1932

Abstract

While noise is generally associated with uncertainties and often has a negative connotation in engineering, living organisms have evolved to adapt to (and even exploit) such uncertainty to ensure the survival of a species or implement certain functions that would have been difficult or even impossible otherwise. In this article, we review the role and impact of noise in systems and synthetic biology, with a particular emphasis on its role in the genetic control of biological systems, an area we refer to as cybergenetics. The main modeling paradigm is that of stochastic reaction networks, whose applicability goes beyond biology, as these networks can represent any population dynamics system, including ecological, epidemiological, and opinion dynamics networks. We review different ways to mathematically represent these systems, and we notably argue that the concept of ergodicity presents a particularly suitable way to characterize their stability. We then discuss noise-induced properties and show that noise can be both an asset and a nuisance in this setting. Finally, we discuss recent results on (stochastic) cybergenetics and explore their relationships to noise. Along the way, we detail the different technical and biological constraints that need to be respected when designing synthetic biological circuits. Finally, we discuss the concepts, problems, and solutions exposed in the article; raise criticisms and concerns about current ideas and approaches; suggest current (open) problems with potential solutions; and provide some ideas for future research directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-042920-101825
2023-05-03
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/control/6/1/annurev-control-042920-101825.html?itemId=/content/journals/10.1146/annurev-control-042920-101825&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    McAdams HH, Arkin A. 1997. Stochastic mechanisms in gene expression. PNAS 94:814–19
    [Google Scholar]
  2. 2.
    Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002. Stochastic gene expression in a single cell. Science 297:1183–86
    [Google Scholar]
  3. 3.
    Raser JM, O'Shea EK 2005. Noise in gene expression: origins, consequences, and control. Science 309:2010–13
    [Google Scholar]
  4. 4.
    Hansen MMK, Desai RV, Simpson ML, Weinberger LS. 2018. Cytoplasmic amplification of transcriptional noise generates substantial cell-to-cell variability. Cell Syst 7:384–97
    [Google Scholar]
  5. 5.
    Olsman N, Zhao F, Doyle J 2018. Evaluation of Hansen et al.: Nuance is crucial in comparisons of noise. Cell Syst 7:352–55
    [Google Scholar]
  6. 6.
    Weinberger LS, Burnette JC, Toettcher JE, Arkin AP, Schaffer DV. 2005. Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122:169–82
    [Google Scholar]
  7. 7.
    Arias AM, Hayward P. 2006. Filtering transcriptional noise during development: concepts and mechanisms. Nat. Rev. Genet. 7:34–44
    [Google Scholar]
  8. 8.
    Hansen MMK, Chen WY, Ingerman E, Razooky BS, Thompson CE et al. 2018. A post-transcriptional feedback mechanism for noise suppression and fate stabilization. Cell 173:1609–21
    [Google Scholar]
  9. 9.
    Zechner C, Nerli E, Norden C 2020. Stochasticity and determinism in cell fate decisions. Development 147:dev181495
    [Google Scholar]
  10. 10.
    Lestas I, Vinnicombe G, Paulsson J. 2010. Fundamental limits on the suppression of molecular fluctuations. Nature 467:174–78
    [Google Scholar]
  11. 11.
    Chalancon G, Ravarani CCJ, Balaji S, Martinez-Arias A, Aravind L et al. 2012. Interplay between gene expression noise and regulatory network architecture. Trends Genet 28:221–32
    [Google Scholar]
  12. 12.
    Cannon WB. 1929. Organization for physiological homeostasis. Physiol. Rev. 9:399–431
    [Google Scholar]
  13. 13.
    Cannon WB. 1932. The Wisdom of the Body New York: Norton
  14. 14.
    Barcroft J. 1931.. “ La fixité du milieu intérieur est la condition de la vie libre.” (Claude Bernard). Biol. Rev. 7:24–87
    [Google Scholar]
  15. 15.
    El-Samad H, Goff JP, Khammash M. 2002. Calcium homeostasis and parturient hypocalcemia: an integral feedback perspective. J. Theor. Biol. 214:17–29
    [Google Scholar]
  16. 16.
    Carroll SB. 2007. The Serengeti Rules Princeton, NJ: Princeton Univ. Press
  17. 17.
    Schmickl T, Karsai I. 2018. Integral feedback control is at the core of task allocation and resilience of insect societies. PNAS 115:13180–85
    [Google Scholar]
  18. 18.
    Karsai I, Schmickl T, Kampis G. 2020. Resilience and Stability of Ecological and Social Systems New York: Macmillan
  19. 19.
    Alon U. 2007. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8:450–61
    [Google Scholar]
  20. 20.
    Shoval O, Goentoro L, Hart Y, Mayo A, Sontag E, Alon U. 2010. Fold-change detection and scalar symmetry of sensory input fields. PNAS 107:15995–60000
    [Google Scholar]
  21. 21.
    Shoval O, Alon U, Sontag E. 2011. Symmetry invariance for adapting biological systems. SIAM J. Appl. Dyn. Syst. 10:857–86
    [Google Scholar]
  22. 22.
    Khammash M, Stelling J, eds. 2022. Special issue: systems and synthetic biology. Proc. IEEE 110:5)
    [Google Scholar]
  23. 23.
    Ilia K, Del Vecchio D 2022. Squaring a circle: To what extent are traditional circuit analogies impeding synthetic biology?. GEN Biotechnol 1:150–55
    [Google Scholar]
  24. 24.
    Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS et al. 2008. Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26:375–81
    [Google Scholar]
  25. 25.
    Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD 2015. Complete biosynthesis of opioids in yeast. Science 349:1095–100
    [Google Scholar]
  26. 26.
    de Lorenzo V, Prather KL, Chen GQ, O'Day E, von Kameke C et al. 2018. The power of synthetic biology for bioproduction, remediation and pollution control. EMBO Rep 19:e45658
    [Google Scholar]
  27. 27.
    Kis Z, Pereira HS, Homma T, Pedrigi RM, Krams R. 2015. Mammalian synthetic biology: emerging medical applications. J. R. Soc. Interface 12:20141000
    [Google Scholar]
  28. 28.
    Xie Z, Wroblewska L, Prochazka L, Weiss R, Benenson Y. 2011. Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333:1307–11
    [Google Scholar]
  29. 29.
    Folcher M, Fussenegger M. 2012. Synthetic biology advancing clinical applications. Curr. Opin. Chem. Biol. 16:345–54
    [Google Scholar]
  30. 30.
    Briat C, Gupta A, Khammash M. 2016. Antithetic integral feedback ensures robust perfect adaptation in noisy biomolecular networks. Cell Syst 2:15–26
    [Google Scholar]
  31. 31.
    Wiener N. 1961. Cybernetics, or Control and Communication in the Animal and the Machine Cambridge, MA: MIT Press
  32. 32.
    Goutsias J, Jenkinson G. 2013. Markovian dynamics on complex reaction networks. Phys. Rep. 529:199–264
    [Google Scholar]
  33. 33.
    Anderson D, Kurtz TG 2011. Continuous time Markov chain models for chemical reaction networks. Design and Analysis of Biomolecular Circuits: Engineering Approaches to Systems and Synthetic Biology H Koeppl, D Densmore, G Setti, M di Bernardo 3–42. New York: Springer
    [Google Scholar]
  34. 34.
    Gillespie DT. 1976. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22:403–34
    [Google Scholar]
  35. 35.
    Singh A, Hespanha JP. 2011. Approximate moment dynamics for chemically reacting systems. IEEE Trans. Autom. Control 56:414–18
    [Google Scholar]
  36. 36.
    Smadbeck P, Kaznessis YN. 2013. A closure scheme for chemical master equations. PNAS 110:14261–65
    [Google Scholar]
  37. 37.
    Schnoerr D, Sanguinetti G, Grima R. 2015. Comparison of different moment-closure approximations for stochastic chemical kinetics. J. Chem. Phys. 143:185101
    [Google Scholar]
  38. 38.
    Munsky B, Khammash M. 2008. The finite state projection approach for the analysis of stochastic noise in gene networks. IEEE Trans. Autom. Control 53:201–14
    [Google Scholar]
  39. 39.
    Van Kampen N. 2007. Stochastic Processes in Physics and Chemistry Amsterdam: North Holland
  40. 40.
    Anderson DF, Kurtz TG. 2015. Stochastic Analysis of Biochemical Systems Cham, Switz: Springer
  41. 41.
    Roper P. 1998. Noise induced processes in neural systems PhD Thesis, Loughborough Univ. Loughborough, UK:
  42. 42.
    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998. Stochastic resonance. Rev. Mod. Phys. 70:223–87
    [Google Scholar]
  43. 43.
    Ullner E. 2004. Noise-induced phenomena of signal transmission in excitable neural models PhD Thesis, Univ. Potsdam Potsdam, Ger:.
  44. 44.
    Gupta A, Briat C, Khammash M. 2014. A scalable computational framework for establishing long-term behavior of stochastic reaction networks. PLOS Comput. Biol. 10:e1003669
    [Google Scholar]
  45. 45.
    Gardner TS, Cantor CR, Collins JJ. 2000. Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–42
    [Google Scholar]
  46. 46.
    Paulsson J, Berg OG, Ehrenberg M. 2000. Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. PNAS 97:7148–53
    [Google Scholar]
  47. 47.
    Milias-Argeitis A, Engblom S, Bauer P, Khammash M. 2015. Stochastic focusing coupled with negative feedback enables robust regulation in biochemical reaction networks. J. R. Soc. Interface 12:20150831
    [Google Scholar]
  48. 48.
    Gupta A, Milias-Argeitis A, Khammash M. 2017. Dynamic disorder in simple enzymatic reactions induces stochastic amplification of substrate. J. R. Soc. Interface 14:20170311
    [Google Scholar]
  49. 49.
    Vilar JMG, Kueh HY, Barkai N, Leibler S. 2002. Mechanisms of noise-resistance in genetic oscillators. PNAS 99:5988–92
    [Google Scholar]
  50. 50.
    Gupta A, Hepp B, Khammash M. 2016. Noise induces the population-level entrainment of incoherent, uncoupled intracellular oscillators. Cell Syst 3:521–31.e13
    [Google Scholar]
  51. 51.
    Leloup JC, Goldbeter A. 2003. Toward a detailed computational model for the mammalian circadian clock. PNAS 100:7051–56
    [Google Scholar]
  52. 52.
    Norris JR. 1998. Markov Chains Cambridge, UK: Cambridge Univ. Press
  53. 53.
    Gupta A, Khammash M. 2018. Computational identification of irreducible state-spaces for stochastic reaction networks. SIAM J. Appl. Dyn. Syst. 17:1213–66
    [Google Scholar]
  54. 54.
    Paulevé L, Craciun G, Koeppl H. 2014. Dynamical properties of discrete reaction networks. J. Math. Biol. 69:55–72
    [Google Scholar]
  55. 55.
    Meyn SP, Tweedie RL. 1993. Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25:518–48
    [Google Scholar]
  56. 56.
    Khalil HK. 2002. Nonlinear Systems Upper Saddle River, NJ: Prentice Hall
  57. 57.
    Farina L, Rinaldi S. 2000. Positive Linear Systems: Theory and Applications New York: Wiley
  58. 58.
    Briat C, Khammash M. 2020. Ergodicity, output-controllability, and antithetic integral control of uncertain stochastic reaction networks. IEEE Trans. Autom. Control 66:2087–98
    [Google Scholar]
  59. 59.
    Briat C, Khammash M. 2020. Ergodicity analysis and antithetic integral control of a class of stochastic reaction networks with delays. SIAM J. Appl. Dyn. Syst. 19:1575–608
    [Google Scholar]
  60. 60.
    Milias-Argeitis A, Khammash M. 2014. Optimization-based Lyaunov function construction for continuous-time Markov chains with affine transition rates. 53rd IEEE Conference on Decision and Control4617–22. Piscataway, NJ: IEEE
    [Google Scholar]
  61. 61.
    Cappelletti D, Majumder AP, Wiuf C. 2019. Long-time asymptotics of stochastic reaction systems. arXiv:1912.00401 [math.DS]
  62. 62.
    Engblom S. 2012. On the stability of stochastic jump kinetics. arXiv:1202.3892 [math.PR]
  63. 63.
    Rathinam M. 2015. Moment growth bounds on continuous time Markov processes on non-negative integer lattices. Q. Appl. Math. 73:347–64
    [Google Scholar]
  64. 64.
    Constantino PH, Vlysidis M, Smadbeck P, Kaznessis YN. 2015. Modeling stochasticity in biochemical reaction networks. J. Phys. D 49:093001
    [Google Scholar]
  65. 65.
    Vlysidis M, Kaznessis YN. 2018. A linearization method for probability moment equations. Comput. Chem. Eng. 112:1–5
    [Google Scholar]
  66. 66.
    Gupta A, Khammash M. 2014. Sensitivity analysis for stochastic chemical reaction networks with multiple time-scales. Electron. J. Probab. 19: https://doi.org/10.1214/EJP.v19-3246
    [Google Scholar]
  67. 67.
    Milias-Argeitis A, Summers S, Stewart-Ornstein J, Zuleta I, Pincus D et al. 2011. In silico feedback for in vivo regulation of a gene expression circuit. Nat. Biotechnol. 29:1114–16
    [Google Scholar]
  68. 68.
    Milias-Argeitis A, Rullan M, Aoki SK, Buchmann P, Khammash M. 2016. Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth. Nat. Commun. 7:12546
    [Google Scholar]
  69. 69.
    Rullan M, Benzinger D, Schmidt GW, Gupta A, Milias-Argeitis A, Khammash M. 2018. An optogenetic platform for real-time, single-cell interrogation of stochastic transcriptional regulation. Mol. Cell 70:745–56
    [Google Scholar]
  70. 70.
    Uhlendorf J, Miermont A, Delaveau T, Charvin G, Fages F et al. 2012. Long-term model predictive control of gene expression at the population and single-cell levels. PNAS 109:14271–76
    [Google Scholar]
  71. 71.
    Menolascina F, Fiore G, Orabona E, De Stefano L, Ferry M et al. 2014. In-vivo real-time control of protein expression from endogenous and synthetic gene networks. PLOS Comput. Biol. 10:e1003625
    [Google Scholar]
  72. 72.
    Kumar S, Rullan M, Khammash M. 2021. Rapid prototyping and design of cybergenetic single-cell controllers. Nat. Commun. 12:5651
    [Google Scholar]
  73. 73.
    Kumar S, Khammash M. 2022. Platforms for optogenetic stimulation and feedback control. Front. Bioeng. Biotechnol. 10:918917
    [Google Scholar]
  74. 74.
    Qian Y, McBride C, Del Vecchio D. 2018. Programming cells to work for us. Annu. Rev. Control Robot. Auton. Syst. 1:411–40
    [Google Scholar]
  75. 75.
    Qian Y, Huang HH, Jiménez JI, Del Vecchio D. 2017. Resource competition shapes the response of genetic circuits. ACS Synth. Biol. 6:1263–72
    [Google Scholar]
  76. 76.
    Frei T, Cella F, Tedeschi F, Gutiérrez J, Stan GB et al. 2020. Characterization and mitigation of gene expression burden in mammalian cells. Nat. Commun. 11:4641
    [Google Scholar]
  77. 77.
    Jones RD, Qian Y, Siciliano V, DiAndreth B, Huh J et al. 2020. An endoribonuclease-based feedforward controller for decoupling resource-limited genetic modules in mammalian cells. Nat. Commun. 11:5690
    [Google Scholar]
  78. 78.
    Briat C, Zechner C, Khammash M. 2016. Design of a synthetic integral feedback circuit: dynamic analysis and DNA implementation. ACS Synth. Biol. 5:1108–16
    [Google Scholar]
  79. 79.
    Son HI, Weiss A, You L. 2021. Design patterns for engineering genetic stability. Curr. Opin. Biomed. Eng. 19:100297
    [Google Scholar]
  80. 80.
    Oishi K, Klavins E. 2010. Biomolecular implementation of linear I/O systems. IET Syst. Biol. 5:252–60
    [Google Scholar]
  81. 81.
    Briat C. 2020. A biology-inspired approach to the positive integral control of positive systems: the antithetic, exponential, and logistic integral controllers. SIAM J. Appl. Dyn. Syst. 19:619–64
    [Google Scholar]
  82. 82.
    Fages F, Le Guludec G, Bournez O, Pouly A 2017. Strong Turing completeness of continuous chemical reaction networks and compilation of mixed analog-digital programs. Computational Methods in Systems Biology: 15th International Conference, CMSB 2017 J Feret, H Koeppl 108–27. Cham, Switz: Springer
    [Google Scholar]
  83. 83.
    Hemery M, Fages F, Soliman A 2021. Compiling elementary mathematical functions into finite chemical reaction networks via a polynomialization algorithm for ODEs. Computational Methods in Systems Biology: 19th International Conference, CMSB 2021 E Cinquemani, L Paulevé 74–90. Cham, Switz: Springer
    [Google Scholar]
  84. 84.
    Shinar G, Feinberg M. 2010. Structural sources of robustness in biochemical reaction networks. Science 327:1389–91
    [Google Scholar]
  85. 85.
    Horn F, Jackson R 1972. General mass action kinetics. Arch. Ration. Mech. Anal. 47:81–116
    [Google Scholar]
  86. 86.
    Feinberg M. 1972. Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal. 49:187–94
    [Google Scholar]
  87. 87.
    Feinberg M. 1995. The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Ration. Mech. Anal. 132:311–70
    [Google Scholar]
  88. 88.
    Cappelletti D, Gupta A, Khammash M. 2020. A hidden integral structure endows absolute concentration robust systems with resilience to dynamical concentration disturbances. J. R. Soc. Interface 17:20200437
    [Google Scholar]
  89. 89.
    Xiao F, Doyle JC 2018. Robust perfect adaptation in biomolecular reaction networks. 57th IEEE Conference on Decision and Control4345–52. Piscataway, NJ: IEEE
    [Google Scholar]
  90. 90.
    Karp RL, Pérez Millán M, Dasgupta T, Dickenstein A, Gunawardena J. 2012. Complex-linear invariants of biochemical networks. J. Theor. Biol. 311:130–38
    [Google Scholar]
  91. 91.
    Dexter JP, Dasgupta T, Gunawardena J. 2015. Invariants reveal multiple forms of robustness in bifunctional enzyme systems. Integr. Biol. 7:883–94
    [Google Scholar]
  92. 92.
    Kim J, Enciso G. 2020. Absolutely robust controllers for chemical reaction networks. J. R. Soc. Interface 17:20200031
    [Google Scholar]
  93. 93.
    Anderson DF, Enciso GA, Johnston MD. 2014. Stochastic analysis of biochemical reaction networks with absolute concentration robustness. J. R. Soc. Interface 11:20130943
    [Google Scholar]
  94. 94.
    Anderson DF, Cappelletti D, Kurtz TG. 2017. Finite time distributions of stochastically modeled chemical systems with absolute concentration robustness. SIAM J. Appl. Dyn. Syst. 16:1309–39
    [Google Scholar]
  95. 95.
    Drengstig T, Ni XY, Thorsen K, Jolma LW, Ruoff P. 2012. Robust adaptation and homeostasis by autocatalysis. J. Phys. Chem. 116:5355–63
    [Google Scholar]
  96. 96.
    Olsman N, Baetica AA, Xiao F, Leong YP, Murray RM. 2019. Hard limits and performance tradeoffs in a class of antithetic integral feedback networks. Cell Syst 9:49–63.e16
    [Google Scholar]
  97. 97.
    Olsman N, Xiao F, Doyle JC 2019. Architectural principles for characterizing the performance of antithetic integral feedback networks. iScience 14:277–91
    [Google Scholar]
  98. 98.
    Baetica A, Long YP, Murray RM. 2020. Guidelines for designing the antithetic feedback motif. Phys. Biol. 17:055002
    [Google Scholar]
  99. 99.
    Gerdes K. 1988. The parB (hok/sok) locus of plasmid R1: a general purpose plasmid stabilization system. Nat. Biotechnol. 6:1402–5
    [Google Scholar]
  100. 100.
    De Jonge N, Garcia-Pino A, Buts L, Haesaerts S, Charlier D et al. 2009. Rejuvenation of Ccdb-poisoned gyrase by an intrinsically disordered protein domain. Mol. Cell 35:154–63
    [Google Scholar]
  101. 101.
    Chen D, Arkin AP. 2012. Sequestration-based bistability enables tuning of the switching boundaries and design of a latch. Mol. Syst. Biol. 8:620
    [Google Scholar]
  102. 102.
    Annunziata F, Matyjaszkiewicz A, Fiore G, Grierson CS, Marucci L et al. 2017. An orthogonal multi-input integration system to control gene expression in Escherichia coli. ACS Synth. Biol. 6:1816–24
    [Google Scholar]
  103. 103.
    Aoki S, Lillacci G, Gupta A, Baumschlager A, Schweingruber D, Khammash M. 2019. A universal biomolecular integral feedback controller for robust perfect adaptation. Nature 570:533–37
    [Google Scholar]
  104. 104.
    Pelechano V, Steinmetz LM. 2013. Gene regulation by antisense transcription. Nat. Rev. Genet. 14:880–93
    [Google Scholar]
  105. 105.
    Frei T, Chang C, Filo M, Khammash M. 2022. A genetic mammalian proportional–integral feedback control circuit for robust and precise gene regulation. PNAS 199:e2122132119
    [Google Scholar]
  106. 106.
    Lee YJ, Kim SJ, Moon TS. 2018. Multilevel regulation of bacterial gene expression with the combined STAR and antisense RNA system. ACS Synth. Biol. 7:853–65
    [Google Scholar]
  107. 107.
    Agrawal DK, Marschall R, Noireaux V, Sontag ED. 2019. In vitro implementation of robust gene regulation in a synthetic biomolecular integral controller. Nat. Commun. 10:5760
    [Google Scholar]
  108. 108.
    Kelly CL, Harris AWK, Steel H, Hancock EJ, Heap JT, Papachristodoulou A. 2018. Synthetic negative feedback circuits using engineered small RNAs. Nucleid Acids Res 46:9875–89
    [Google Scholar]
  109. 109.
    Hsiao V, de los Santos ELC, Whitaker W, Dueber JE, Murray RM. 2015. Design and implementation of a biomolecular concentration tracker. ACS Synth. Biol. 4:150–61
    [Google Scholar]
  110. 110.
    Filo M, Kumar S, Khammash M. 2022. A hierarchy of biomolecular proportional-integral-derivative feedback controllers for robust perfect adaptation and dynamic performance. Nat. Commun. 13:2119
    [Google Scholar]
  111. 111.
    Gupta A, Khammash M. 2022. Universal structural requirements for maximal robust perfect adaptation in biomolecular networks. bioRxiv 2022.02.01.478605. https://doi.org/10.1101/2022.02.01.478605
  112. 112.
    Araujo RP, Liotta LA. 2018. The topological requirements for robust perfect adaptation in networks of any size. Nat. Commun. 9:1757
    [Google Scholar]
  113. 113.
    Briat C, Gupta A, Khammash M. 2018. Variance reduction for antithetic integral control of stochastic reaction networks. J. R. Soc. Interface 15:20180079
    [Google Scholar]
  114. 114.
    Duso L, Bianucci T, Zechner C. 2021. Shared antithetic integral control for dynamic cell populations. 60th IEEE Conference on Decision and Control2053–58. Piscataway, NJ: IEEE
    [Google Scholar]
  115. 115.
    Fiore G, Matyjaszkiewicz A, Annunziata F, Grierson C, Savery NJ et al. 2017. In-silico analysis and implementation of a multicellular feedback control strategy in a synthetic bacterial consortium. ACS Synth. Biol. 6:507–17
    [Google Scholar]
  116. 116.
    Briat C, Khammash M. 2021. Optimal and H control of stochastic reaction networks. arXiv:2111.14754 [math.OC]
  117. 117.
    Davis MHA. 1993. Markov Models and Optimization London: Chapman & Hall
  118. 118.
    Meyn SP, Barrooah P, Bušić A, Chen Y, Ehren J. 2015. Ancillary service to the grid using intelligent deferrable loads. IEEE Trans. Autom. Control 60:2847–62
    [Google Scholar]
  119. 119.
    Briat C, Khammash M. 2012. Computer control of gene expression: robust setpoint tracking of protein mean and variance using integral feedback. 51st IEEE Conference on Decision and Control3582–88. Piscataway, NJ: IEEE
    [Google Scholar]
  120. 120.
    Briat C, Khammash M. 2013. Integral population control of a quadratic dimerization process. 52nd IEEE Conference on Decision and Control3367–72. Piscataway, NJ: IEEE
    [Google Scholar]
  121. 121.
    Briat C, Khammash M. 2021. In-silico proportional-integral moment control of stochastic gene expression. IEEE Trans. Autom. Control 66:3007–19
    [Google Scholar]
  122. 122.
    Gerhardt KP, Rao SD, Olson EJ, Igoshin OA, Tabor JJ. 2021. Independent control of mean and noise by convolution of gene expression distributions. Nat. Commun. 12:6957
    [Google Scholar]
  123. 123.
    Chait R, Ruess J, Bermiller T, Tkačik G, Guet CC. 2017. Shaping bacterial population behavior through computer-interfaced control of individual cells. Nat. Commun. 8:1535
    [Google Scholar]
  124. 124.
    Bain A, Crisan D. 2009. Fundamentals of Stochastic Filtering New York: Springer
  125. 125.
    Zechner C, Seelig G, Rullan M, Khammash M. 2016. Molecular circuits for dynamic noise filtering. PNAS 113:4729–34
    [Google Scholar]
  126. 126.
    Fang Z, Gupta A, Khammash M. 2021. Stochastic filtering for multiscale stochastic reaction networks based on hybrid approximations. arXiv:2106.03276 [q-bio.QM]
  127. 127.
    Fang Z, Gupta A, Khammash M. 2021. Convergence of regularized particle filters for stochastic reaction networks. arXiv:2110.07746 [q-bio.QM]
  128. 128.
    Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM et al. 2012. A whole-cell computational model predicts phenotype from genotype. Cell 150:389–401
    [Google Scholar]
  129. 129.
    Goldberg AP, Szigeti B, Chew YH, Sekar JA, Roth YD, Karr JR. 2018. Emerging whole-cell modeling principles and methods. Curr. Opin. Biotechnol. 51:97–102
    [Google Scholar]
  130. 130.
    Vittadello ST, Stumpf MPH. 2022. Open problems in mathematical biology. arXiv:2206.09516 [q-bio.QM]
  131. 131.
    Olson EJ, Hartsough LA, Landry BP, Shroff R, Tabor JT. 2014. Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals. Nat. Methods 11:449–59
    [Google Scholar]
  132. 132.
    Briat C, Gupta A, Shames I, Khammash M. 2014. Scalable tests for ergodicity analysis of large-scale interconnected stochastic reaction networks. MTNS 2014: The 21st International Symposium on Mathematical Theory of Networks and Systems92–95. Groningen, Neth: Univ. Groningen
    [Google Scholar]
  133. 133.
    Del Vecchio D. 2015. Modularity, context-dependence, and insulation in engineered biological circuits. Trends Biotechnol 33:111–17
    [Google Scholar]
  134. 134.
    Ruess J, Milias-Argeitis A, Summers S, Lygeros J. 2011. Moment estimation for chemically reacting systems by extended Kalman filtering. J. Chem. Phys. 135:165102
    [Google Scholar]
  135. 135.
    Costa OLV, Dufour F. 2008. Stability and ergodicity of piecewise deterministic Markov processes. SIAM J. Control Optim. 47:1053–77
    [Google Scholar]
  136. 136.
    Li X, Omotere O, Qian L, Dougherty ER. 2017. Review of stochastic hybrid systems with applications in biological systems modeling and analysis. EURASIP J. Bioinform. Syst. Biol. 2017:8
    [Google Scholar]
  137. 137.
    Benaïm M, Hurth T, Strickler E. 2018. A user-friendly condition for exponential ergodicity in randomly switched environments. Electron. Commun. Probab. 23: https://doi.org/10.1214/18-ECP148
    [Google Scholar]
  138. 138.
    Haas PJ. 2002. Stochastic Petri Nets New York: Springer
  139. 139.
    Heiner M, Gilbert D. 2013. Biomodel engineering for multiscale systems biology. Prog. Biophys. Mol. Biol. 111:119–28
    [Google Scholar]
  140. 140.
    Liu F, Heiner M 2014. Petri nets for modeling and analyzing biochemical reaction networks. Approaches in Integrative Bioinformatics: Towards the Virtual Cell M Chen, R Hofestädt 245–72. Berlin: Springer
    [Google Scholar]
  141. 141.
    Baez JC, Pollard BS. 2017. A compositional framework for reaction networks. Rev. Math. Phys. 29:1750028
    [Google Scholar]
  142. 142.
    Alexis E, Cardelli L, Papachristodoulou A 2022. On the design of a PID bio-controller with set point weighting and filtered derivative action. IEEE Control Syst. Lett. 6:3134–39
    [Google Scholar]
/content/journals/10.1146/annurev-control-042920-101825
Loading
/content/journals/10.1146/annurev-control-042920-101825
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error