, NJ: IEEE
    [Google Scholar]
  47. 47. 
    Chen Z, Bentsman J, Thomas BG. 2020. Enthalpy-based output feedback control of the Stefan problem with hysteresis. 2020 American Control Conference2661–66 Piscataway, NJ: IEEE
    [Google Scholar]
  48. 48. 
    Koga S, Diagne M, Krstic M 2018. Control and state estimation of the one-phase Stefan problem via backstepping design. IEEE Trans. Autom. Control 64:510–25
    [Google Scholar]
  49. 49. 
    Koga S, Bresch-Pietri D, Krstic M. 2020. Delay compensated control of the Stefan problem and robustness to delay mismatch. Int. J. Robust Nonlinear Control 30:2304–34
    [Google Scholar]
  50. 50. 
    Koga S, Krstic M. 2020. Single-boundary control of the two-phase Stefan system. Syst. Control Lett. 135:104573
    [Google Scholar]
  51. 51. 
    Koga S, Karafyllis I, Krstic M 2019. Sampled-data control of the Stefan system. arXiv:1906.01434 [math.OC]
  52. 52. 
    Koga S, Straub D, Diagne M, Krstic M 2020. Stabilization of filament production rate for screw extrusion-based polymer three-dimensional-printing. J. Dyn. Syst. Meas. Control 142:031005
    [Google Scholar]
  53. 53. 
    Koga S, Krstic M, Beaman J. 2020. Laser sintering control for metal additive manufacturing by PDE backstepping. IEEE Trans. Control Syst. Technol. 28:1928–39
    [Google Scholar]
  54. 54. 
    Koga S, Krstic M. 2020. Arctic sea ice state estimation from thermodynamic PDE model. Automatica 112:108713
    [Google Scholar]
  55. 55. 
    Koga S, Camacho-Solorio L, Krstic M. 2021. State estimation for lithium-ion batteries with phase transition materials via boundary observers. J. Dyn. Syst. Meas. Control 143:041004
    [Google Scholar]
  56. 56. 
    Koga S, Makihata M, Chen R, Krstic M, Pisano AP 2021. Energy storage in paraffin: a PDE backstepping experiment. IEEE Trans. Control Syst. Technol. 29:1490–502
    [Google Scholar]
  57. 57. 
    Krstic M, Koga S. 2020. Materials Phase Change PDE Control and Estimation: From Additive Manufacturing to Polar Ice Cham, Switz: Birkhaüser
    [Google Scholar]
  58. 58. 
    Gupta SC. 2017. The Classical Stefan Problem: Basic Concepts, Modelling and Analysis with Quasi-Analytical Solutions and Methods Amsterdam: Elsevier
    [Google Scholar]
  59. 59. 
    Krstic M, Kokotovic PV, Kanellakopoulos I. 1995. Nonlinear and Adaptive Control Design New York: Wiley & Sons
    [Google Scholar]
  60. 60. 
    Smyshlyaev A, Krstic M. 2004. Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations. IEEE Trans. Autom. Control 49:2185–202
    [Google Scholar]
  61. 61. 
    Smyshlyaev A, Krstic M. 2005. On control design for PDEs with space-dependent diffusivity or time-dependent reactivity. Automatica 41:1601–8
    [Google Scholar]
  62. 62. 
    Krstic M, Smyshlyaev A. 2008. Boundary Control of PDEs: A Course on Backstepping Designs. Philadelphia: Soc. Ind. Appl. Math.
    [Google Scholar]
  63. 63. 
    Krstic M, Smyshlyaev A. 2008. Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays. Syst. Control Lett. 57:750–58
    [Google Scholar]
  64. 64. 
    Anfinsen H, Aamo OM. 2019. Adaptive Control of Hyperbolic PDEs Cham, Switz: Springer
    [Google Scholar]
  65. 65. 
    Krstic M. 2009. Delay Compensation for Nonlinear, Adaptive, and PDE Systems Basel, Switz: Birkhäuser
    [Google Scholar]
  66. 66. 
    Bekiaris-Liberis N, Krstic M. 2013. Nonlinear Control Under Nonconstant Delays. Philadelphia: Soc. Ind. Appl. Math.
    [Google Scholar]
  67. 67. 
    Karafyllis I, Krstic M. 2017. Predictor Feedback for Delay Systems: Implementations and Approximations Cham, Switz: Birkhaüser
    [Google Scholar]
  68. 68. 
    Zhu Y, Krstic M. 2020. Delay-Adaptive Linear Control Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  69. 69. 
    Krstic M, Smyshlyaev A. 2008. Adaptive boundary control for unstable parabolic PDEs—part I: Lyapunov design. IEEE Trans. Autom. Control 53:1575–91
    [Google Scholar]
  70. 70. 
    Smyshlyaev A, Krstic M. 2007. Adaptive boundary control for unstable parabolic PDEs—part II: estimation-based designs. Automatica 43:1543–56
    [Google Scholar]
  71. 71. 
    Smyshlyaev A, Krstic M. 2007. Adaptive boundary control for unstable parabolic PDEs—part III: output feedback examples with swapping identifiers. Automatica 43:1557–64
    [Google Scholar]
  72. 72. 
    Sagert C, Di Meglio F, Krstic M, Rouchon P 2013. Backstepping and flatness approaches for stabilization of the stick-slip phenomenon for drilling. IFAC Proc. Vol. 46:2779–84
    [Google Scholar]
  73. 73. 
    Hasan A, Aamo OM, Krstic M. 2016. Boundary observer design for hyperbolic PDE–ODE cascade systems. Automatica 68:75–86
    [Google Scholar]
  74. 74. 
    Frihauf P, Krstic M. 2010. Leader-enabled deployment onto planar curves: a PDE-based approach. IEEE Trans. Autom. Control 56:1791–806
    [Google Scholar]
  75. 75. 
    Qi J, Vazquez R, Krstic M. 2014. Multi-agent deployment in 3-D via PDE control. IEEE Trans. Autom. Control 60:891–906
    [Google Scholar]
  76. 76. 
    Freudenthaler G, Meurer T. 2020. PDE-based multi-agent formation control using flatness and backstepping: analysis, design and robot experiments. Automatica 115:108897
    [Google Scholar]
  77. 77. 
    Vazquez R, Krstic M. 2008. Control of Turbulent and Magnetohydrodynamic Channel Flows: Boundary Stabilization and State Estimation Boston: Birkhaüser
    [Google Scholar]
  78. 78. 
    de Andrade GA, Vazquez R, Pagano DJ. 2020. Backstepping-based estimation of thermoacoustic oscillations in a Rijke tube with experimental validation. IEEE Trans. Autom. Control 65:5336–43
    [Google Scholar]
  79. 79. 
    Yu H, Diagne M, Zhang L, Krstic M. 2021. Bilateral boundary control of moving shockwave in LWR model of congested traffic. IEEE Trans. Autom. Control 66:1429–36
    [Google Scholar]
  80. 80. 
    Yu H, Gan Q, Bayen A, Krstic M. 2021. PDE traffic observer validated on freeway data. IEEE Trans. Control Syst. Technol. 29:1048–60
    [Google Scholar]
  81. 81. 
    Yu H, Krstic M 2019. Traffic congestion control for Aw–Rascle–Zhang model. Automatica 100:38–51
    [Google Scholar]
  82. 82. 
    Moura SJ, Chaturvedi NA, Krstic M. 2014. Adaptive partial differential equation observer for battery state-of-charge/state-of-health estimation via an electrochemical model. J. Dyn. Syst. Meas. Control 136:011015
    [Google Scholar]
  83. 83. 
    Moura SJ, Argomedo FB, Klein R, Mirtabatabaei A, Krstic M 2016. Battery state estimation for a single particle model with electrolyte dynamics. IEEE Trans. Control Syst. Technol. 25:453–68
    [Google Scholar]
  84. 84. 
    Wang J, Koga S, Pi Y, Krstic M. 2018. Axial vibration suppression in a partial differential equation model of ascending mining cable elevator. J. Dyn. Syst. Meas. Control 140:111003
    [Google Scholar]
  85. 85. 
    Wang J, Pi Y, Krstic M. 2018. Balancing and suppression of oscillations of tension and cage in dual-cable mining elevators. Automatica 98:223–38
    [Google Scholar]
  86. 86. 
    Krstic M. 2009. Compensating actuator and sensor dynamics governed by diffusion PDEs. Syst. Control Lett. 58:372–77
    [Google Scholar]
  87. 87. 
    Susto GA, Krstic M. 2010. Control of PDE–ODE cascades with Neumann interconnections. J. Franklin Inst. 347:284–314
    [Google Scholar]
  88. 88. 
    Tang S, Xie C. 2011. State and output feedback boundary control for a coupled PDE–ODE system. Syst. Control Lett. 60:540–45
    [Google Scholar]
  89. 89. 
    Izadi M, Dubljevic S. 2015. Backstepping output-feedback control of moving boundary parabolic PDEs. Eur. J. Control 21:27–35
    [Google Scholar]
  90. 90. 
    Cai X, Krstic M. 2015. Nonlinear control under wave actuator dynamics with time-and state-dependent moving boundary. Int. J. Robust Nonlinear Control 25:222–51
    [Google Scholar]
  91. 91. 
    Krstic M. 2009. Input delay compensation for forward complete and strict-feedforward nonlinear systems. IEEE Trans. Autom. Control 55:287–303
    [Google Scholar]
  92. 92. 
    Bekiaris-Liberis N, Krstic M. 2014. Compensation of wave actuator dynamics for nonlinear systems. IEEE Trans. Autom. Control 59:1555–70
    [Google Scholar]
  93. 93. 
    Bekiaris-Liberis N, Krstic M. 2012. Compensation of state-dependent input delay for nonlinear systems. IEEE Trans. Autom. Control 58:275–89
    [Google Scholar]
  94. 94. 
    Diagne M, Bekiaris-Liberis N, Otto A, Krstic M 2016. Control of transport PDE/nonlinear ODE cascades with state-dependent propagation speed. 2016 IEEE 55th Conference on Decision and Control3125–30 Piscataway, NJ: IEEE
    [Google Scholar]
  95. 95. 
    Drotman D, Diagne M, Bitmead R, Krstic M. 2016. Control-oriented energy-based modeling of a screw extruder used for 3D printing. Proceedings of the ASME 2016 Dynamic Systems and Control Conference, Vol. 2,: pap. V002T21A002 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  96. 96. 
    Li CH. 2001. Modelling extrusion cooking. Math. Comput. Model. 33:553–63
    [Google Scholar]
  97. 97. 
    Chaturvedi NA, Klein R, Christensen J, Ahmed J, Kojic A 2010. Algorithms for advanced battery-management systems. IEEE Control Syst. Mag. 30:349–68
    [Google Scholar]
  98. 98. 
    Perez H, Shahmohammadhamedani N, Moura S. 2015. Enhanced performance of Li-ion batteries via modified reference governors and electrochemical models. IEEE/ASME Trans. Mechatron. 20:1511–20
    [Google Scholar]
  99. 99. 
    Di Domenico D, Stefanopoulou A, Fiengo G 2010. Lithium-ion battery state of charge and critical surface charge estimation using an electrochemical model-based extended Kalman filter. J. Dyn. Syst. Meas. Control 132:061302
    [Google Scholar]
  100. 100. 
    Tang SX, Camacho-Solorio L, Wang Y, Krstic M 2017. State-of-charge estimation from a thermal–electrochemical model of lithium-ion batteries. Automatica 83:206–19
    [Google Scholar]
  101. 101. 
    Srinivasan V, Newman J. 2004. Discharge model for the lithium iron-phosphate electrode. J. Electrochem. Soc. 151:A1517
    [Google Scholar]
  102. 102. 
    Zhang Q, White RE. 2007. Moving boundary model for the discharge of a LiCoO2 electrode. J. Electrochem. Soc. 154:A587
    [Google Scholar]
  103. 103. 
    Khandelwal A, Hariharan KS, Gambhire P, Kolake SM, Yeo T, Doo S. 2015. Thermally coupled moving boundary model for charge–discharge of LiFePO4 /C cells. J. Power Sources 279:180–96
    [Google Scholar]
  104. 104. 
    Caldwell J, Kwan Y 2004. Numerical methods for one-dimensional Stefan problems. Commun. Numer. Methods Eng. 20:535–45
    [Google Scholar]
  105. 105. 
    Vazquez R, Krstic M. 2016. Explicit output-feedback boundary control of reaction-diffusion PDEs on arbitrary-dimensional balls. ESAIM Control Optim. Calc. Var. 22:1078–96
    [Google Scholar]
  106. 106. 
    Camacho-Solorio L, Moura S, Krstic M 2018. Robustness of boundary observers for radial diffusion equations to parameter uncertainty. 2018 American Control Conference3484–89 Piscataway, NJ: IEEE
    [Google Scholar]
  107. 107. 
    Fantoni I, Lozano R, Spong MW. 2000. Energy based control of the Pendubot. IEEE Trans. Autom. Control 45:725–29
    [Google Scholar]
  108. 108. 
    Hatanaka T, Chopra N, Fujita M, Spong MW. 2015. Passivity-Based Control and Estimation in Networked Robotics Cham, Switz: Springer
    [Google Scholar]
  109. 109. 
    Cotteleer M, Joyce J. 2014. 3D opportunity: additive manufacturing paths to performance, innovation, and growth. Deloitte Rev 14:5–19
    [Google Scholar]
  110. 110. 
    Kolossov S, Boillat E, Glardon R, Fischer P, Locher M. 2004. 3D Fe simulation for temperature evolution in the selective laser sintering process. Int. J. Mach. Tools Manuf. 44:117–23
    [Google Scholar]
  111. 111. 
    Rostami AA, Raisi A. 1997. Temperature distribution and melt pool size in a semi-infinite body due to a moving laser heat source. Numer. Heat Transf. A 31:783–96
    [Google Scholar]
  112. 112. 
    Ahn S, Murphy J, Ramos J, Beaman J. 2001. Physical modeling for dynamic control of melting process in direct-SLS. Proceedings of the Solid Freeform Fabrication Symposium468–78 Austin: Univ. Tex. Austin
    [Google Scholar]
  113. 113. 
    Chung H, Das S 2004. Numerical modeling of scanning laser-induced melting, vaporization and resolidification in metals subjected to step heat flux input. Int. J. Heat Mass Transf. 47:4153–64
    [Google Scholar]
  114. 114. 
    Dai K, Shaw L. 2005. Finite element analysis of the effect of volume shrinkage during laser densification. Acta Mater 53:4743–54
    [Google Scholar]
  115. 115. 
    Zeng K, Pal D, Stucker B. 2012. A review of thermal analysis methods in laser sintering and selective laser melting. Proceedings of the Solid Freeform Fabrication Symposium796–814 Austin: Univ. Tex. Austin
    [Google Scholar]
  116. 116. 
    Zhang L, Phillips T, Mok A, Moser D, Beaman J. 2018. Automatic laser control system for selective laser sintering. IEEE Trans. Ind. Inform. 15:2177–85
    [Google Scholar]
  117. 117. 
    Wang D, Chen X 2018. A multirate fractional-order repetitive control for laser-based additive manufacturing. Control Eng. Pract. 77:41–51
    [Google Scholar]
  118. 118. 
    Wang D, Jiang T, Chen X. 2019. Control-oriented modeling and repetitive control in in-layer and cross-layer thermal interactions in selective laser sintering. Proceedings of the ASME 2019 Dynamic Systems and Control Conference 2 pap. V002T27A001 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  119. 119. 
    Cao X, Ayalew B. 2016. Partial differential equation-based multivariable control input optimization for laser-aided powder deposition processes. J. Manuf. Sci. Eng. 138:031001
    [Google Scholar]
  120. 120. 
    Karafyllis I, Krstic M. 2019. Input-to-State Stability for PDEs Cham, Switz: Springer
    [Google Scholar]
  121. 121. 
    Koga S, Karafyllis I, Krstic M 2018. Input-to-state stability for the control of Stefan problem with respect to heat loss at the interface. 2018 American Control Conference1740–45 Piscataway, NJ: IEEE
    [Google Scholar]
  122. 122. 
    Bresch-Pietri D, Krstic M. 2015. Adaptive compensation of diffusion-advection actuator dynamics using boundary measurements. 2015 54th IEEE Conference on Decision and Control1224–29 Piscataway, NJ: IEEE
    [Google Scholar]
  123. 123. 
    Smyshlyaev A, Krstic M. 2010. Adaptive Control of Parabolic PDEs Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  124. 124. 
    Karafyllis I, Krstic M, Chrysafi K. 2019. Adaptive boundary control of constant-parameter reaction–diffusion PDEs using regulation-triggered finite-time identification. Automatica 103:166–79
    [Google Scholar]
  125. 125. 
    Steeves D, Krstic M, Vazquez R. 2019. Prescribed-time H1 -stabilization of reaction-diffusion equations by means of output feedback. 2019 18th European Control Conference1932–37 Piscataway, NJ: IEEE
    [Google Scholar]
  126. 126. 
    Steeves D, Krstic M, Vazquez R. 2020. Prescribed-time estimation and output regulation of the linearized Schrödinger equation by backstepping. Eur. J. Control 55:3–13
    [Google Scholar]
  127. 127. 
    Buisson-Fenet M, Koga S, Krstic M 2018. Control of piston position in inviscid gas by bilateral boundary actuation. 2018 IEEE Conference on Decision and Control5622–27 Piscataway, NJ: IEEE
    [Google Scholar]
  128. 128. 
    Chen S, Vazquez R, Krstic M. 2019. Folding backstepping approach to parabolic PDE bilateral boundary control. IFAC-PapersOnLine 52:276–81
    [Google Scholar]
  129. 129. 
    Ahmed-Ali T, Karafyllis I, Giri F, Krstic M, Lamnabhi-Lagarrigue F 2017. Exponential stability analysis of sampled-data ODE–PDE systems and application to observer design. IEEE Trans. Autom. Control 62:3091–98
    [Google Scholar]
  130. 130. 
    Karafyllis I, Ahmed-Ali T, Giri F. 2019. Sampled-data observers for 1-D parabolic PDEs with non-local outputs. Syst. Control Lett. 133:104553
    [Google Scholar]
  131. 131. 
    Espitia N, Karafyllis I, Krstic M 2019. Event-triggered boundary control of constant-parameter reaction-diffusion PDEs: a small-gain approach. arXiv:1909.10472 [eess.SY]
  132. 132. 
    Basturk HI, Krstic M. 2015. Adaptive sinusoidal disturbance cancellation for unknown LTI systems despite input delay. Automatica 58:131–38
    [Google Scholar]
  133. 133. 
    Wang J, Tang SX, Pi Y, Krstic M. 2018. Exponential regulation of the anti-collocatedly disturbed cage in a wave PDE-modeled ascending cable elevator. Automatica 95:122–36
    [Google Scholar]
  134. 134. 
    Oliveira TR, Krstic M, Tsubakino D. 2016. Extremum seeking for static maps with delays. IEEE Trans. Autom. Control 62:1911–26
    [Google Scholar]
  135. 135. 
    Feiling J, Koga S, Krstic M, Oliveira TR 2018. Gradient extremum seeking for static maps with actuation dynamics governed by diffusion PDEs. Automatica 95:197–206
    [Google Scholar]
  136. 136. 
    Friedman A, Reitich F. 1999. Analysis of a mathematical model for the growth of tumors. J. Math. Biol. 38:262–84
    [Google Scholar]
  137. 137. 
    Cui S, Friedman A. 2000. Analysis of a mathematical model of the effect of inhibitors on the growth of tumors. Math. Biosci. 164:103–37
    [Google Scholar]
  138. 138. 
    Hahnfeldt P, Panigrahy D, Folkman J, Hlatky L 1999. Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res 59:4770–75
    [Google Scholar]
  139. 139. 
    Diehl S, Henningsson E, Heyden A 2016. Efficient simulations of tubulin-driven axonal growth. J. Comput. Neurosci. 41:45–63
    [Google Scholar]
  140. 140. 
    Rabin Y, Stahovich TF. 2003. Cryoheater as a means of cryosurgery control. Phys. Med. Biol. 48:619–32
    [Google Scholar]
  141. 141. 
    Kumar A, Kumar S, Katiyar V, Telles S 2017. Phase change heat transfer during cryosurgery of lung cancer using hyperbolic heat conduction model. Comput. Biol. Med. 84:20–29
    [Google Scholar]
  142. 142. 
    Wang H, Wang F, Xu K 2020. Modeling Information Diffusion in Online Social Networks with Partial Differential Equations Cham, Switz: Springer
    [Google Scholar]
  143. 143. 
    Chen X, Chadam J, Jiang L, Zheng W. 2008. Convexity of the exercise boundary of the American put option on a zero dividend asset. Math. Finance 18:185–97
    [Google Scholar]
/content/journals/10.1146/annurev-control-042920-014825
Loading
/content/journals/10.1146/annurev-control-042920-014825
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error