1932

Abstract

This article is an historical overview of control theory applied to robotic manipulators, with an emphasis on the early fundamental theoretical foundations of robot control. It discusses properties of robot dynamics that enable application of advanced control methods followed by robust and adaptive control of manipulators. It also discusses nonlinear control of underactuated robots and teleoperators.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-042920-094829
2022-05-03
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/control/5/1/annurev-control-042920-094829.html?itemId=/content/journals/10.1146/annurev-control-042920-094829&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Simons G. 1992. Robots: The Quest for Living Machines London: Cassell Villiers
    [Google Scholar]
  2. 2. 
    Brady M, Hollerbach JM, Johnson TL, Lozano-Pèrez T, Mason MT 1982. Robot Motion: Planning and Control Cambridge, MA: MIT Press
    [Google Scholar]
  3. 3. 
    Spong MW, Lewis FL, Abdallah CT. 1992. Robot Control: Dynamics, Motion Planning, and Analysis Piscataway, NJ: IEEE
    [Google Scholar]
  4. 4. 
    Canudas de Wit C, Siciliano B, Bastin G 1996. Theory of Robot Control Berlin: Springer
    [Google Scholar]
  5. 5. 
    Chung W, Fu LC, Hsu SH 2008. Motion control. Springer Handbook of Robotics B Siciliano, O Khatib 133–59 Berlin: Springer
    [Google Scholar]
  6. 6. 
    Ortega R, Loria A, Nicklasson P, Sira-Ramirez H 1998. Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical, and Electromechanical Applications London: Springer
    [Google Scholar]
  7. 7. 
    Hogan N. 2022. Contact and physical manipulation. Annu. Rev. Control Robot. Auton. Syst. 5:179–203
    [Google Scholar]
  8. 8. 
    Mason MT. 2018. Toward robotic manipulation. Annu. Rev. Control Robot. Auton. Syst. 1:1–28
    [Google Scholar]
  9. 9. 
    Spong MW. 2018. The centrality of control in robotics Hendrik Bode Lecture Miami, FL: Dec. 18. http://ieeecss.org/presentation/bode-lecture/centrality-control-theory-robotics/
    [Google Scholar]
  10. 10. 
    Dydek Z, Annaswamy A, Lavretsky E 2010. Adaptive control and the NASA X-15-3 flight revisited. IEEE Control Syst. Mag. 30:332–48
    [Google Scholar]
  11. 11. 
    Stein G. 2003. Respect the unstable. IEEE Control Syst. Mag. 23:412–25
    [Google Scholar]
  12. 12. 
    Moravec H. 1998. The Future of Robot and Human Intelligence Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  13. 13. 
    Mason MT. 2012. Creation myths: the beginnings of robotics research. IEEE Robot. Autom. Mag. 19:272–77
    [Google Scholar]
  14. 14. 
    Mindell DA. 2015. Our Robots, Ourselves: Robotics and the Myths of Autonomy New York: Viking
    [Google Scholar]
  15. 15. 
    van der Schaft A. 2020. Port-Hamiltonian modeling for control. Annu. Rev. Control Robot. Auton. Syst. 3:393–416
    [Google Scholar]
  16. 16. 
    Hatanaka T, Chopra N, Fujita M, Spong MW. 2015. Passivity-Based Control and Estimation in Networked Robotics Cham, Switz: Springer
    [Google Scholar]
  17. 17. 
    Boothby WM. 1975. An Introduction to Differentiable Manifolds and Riemannian Geometry New York: Academic
    [Google Scholar]
  18. 18. 
    Spong MW, Hutchinson S, Vidyasagar M. 2020. Robot Modeling and Control New York: Wiley & Sons, 2nd ed..
    [Google Scholar]
  19. 19. 
    Spong MW. 1992. Remarks on robot dynamics: canonical transformations and Riemannian geometry. Proceedings of the 1992 IEEE International Conference on Robotics and Automation 1554–59 Piscataway, NJ: IEEE
    [Google Scholar]
  20. 20. 
    Slotine JJE, Li W. 1987. On the adaptive control of robot manipulators. Int. J. Robot. Res. 6:49–59
    [Google Scholar]
  21. 21. 
    Ortega R, Spong MW. 1989. Adaptive control of robot manipulators: a tutorial. Automatica 25:877–88
    [Google Scholar]
  22. 22. 
    Ghorbel F, Srinivasan B, Spong MW. 1998. On the uniform boundedness of the inertia matrix of serial robot manipulators. J. Robot. Syst. 15:17–28
    [Google Scholar]
  23. 23. 
    Grimm WM. 1990. Robot non-linearity bounds evaluation techiques for robust control. Int. J. Adapt. Control Signal Process. 4:501–22
    [Google Scholar]
  24. 24. 
    Romero JG, Ortega R, Sarras I. 2015. A globally exponentially stable tracking controller for mechanical systems using position feedback. IEEE Trans. Autom. Control 60:818–23
    [Google Scholar]
  25. 25. 
    Gautier M, Khalil W. 1988. A direct determination of minimum inertial parameters of robots. Proceedings of the 1988 IEEE International Conference on Robotics and Automation 31682–87 Piscataway, NJ: IEEE
    [Google Scholar]
  26. 26. 
    Olsen H, Bekey G. 1986. Identification of robot dynamics. Proceedings of the 1986 IEEE International Conference on Robotics and Automation 31004–10 Piscataway, NJ: IEEE
    [Google Scholar]
  27. 27. 
    An CH, Atkeson CG, Hollerbach JM. 1985. Estimation of inertial parameters of rigid body links of manipulators. 1985 24th IEEE Conference on Decision and Control990–95 Piscataway, NJ: IEEE
    [Google Scholar]
  28. 28. 
    Gautier M, Khalil W. 1988. On the identification of the inertial parameters of robots. Proceedings of the 27th IEEE Conference on Decision and Control 32264–69 Piscataway, NJ: IEEE
    [Google Scholar]
  29. 29. 
    Lee C. 1982. Robot arm kinematics, dynamics, and control. Computer 15:1262–80
    [Google Scholar]
  30. 30. 
    Luh JYS. 1983. Conventional controller design for industrial robots—a tutorial. IEEE Trans. Syst. Man Cybernet. SMC-13:298–316
    [Google Scholar]
  31. 31. 
    Whitney D. 1969. Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man-Mach. Syst. 10:47–53
    [Google Scholar]
  32. 32. 
    Luh J, Walker M, Paul R 1980. Resolved-acceleration control of mechanical manipulators. IEEE Trans. Autom. Control 25:468–74
    [Google Scholar]
  33. 33. 
    Takegaki M, Arimoto S. 1981. A new feedback method for dynamic control of manipulators. J. Dyn. Syst. Meas. Control 102:119–25
    [Google Scholar]
  34. 34. 
    Arimoto S, Miyazaki F 1983. Stability and robustness of PID feedback control for robot manipulators of sensory capability. Robotics Research: The First International Symposium M Brady, RP Paul 783–99 Cambridge, MA: MIT Press
    [Google Scholar]
  35. 35. 
    Tomei P. 1991. Adaptive PD controller for robot manipulators. IEEE Trans. Robot. Autom. 7:565–70
    [Google Scholar]
  36. 36. 
    Kelly R, Santibáñez V, Loria A. 2005. Control of Robot Manipulators in Joint Space Berlin: Springer
    [Google Scholar]
  37. 37. 
    Markiewicz B. 1973. Analysis of the computed torque drive method and comparison with conventional position servo for a computer-controlled manipulator. Tech. Rep. TM 33-601 Jet Propuls. Lab. Pasadena, CA:
    [Google Scholar]
  38. 38. 
    Paul R. 1972. Modeling, trajectory calculation, and servoing of a computer controlled arm Tech. Rep. AIM 177 Stanford Artificial Intelligence Laboratory Stanford, CA:
    [Google Scholar]
  39. 39. 
    An CG, Atkeson CG, Hollerbach JM. 1986. Experimental determination of the effect of feedforward control on trajectory tracking errors. Proceedings of the 1986 IEEE International Conference on Robotics and Automation55–60 Piscataway, NJ: IEEE
    [Google Scholar]
  40. 40. 
    Kreutz K. 1989. On manipulator control by exact linearization. IEEE Trans. Autom. Control 34:763–67
    [Google Scholar]
  41. 41. 
    Freund E. 1982. Fast nonlinear control with arbitrary pole-placement for industrial robots and manipulators. Int. J. Robot. Res. 1:65–78
    [Google Scholar]
  42. 42. 
    Khatib O. 1983. Dynamic control of manipulators in operational space. Proceedings of the 6th CISM-IFToMM World Congress on Theory of Machines and Mechanisms1128–31 New York: Wiley & Sons
    [Google Scholar]
  43. 43. 
    Tarn TJ, Bejczy AK, Isidori A, Chen Y 1984. Nonlinear feedback in robot arm control. The 23rd IEEE Conference on Decision and Control736–51 Piscataway, NJ: IEEE
    [Google Scholar]
  44. 44. 
    Grizzle J, Kokotovic P. 1988. Feedback linearization of sampled-data systems. IEEE Trans. Autom. Control 33:857–59
    [Google Scholar]
  45. 45. 
    Neuman CP, Tourassis VD. 1985. Discrete dynamic robot models. IEEE Trans. Syst. Man Cybernet. SMC-15:193–204
    [Google Scholar]
  46. 46. 
    Tourassis VD, Neuman CP. 1985. Inverse dynamics applications of discrete robot models. IEEE Trans. Syst. Man Cybernet. SMC-15:798–803
    [Google Scholar]
  47. 47. 
    Egeland O. 1986. On the robustness of the computed torque technique in manipulator control. Proceedings of the 1986 IEEE International Conference on Robotics and Automation 31203–8 Piscataway, NJ: IEEE
    [Google Scholar]
  48. 48. 
    Anderson RJ. 1989. Passive computed torque algorithms for robots. Proceedings of the 28th IEEE Conference on Decision and Control 21638–44 Piscataway, NJ: IEEE
    [Google Scholar]
  49. 49. 
    Walters R, Bayoumi M. 1982. Application of a self-tuning pole-placement regulator to an industrial manipulator. 1982 21st IEEE Conference on Decision and Control323–29 Piscataway, NJ: IEEE
    [Google Scholar]
  50. 50. 
    Dubowski S, DesForges D. 1979. The application of model-reference adaptive control to robotic manipulators. ASME 101:193–200
    [Google Scholar]
  51. 51. 
    Neuman C, Stone HW. 1983. MRAC control of robotic manipulators. Proceedings of the Third Yale Workshop on Applications of Adaptive System Theory203–10 New Haven, CT: Yale Univ.
    [Google Scholar]
  52. 52. 
    Balestrino A, DeMaria G, Sciavicco L. 1983. An adaptive model following control system for robotic manipulators. J. Dyn. Syst. Meas. Control 105:14–151
    [Google Scholar]
  53. 53. 
    Abdallah C, Dorato P, Jamshidi M. 1990. Survey of the robust control of robots. 1990 American Control Conference718–21 Piscataway, NJ: IEEE
    [Google Scholar]
  54. 54. 
    Hsia T. 1986. Adaptive control of robot manipulators - a review. Proceedings of the 1986 IEEE International Conference on Robotics and Automation 3183–89 Piscataway, NJ: IEEE
    [Google Scholar]
  55. 55. 
    Spong MW, Vidyasagar M. 1987. Robust linear compensator design for nonlinear robotic control. IEEE J. Robot. Autom. 3:345–51
    [Google Scholar]
  56. 56. 
    Khalil H. 1996. Nonlinear Systems Englewood Cliffs, NJ: Prentice Hall, 2nd ed..
    [Google Scholar]
  57. 57. 
    Spong MW, Thorp JS, Kleinwaks JM. 1984. The control of robot manipulators with bounded input: part II: robustness and disturbance rejection. The 23rd IEEE Conference on Decision and Control1047–52 Piscataway, NJ: IEEE
    [Google Scholar]
  58. 58. 
    Spong MW 1986. Robust stabilization for a class of nonlinear systems. Theory and Applications of Nonlinear Control Systems C Byrnes, A Lindquist 155–66 Amsterdam: North-Holland
    [Google Scholar]
  59. 59. 
    Young KD. 1978. Controller design for a manipulator using theory of variable structure systems. IEEE Trans. Syst. Man Cybernet. 8:101–9
    [Google Scholar]
  60. 60. 
    Slotine JJE, Sastry SS. 1983. Tracking control of non-linear systems using sliding surfaces with application to robot manipulators. 1983 American Control Conference132–35 Piscataway, NJ: IEEE
    [Google Scholar]
  61. 61. 
    Slotine JJE. 1984. Robustness issues in the control of high performance robots. The 23rd IEEE Conference on Decision and Control1353–58 Piscataway, NJ: IEEE
    [Google Scholar]
  62. 62. 
    Slotine JJE. 1985. The robust control of robot manipulators. Int. J. Robot. Res. 4:49–64
    [Google Scholar]
  63. 63. 
    Harashima F, Xu J, Hashimoto H. 1987. Tracking control of robot manipulators using sliding mode. IEEE Trans. Power Electron. PE-2:169–76
    [Google Scholar]
  64. 64. 
    Stepanenko Y, Su CY. 1992. Regressor based sliding mode control of robotic manipulators. Proceedings of the 31st IEEE Conference on Decision and Control 21410–16 Piscataway, NJ: IEEE
    [Google Scholar]
  65. 65. 
    Su CY, Stepanenko Y. 1993. On using nonlinear sliding manifolds in robotic control. Proceedings of 32nd IEEE Conference on Decision and Control 32121–24 Piscataway, NJ: IEEE
    [Google Scholar]
  66. 66. 
    Fernandez B, Bae GW, Everett L. 1990. Control of robot manipulator through robust sliding linearization. Proceedings of the 1990 IEEE International Conference on Robotics and Automation 1124–29 Piscataway, NJ: IEEE
    [Google Scholar]
  67. 67. 
    Morgan R, Ozguner U 1985. A decentralized variable structure control algorithm for robotic manipulators. IEEE J. Robot. Autom. 1:57–65
    [Google Scholar]
  68. 68. 
    Gao W, Hung J. 1993. Variable structure control of nonlinear systems: a new approach. IEEE Trans. Ind. Electron. 40:45–55
    [Google Scholar]
  69. 69. 
    Zhihong M, Paplinski A, Wu H 1994. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans. Autom. Control 39:2464–69
    [Google Scholar]
  70. 70. 
    Spong MW, Vidyasagar M. 1985. Robust nonlinear control of robot manipulators. 1985 24th IEEE Conference on Decision and Control1767–72 Piscataway, NJ: IEEE
    [Google Scholar]
  71. 71. 
    Vidyasagar M. 1986. Optimal rejection of persistent bounded disturbances. IEEE Trans. Autom. Control 31:527–34
    [Google Scholar]
  72. 72. 
    Becker N, Grimm WM. 1988. On l2 and l∞-stability approaches for the robust control of robot manipulators. IEEE Trans. Autom. Control 33:118–22
    [Google Scholar]
  73. 73. 
    Wheeler G, Su CY, Stepanenko Y. 1996. A sliding mode controller with improved adaptation laws for the upper bounds on the norm of uncertainties. Proceedings of the 1996 IEEE International Workshop on Variable Structure Systems154–59 Piscataway, NJ: IEEE
    [Google Scholar]
  74. 74. 
    Samson C. 1983. Robust non linear control of robotic manipulators. The 22nd IEEE Conference on Decision and Control1211–16 Piscataway, NJ: IEEE
    [Google Scholar]
  75. 75. 
    Grimm WM, Frank PM. 1989. Robust control of flexible-joint robot arms. Proceedings of the ICCON IEEE International Conference on Control and Applications43–48 Piscataway, NJ: IEEE
    [Google Scholar]
  76. 76. 
    Arimoto S. 1990. Robustness of learning control for robot manipulators. Proceedings of the 1990 IEEE International Conference on Robotics and Automation 31528–33 Piscataway, NJ: IEEE
    [Google Scholar]
  77. 77. 
    Dixon W, Zhang F, Dawson D, Behal A 1998. Global robust output feedback tracking control of robot manipulators. Proceedings of the 1998 IEEE International Conference on Control Applications 2897–901 Piscataway, NJ: IEEE
    [Google Scholar]
  78. 78. 
    Berghuis H, Nijmeijer H. 1994. Robust control of robots via linear estimated state feedback. IEEE Trans. Autom. Control 39:2159–62
    [Google Scholar]
  79. 79. 
    Tourassis VD, Neuman CP. 1985. Robust feedback control of an articulated robot: a case-study. 1985 24th IEEE Conference on Decision and Control1505–9 Piscataway, NJ: IEEE
    [Google Scholar]
  80. 80. 
    Ha IJ, Gilbert EG. 1985. Robust tracking in nonlinear systems and its applications to robotics. 1985 24th IEEE Conference on Decision and Control1009–17 Piscataway, NJ: IEEE
    [Google Scholar]
  81. 81. 
    Grimm WM. 1990. Robustness analysis of nonlinear decoupling for elastic-joint robots. IEEE Trans. Robot. Autom. 6:373–77
    [Google Scholar]
  82. 82. 
    Abdallah C, Dorato P, Jamshidi M. 1991. Survey of robust control for rigid robots. IEEE Control Syst. Mag. 11:224–30
    [Google Scholar]
  83. 83. 
    Craig J, Hsu P, Sastry S. 1986. Adaptive control of mechanical manipulators. Proceedings of the 1986 IEEE International Conference on Robotics and Automation 3190–95 Piscataway, NJ: IEEE
    [Google Scholar]
  84. 84. 
    Améstegui M, Ortega R, Ibarra J. 1987. Adaptive linearizing-decoupling robot control: a comparative study of different parameterizations. Proceedings of the 5th Yale Workshop on Applications of Adaptive Systems Theory219–24 New Haven, CT: Yale Univ.
    [Google Scholar]
  85. 85. 
    Middleton RH, Goodwin GC. 1988. Adaptive computed torque control for rigid link manipulators. Syst. Control Lett. 10:9–16
    [Google Scholar]
  86. 86. 
    Byrnes C, Isidori A, Willems J. 1991. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans. Autom. Control 36:1228–40
    [Google Scholar]
  87. 87. 
    Spong MW, Ortega R, Kelly R. 1990. Comments on “Adaptive Manipulator Control: A Case Study” by J. Slotine and W. Li. IEEE Trans. Autom. Control 35:761–62
    [Google Scholar]
  88. 88. 
    Marino R, Spong M. 1986. Nonlinear control techniques for flexible joint manipulators: a single link case study. Proceedings of the 1986 IEEE International Conference on Robotics and Automation 31030–36 Piscataway, NJ: IEEE
    [Google Scholar]
  89. 89. 
    Forrest-Barlach M, Babcock S. 1986. Inverse dynamics position control of a compliant manipulator. Proceedings of the 1986 IEEE International Conference on Robotics and Automation 3196–205 Piscataway, NJ: IEEE
    [Google Scholar]
  90. 90. 
    Liegeois A, Dombre E, Borrel P 1979. Learning and control for a compliant computer-controlled manipulator. 1979 18th IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes 21024–27 Piscataway, NJ: IEEE
    [Google Scholar]
  91. 91. 
    Liegeois A, Dombre E, Borrel P 1980. Learning and control for a compliant computer-controlled manipulator. IEEE Trans. Autom. Control 25:1097–102
    [Google Scholar]
  92. 92. 
    Ficola A, Marino R, Nicosia S. 1983. A singular perturbation approach to the dynamic control of elastic robots. Proceedings of the 21st Allerton Conference on Communication, Control, and Computing335–42 Urbana: Univ. Ill.
    [Google Scholar]
  93. 93. 
    Cesareo G, Marino R. 1984. On the controllability properties of elastic robots. Analysis and Optimization of Systems A Bensoussan, JL Lions 352–63 Berlin: Springer
    [Google Scholar]
  94. 94. 
    Sweet L, Good M. 1984. Re-definition of the robot motion control problem: effects of plant dynamics, drive system constraints, and user requirements. The 23rd IEEE Conference on Decision and Control724–32 Piscataway, NJ: IEEE
    [Google Scholar]
  95. 95. 
    Rivin E. 1984. Compliance breakdown for robotic structures. Proceedings of the 7th Symposium on Engineering Applications of Mechanics56–67 Toronto: Univ. Toronto
    [Google Scholar]
  96. 96. 
    Spong MW. 1987. Modeling and control of elastic joint robots. J. Dyn. Syst. Meas. Control 109:310–19
    [Google Scholar]
  97. 97. 
    De Luca A, Isidori A, Nicolo F 1985. Control of robot arm with elastic joints via nonlinear dynamic feedback. 1985 24th IEEE Conference on Decision and Control1671–79 Piscataway, NJ: IEEE
    [Google Scholar]
  98. 98. 
    De Luca A. 1988. Dynamic control of robots with joint elasticity. Proceedings of the 1988 IEEE International Conference on Robotics and Automation 1152–58 Piscataway, NJ: IEEE
    [Google Scholar]
  99. 99. 
    Khorasani K, Spong MW. 1985. Invariant manifolds and their application to robot manipulators with flexible joints. Proceedings of the 1985 IEEE International Conference on Robotics and Automation 2978–83 Piscataway, NJ: IEEE
    [Google Scholar]
  100. 100. 
    Spong MW, Khorasani K, Kokotovic P. 1987. An integral manifold approach to the feedback control of flexible joint robots. IEEE J. Robot. Autom. 3:291–300
    [Google Scholar]
  101. 101. 
    Albu-Schäffer A, Hirzinger G. 2001. Parameter identification and passivity based joint control for a 7 DOF torque controlled light weight robot. Proceedings of the 2001 IEEE International Conference on Robotics and Automation 32852–58 Piscataway, NJ: IEEE
    [Google Scholar]
  102. 102. 
    De Luca A, Lucibello P. 1998. A general algorithm for dynamic feedback linearization of robots with elastic joints. Proceedings of the 1998 IEEE International Conference on Robotics and Automation 1504–10 Piscataway, NJ: IEEE
    [Google Scholar]
  103. 103. 
    Ghorbel F, Hung JY, Spong MW 1989. Adaptive control of flexible-joint manipulators. IEEE Control Syst. Mag. 9:79–13
    [Google Scholar]
  104. 104. 
    Spong MW. 1994. Partial feedback linearization of underactuated mechanical systems. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems 1314–21 Piscataway, NJ: IEEE
    [Google Scholar]
  105. 105. 
    Ortega R, Spong MW, Gomez-Estern F, Blankenstein G. 2002. Stabilization of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47:1281–33
    [Google Scholar]
  106. 106. 
    Albu-Schäffer A, Ott C, Petit F 2012. Energy shaping control for a class of underactuated Euler-Lagrange systems. IFAC Proc. Vol. 45:22567–75
    [Google Scholar]
  107. 107. 
    Spong MW. 1996. Energy based control of a class of underactuated mechanical systems. IFAC Proc. Vol. 29:12828–32
    [Google Scholar]
  108. 108. 
    Reyhanoglu M, van der Schaft A, McClamroch N, Kolmanovsky I 1997. Dynamics and control of a class of underactuated mechanical systems. IEEE Trans. Autom. Control 44:1663–71
    [Google Scholar]
  109. 109. 
    Shiriaev AS, Kolesnichenko O. 2000. On passivity based control for partial stabilization of underactuated systems. 39th IEEE Conference on Decision and Control2174–79 Piscataway, NJ: IEEE
    [Google Scholar]
  110. 110. 
    De Luca A, Iannitti S, Mattone R, Oriolo G. 2002. Underactuated manipulators: control properties and techniques. Mach. Intell. Robot. Control 4:113–25
    [Google Scholar]
  111. 111. 
    Murray RM, Hauser J. 1991. A case study in approximate linearization: the Acrobot example Memo. UCB/ERL M91/46 Electron. Res. Lab., Univ. Calif. Berkeley:
    [Google Scholar]
  112. 112. 
    Spong MW. 1995. The swing up control problem for the acrobot. IEEE Control Syst. Mag. 15:149–55
    [Google Scholar]
  113. 113. 
    Oriolo G, Nakamura Y. 1991. Control of mechanical systems with second order nonholonomic constraints. Proceedings of the 30th IEEE Conference on Decision and Control 32398–403 Piscataway, NJ: IEEE
    [Google Scholar]
  114. 114. 
    Nicosia S, Tomei P. 1990. Robot control by using only joint position measurements. IEEE Trans. Autom. Control 35:1058–61
    [Google Scholar]
  115. 115. 
    Nicosia S, Tornambe A, Valigi P. 1990. Experimental validation of asymptotic observers for robotic manipulators. Proceedings of the IEEE International Conference on Robotics and Automation 21423–30 Piscataway, NJ: IEEE
    [Google Scholar]
  116. 116. 
    Berghuis H, Ortega R, Nijmeijer H. 1992. A robust adaptive controller for robot manipulators. Proceedings of the 1992 IEEE International Conference on Robotics and Automation 31876–81 Piscataway, NJ: IEEE
    [Google Scholar]
  117. 117. 
    Berghuis H, Lohnberg P, Nijmeijer H. 1991. Tracking control of robots using only position measurements. Proceedings of the 30th IEEE Conference on Decision and Control 11039–40 Piscataway, NJ: IEEE
    [Google Scholar]
  118. 118. 
    Berghuis H, Nijmeijer H. 1993. A passivity approach to controller-observer design for robots. IEEE Trans. Robot. Autom. 9:740–54
    [Google Scholar]
  119. 119. 
    Wen-Hong Z, Hui-Tang C. 1990. A global asymptotic stable variable structure algorithm using sliding mode observer. Proceedings of the 1990 IEEE International Conference on Robotics and Automation 1130–35 Piscataway, NJ: IEEE
    [Google Scholar]
  120. 120. 
    Tomei P. 1990. An observer for flexible joint robots. IEEE Trans. Autom. Control 35:739–43
    [Google Scholar]
  121. 121. 
    Kaneko K, Kondo S, Ohnishi K 1990. A motion control of flexible joint based on velocity estimation. IECON '90: 16th Annual Conference of IEEE Industrial Electronics Society 1279–84 Piscataway, NJ: IEEE
    [Google Scholar]
  122. 122. 
    Jankovic M. 1995. Observer based control for elastic joint robots. IEEE Trans. Robot. Autom. 11:618–23
    [Google Scholar]
  123. 123. 
    Nicosia S, Tomei P, Tornambe A. 1988. An approximate asymptotic observer for robots having elastic joints. 1988 International Conference on Control456–61 Piscataway, NJ: IEEE
    [Google Scholar]
  124. 124. 
    Bortoff SA, Hung JY, Spong MW 1989. A discrete-time observer for flexible-joint manipulators. Proceedings of the 28th IEEE Conference on Decision and Control 32078–82 Piscataway, NJ: IEEE
    [Google Scholar]
  125. 125. 
    Hashimoto M. 1989. Robot motion control based on joint torque sensing. Proceedings of the 1989 IEEE International Conference on Robotics and Automation 1256–61 Piscataway, NJ: IEEE
    [Google Scholar]
  126. 126. 
    Kosuge K, Takeuchi H, Furuta K. 1990. Motion control of a robot arm using joint torque sensors. IEEE Trans. Robot. Autom. 6:258–63
    [Google Scholar]
  127. 127. 
    Hirzinger G, Sporer N, Albu-Schäffer A, Hahnle M, Krenn R et al. 2002. DLR's torque-controlled light weight robot III-are we reaching the technological limits now?. Proceedings of the 2002 IEEE International Conference on Robotics and Automation 21710–16 Piscataway, NJ: IEEE
    [Google Scholar]
  128. 128. 
    Hirzinger G, Albu-Schäffer A, Hahnle M, Schaefer I, Sporer N. 2001. On a new generation of torque controlled light-weight robots. Proceedings of the 2001 IEEE International Conference on Robotics and Automation 43356–63 Piscataway, NJ: IEEE
    [Google Scholar]
  129. 129. 
    Fu K. 1971. Learning control systems and intelligent control systems: an intersection of artifical intelligence and automatic control. IEEE Trans. Autom. Control 16:70–72
    [Google Scholar]
  130. 130. 
    Uchiyama M. 1987. Formation of high-speed motion pattern of a mechanical arm by trial. Trans. SICE 14:706–12 In Japanese )
    [Google Scholar]
  131. 131. 
    Craig JJ. 1984. Adaptive control of manipulators through repeated trials. 1984 American Control Conference1566–73 Piscataway, NJ: IEEE
    [Google Scholar]
  132. 132. 
    Casalino G, Bartolini G. 1984. A learning procedure for the control of movements of robotic manipulators. Robotics and Automation '84: Proceedings of the IASTED International Symposium on Robotics and Automation MH Haza 108–11 Anaheim, CA: Acta
    [Google Scholar]
  133. 133. 
    Arimoto S, Kawamura S, Miyazaki F. 1984. Bettering operation of robots by learning. J. Robot. Syst. 1:123–40
    [Google Scholar]
  134. 134. 
    Bristow D, Tharayil M, Alleyne A. 2006. A survey of iterative learning control. IEEE Control Syst. Mag. 26:396–114
    [Google Scholar]
  135. 135. 
    Waltz M, Fu K. 1965. A heuristic approach to reinforcement learning control systems. IEEE Trans. Autom. Control 10:390–98
    [Google Scholar]
  136. 136. 
    Fu K. 1970. Learning control systems—review and outlook. IEEE Trans. Autom. Control 15:210–21
    [Google Scholar]
  137. 137. 
    Lima P, Saridis G. 1996. Learning optimal robotic tasks. IEEE Expert 11:238–45
    [Google Scholar]
  138. 138. 
    Aboaf E, Atkeson C, Reinkensmeyer D 1988. Task-level robot learning. Proceedings of the 1988 IEEE International Conference on Robotics and Automation 21309–10 Piscataway, NJ: IEEE
    [Google Scholar]
  139. 139. 
    Schaal S, Atkeson C, Vijayakumar S 2000. Real-time robot learning with locally weighted statistical learning. Proceedings of the 2000 IEEE International Conference on Robotics and Automation 1288–93 Piscataway, NJ: IEEE
    [Google Scholar]
  140. 140. 
    Li T, Geyer H, Atkeson CG, Rai A. 2019. Using deep reinforcement learning to learn high-level policies on the ATRIAS biped. Proceedings of the 2019 IEEE International Conference on Robotics and Automation263–69 Piscataway, NJ: IEEE
    [Google Scholar]
  141. 141. 
    Schaal S, Atkeson CG. 2010. Learning control in robotics. IEEE Robot. Autom. Mag. 17:220–29
    [Google Scholar]
  142. 142. 
    Atkeson C, Santamaria J. 1997. A comparison of direct and model-based reinforcement learning. Proceedings of the 1997 IEEE International Conference on Robotics and Automation 43557–64 Piscataway, NJ: IEEE
    [Google Scholar]
  143. 143. 
    Goertz R. 1952. Fundamentals of general-purpose remote manipulators. Nucleonics 10:36–42
    [Google Scholar]
  144. 144. 
    Goertz R. 1954. Mechanical master-slave manipulator. Nucleonics 12:45–46
    [Google Scholar]
  145. 145. 
    Hokayem PF, Spong MW. 2006. Bilateral teleoperation: an historical survey. Automatica 49:2035–578
    [Google Scholar]
  146. 146. 
    Whitney D. 1985. Historical perspective and state of the art in robot force control. Proceedings of the 1985 IEEE International Conference on Robotics and Automation 2262–68 Piscataway, NJ: IEEE
    [Google Scholar]
  147. 147. 
    Ferrell W, Sheridan T. 1967. Supervisory control of remote manipulators. IEEE Spectr 4:1081–88
    [Google Scholar]
  148. 148. 
    Sheridan T. 1986. Human supervisory control of robot systems. Proceedings of the 1986 IEEE International Conference on Robotics and Automation 3808–12 Piscataway, NJ: IEEE
    [Google Scholar]
  149. 149. 
    Buzan F, Sheridan T. 1989. A model-based predictive operator aid for telemanipulators with time delay. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics 1138–43 Piscataway, NJ: IEEE
    [Google Scholar]
  150. 150. 
    Hirzinger G, Heindl J, Landzettel K. 1989. Predictive and knowledge-based telerobotic control concepts. Proceedings of the 1989 International Conference on Robotics and Automation 31768–77 Piscataway, NJ: IEEE
    [Google Scholar]
  151. 151. 
    Bejczy A, Kim W, Venema S 1990. The phantom robot: predictive displays for teleoperation with time delay. Proceedings of the 1990 IEEE International Conference on Robotics and Automation 1546–51 Piscataway, NJ: IEEE
    [Google Scholar]
  152. 152. 
    Anderson RJ, Spong MW 1989. Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control AC-34:494–501
    [Google Scholar]
  153. 153. 
    Niemeyer G, Slotine JJE. 1991. Stable adaptive teleoperation. IEEE J. Ocean. Eng. 16:152–62
    [Google Scholar]
  154. 154. 
    Stramigioli S, van der Schaft A, Maschke B, Melchiorri C 2002. Geometric scattering in robotic telemanipulation. IEEE Trans. Robot. Autom. 18:588–96
    [Google Scholar]
  155. 155. 
    Lawrence D. 1992. Designing teleoperator architectures for transparency. Proceedings of the 1992 IEEE International Conference on Robotics and Automation 21406–11 Piscataway, NJ: IEEE
    [Google Scholar]
  156. 156. 
    Lawrence D. 1992. Stability and transparency in bilateral teleoperation. Proceedings of the 31st IEEE Conference on Decision and Control 32649–55 Piscataway, NJ: IEEE
    [Google Scholar]
  157. 157. 
    Yokokohji Y, Yoshikawa T. 1994. Bilateral control of master–slave manipulators for ideal kinesthetic coupling–formulation and experiment. IEEE Trans. Robot. Autom. 10:605–20
    [Google Scholar]
  158. 158. 
    Berestesky P, Chopra N, Spong MW 2004. Theory and experiments in bilateral teleoperation over the Internet. Proceedings of the 2004 IEEE International Conference on Control Applications 1456–63 Piscataway, NJ: IEEE
    [Google Scholar]
  159. 159. 
    Chopra N, Berestesky P, Spong MW. 2008. Bilateral teleoperation over unreliable communication networks. IEEE Trans. Control Syst. Technol. 16:304–13
    [Google Scholar]
  160. 160. 
    Berestesky P, Chopra N, Spong MW 2004. Discrete time passivity in bilateral teleoperation over the Internet. Proceedings of the 2004 IEEE International Conference on Robotics and Automation 54557–64 Piscataway, NJ: IEEE
    [Google Scholar]
  161. 161. 
    Niemeyer G, Slotine JJE. 1998. Towards force-reflecting teleoperation over the Internet. Proceedings of the 1998 IEEE International Conference on Robotics and Automation 31909–15 Piscataway, NJ: IEEE
    [Google Scholar]
  162. 162. 
    Brady K, Tarn TJ. 1998. Internet-based remote teleoperation. Proceedings of the 1998 IEEE International Conference on Robotics and Automation 165–70 Piscataway, NJ: IEEE
    [Google Scholar]
  163. 163. 
    Chopra N, Spong MW, Hirche S, Buss M 2003. Bilateral teleoperation over the Internet: the time varying delay problem. 2003 American Control Conference 1155–60 Piscataway, NJ: IEEE
    [Google Scholar]
  164. 164. 
    Yokokohji Y, Imaida T, Yoshikawa T. 1999. Bilateral teleoperation under time-varying communication delay. Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems 31854–59 Piscataway, NJ: IEEE
    [Google Scholar]
  165. 165. 
    Secchi C, Stramigioli S, Fantuzzi C 2003. Digital passive geometric telemanipulation. Proceedings of the 2003 IEEE International Conference on Robotics and Automation 33290–95 Piscataway, NJ: IEEE
    [Google Scholar]
  166. 166. 
    Secchi C, Stramigioli S, Fantuzzi C 2003. Dealing with unreliabilities in digital passive geometric telemanipulation. Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems 32823–28 Piscataway, NJ: IEEE
    [Google Scholar]
  167. 167. 
    Niemeyer G, Slotine JJE. 1997. Designing force reflecting teleoperators with large time delays to appear as virtual tools. Proceedings of the 1997 International Conference on Robotics and Automation 32212–18 Piscataway, NJ: IEEE
    [Google Scholar]
  168. 168. 
    Chopra N, Spong MW, Ortega R, Barabanov NE. 2006. On tracking performance in bilateral teleoperation. IEEE Trans. Robot. 22:861–66
    [Google Scholar]
  169. 169. 
    Hirzinger G, Heindl J, Landzettel K, Brunner B 1992. Multisensory shared autonomy - a key issue in the space robot technology experiment ROTEX. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems 1221–30 Piscataway, NJ: IEEE
    [Google Scholar]
  170. 170. 
    Hannaford B, Kim W. 1989. Force reflection, shared control, and time delay in telemanipulation. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics 1133–37 Piscataway, NJ: IEEE
    [Google Scholar]
  171. 171. 
    Lee D, Martinez-Palafox O, Spong MW. 2005. Bilateral teleoperation of multiple cooperative robots over delayed communication networks: application. Proceedings of the 2005 IEEE International Conference on Robotics and Automation366–71 Piscataway, NJ: IEEE
    [Google Scholar]
  172. 172. 
    Palafox OM, Spong MW. 2009. Bilateral teleoperation of a formation of nonholonomic mobile robots under constant time delay. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems2821–26 Piscataway, NJ: IEEE
    [Google Scholar]
/content/journals/10.1146/annurev-control-042920-094829
Loading
/content/journals/10.1146/annurev-control-042920-094829
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error