1932

Abstract

Electric power systems are undergoing an unprecedented transition from fossil fuel–based power plants to low-inertia systems that rely predominantly on power electronics and renewable energy resources. This article reviews the resulting control challenges and modeling fallacies, at both the device and system level, and focuses on novel aspects or classical concepts that need to be revised in light of the transition to low-inertia systems. To this end, we survey the literature on modeling of low-inertia systems, review research on the control of grid-connected power converters, and discuss the frequency dynamics of low-inertia systems. Moreover, we discuss system-level services from a control perspective. Overall, we conclude that the system-theoretic mindset is essential to bridge different research communities and understand the complex interactions of power electronics, electric machines, and their controls in large-scale low-inertia power systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-052622-032657
2023-05-03
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/control/6/1/annurev-control-052622-032657.html?itemId=/content/journals/10.1146/annurev-control-052622-032657&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Milano F, Dörfler F, Hug G, Hill DJ, Verbič G. 2018. Foundations and challenges of low-inertia systems. 2018 Power Systems Computation Conference Piscataway, NJ: IEEE https://doi.org/10.23919/PSCC.2018.8450880
    [Crossref] [Google Scholar]
  2. 2.
    Fang J, Li H, Tang Y, Blaabjerg F. 2018. On the inertia of future more-electronics power systems. IEEE Trans. Emerg. Sel. Top. Power Electron. 7:2130–46
    [Google Scholar]
  3. 3.
    Winter W, Elkington K, Bareux G, Kostevc J. 2015. Pushing the limits: Europe's new grid: innovative tools to combat transmission bottlenecks and reduced inertia. IEEE Power Energy Mag 13:160–74
    [Google Scholar]
  4. 4.
    Tielens P, Hertem DV. 2016. The relevance of inertia in power systems. Renew. Sust. Energy Rev. 55:999–1009
    [Google Scholar]
  5. 5.
    Markovic U, Stanojev O, Aristidou P, Vrettos E, Callaway D, Hug G. 2021. Understanding small-signal stability of low-inertia systems. IEEE Trans. Power Syst. 36:3997–4017
    [Google Scholar]
  6. 6.
    Taylor JA, Dhople SV, Callaway DS. 2016. Power systems without fuel. Renew. Sust. Energy Rev. 57:1322–36
    [Google Scholar]
  7. 7.
    Kroposki B, Johnson B, Zhang Y, Gevorgian V, Denholm P et al. 2017. Achieving a 100% renewable grid: operating electric power systems with extremely high levels of variable renewable energy. IEEE Power Energy Mag 15:261–73
    [Google Scholar]
  8. 8.
    Crivellaro A, Tayyebi A, Gavriluta C, Groß D, Anta A et al. 2020. Beyond low-inertia systems: massive integration of grid-forming power converters in transmission grids. 2020 IEEE Power and Energy Society General Meeting Piscataway, NJ: IEEE https://doi.org/10.1109/PESGM41954.2020.9282031
    [Crossref] [Google Scholar]
  9. 9.
    Paolone M, Gaunt T, Guillaud X, Liserre M, Meliopoulos S et al. 2020. Fundamentals of power systems modelling in the presence of converter-interfaced generation. Electr. Power Syst. Res. 189:106811
    [Google Scholar]
  10. 10.
    Tayyebi A, Groß D, Anta A, Kupzog F, Dörfler F. 2020. Frequency stability of synchronous machines and grid-forming power converters. IEEE Trans. Emerg. Sel. Top. Power Electron. 8:1004–18
    [Google Scholar]
  11. 11.
    Meegahapola L, Mancarella P, Flynn D, Moreno R. 2021. Power system stability in the transition to a low carbon grid: a techno-economic perspective on challenges and opportunities. WIREs Energy Environ 10:e399
    [Google Scholar]
  12. 12.
    Mancarella P, Billimoria F. 2021. The fragile grid: the physics and economics of security services in low-carbon power systems. IEEE Power Energy Mag 19:279–88
    [Google Scholar]
  13. 13.
    Dörfler F, Bolognani S, Simpson-Porco JW, Grammatico S. 2019. Distributed control and optimization for autonomous power grids. 2019 18th European Control Conference2436–53 Piscataway, NJ: IEEE
    [Google Scholar]
  14. 14.
    Kundur P. 1994. Power System Stability and Control New York: McGraw-Hill
  15. 15.
    Machowski J, Lubosny Z, Bialek JW, Bumby JR. 2020. Power System Dynamics: Stability and Control Hoboken, NJ: Wiley & Sons
  16. 16.
    Yazdani A, Iravani R. 2010. Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications Hoboken, NJ: Wiley & Sons
  17. 17.
    Schiffer J, Zonetti D, Ortega R, Stanković AM, Sezi T, Raisch J. 2016. A survey on modeling of microgrids—from fundamental physics to phasors and voltage sources. Automatica 74:135–50
    [Google Scholar]
  18. 18.
    Dörfler F, Simpson-Porco JW, Bullo F. 2018. Electrical networks and algebraic graph theory: models, properties, and applications. Proc. IEEE 106:977–1005
    [Google Scholar]
  19. 19.
    van der Schaft AJ, Stegink T. 2016. Perspectives in modeling for control of power networks. Annu. Rev. Control 41:119–32
    [Google Scholar]
  20. 20.
    Stevenson W, Grainger J. 1994. Power System Analysis New York: McGraw-Hill Educ.
  21. 21.
    Kersting W. 2001. Distribution System Modeling and Analysis Boca Raton, FL: CRC
  22. 22.
    Sauer PW, Pai MA, Chow JH. 2017. Power System Dynamics and Stability: With Synchrophasor Measurement and Power System Toolbox Hoboken, NJ: Wiley & Sons
  23. 23.
    Akagi H, Watanabe EH, Aredes M. 2017. Instantaneous Power Theory and Applications to Power Conditioning Hoboken, NJ: Wiley & Sons
  24. 24.
    Jeltsema D. 2015. Budeanu's concept of reactive and distortion power revisited. 2015 International School on Nonsinusoidal Currents and Compensation Piscataway, NJ: IEEE https://doi.org/10.1109/ISNCC.2015.7174697
    [Crossref] [Google Scholar]
  25. 25.
    O'Rourke CJ, Qasim MM, Overlin MR, Kirtley JL. 2019. A geometric interpretation of reference frames and transformations: dq0, Clarke, and Park. IEEE Trans. Energy Convers. 34:2070–83
    [Google Scholar]
  26. 26.
    Groß D, Arghir C, Dörfler F. 2018. On the steady-state behavior of a nonlinear power system model. Automatica 90:248–54
    [Google Scholar]
  27. 27.
    Chang HD, Chu CC, Cauley G. 1995. Direct stability analysis of electric power systems using energy functions: theory, applications, and perspective. Proc. IEEE 83:1497–529
    [Google Scholar]
  28. 28.
    Stegink TW, De Persis C, van der Schaft AJ. 2019. An energy-based analysis of reduced-order models of (networked) synchronous machines. Math. Comput. Model. Dyn. Syst. 25:1–39
    [Google Scholar]
  29. 29.
    Paganini F, Mallada E. 2020. Global analysis of synchronization performance for power systems: bridging the theory-practice gap. IEEE Trans. Autom. Control 65:3007–22
    [Google Scholar]
  30. 30.
    Venezian E, Weiss G. 2016. A warning about the use of reduced models of synchronous generators. 2016 IEEE International Conference on the Science of Electrical Engineering Piscataway, NJ: IEEE https://doi.org/10.1109/ICSEE.2016.7806190
    [Crossref] [Google Scholar]
  31. 31.
    Monshizadeh P, De Persis C, Monshizadeh N, van der Schaft AJ. 2016. Nonlinear analysis of an improved swing equation. 2016 IEEE 55th Conference on Decision and Control4116–21 Piscataway, NJ: IEEE
    [Google Scholar]
  32. 32.
    Ajala O, Domínguez-Garcia A, Sauer P, Liberzon D. 2020. A library of second-order models for synchronous machines. IEEE Trans. Power Syst. 35:4803–14
    [Google Scholar]
  33. 33.
    Min H, Paganini F, Mallada E. 2019. Accurate reduced order models for coherent synchronous generators. 2019 57th Annual Allerton Conference on Communication, Control, and Computing316–17 Piscataway, NJ: IEEE
    [Google Scholar]
  34. 34.
    Zhou D, Song Y, Blaabjerg F 2018. Control of wind turbine system. Control of Power Electronic Converters and Systems F Blaabjerg 269–98 London: Academic
    [Google Scholar]
  35. 35.
    Teodorescu R, Liserre M, Rodriguez P. 2011. Grid Converters for Photovoltaic and Wind Power Systems Chichester, UK: Wiley & Sons
  36. 36.
    Hill DJ, Mareels IM. 1990. Stability theory for differential/algebraic systems with application to power systems. IEEE Trans. Circuits Syst. 37:1416–23
    [Google Scholar]
  37. 37.
    Hiskens IA, Hill DJ. 1989. Energy functions, transient stability and voltage behaviour in power systems with nonlinear loads. IEEE Trans. Power Syst. 4:1525–33
    [Google Scholar]
  38. 38.
    Dörfler F, Bullo F. 2012. Kron reduction of graphs with applications to electrical networks. IEEE Trans. Circuits Syst. I 60:150–63
    [Google Scholar]
  39. 39.
    Molzahn DK, Hiskens IA. 2019. A Survey of Relaxations and Approximations of the Power Flow Equations Hanover, MA: Now
  40. 40.
    Misyris GS, Chatzivasileiadis S, Weckesser T. 2021. Grid-forming converters: sufficient conditions for RMS modeling. Electr. Power Syst. Res. 197:107324
    [Google Scholar]
  41. 41.
    Hatziargyriou N, Milanovic J, Rahmann C, Ajjarapu V, Canizares C et al. 2020. Definition and classification of power system stability – revisited & extended. IEEE Trans. Power Syst. 36:3271–81
    [Google Scholar]
  42. 42.
    Vorobev P, Huang PH, Al Hosani M, Kirtley JL, Turitsyn K 2017. High-fidelity model order reduction for microgrids stability assessment. IEEE Trans. Power Syst. 33:874–87
    [Google Scholar]
  43. 43.
    Raza M, Prieto-Araujo E, Gomis-Bellmunt O. 2017. Small-signal stability analysis of offshore AC network having multiple VSC-HVDC systems. IEEE Trans. Power Deliv. 33:830–39
    [Google Scholar]
  44. 44.
    Mariani V, Vasca F, Vasquez JC, Guerrero JM. 2014. Model order reductions for stability analysis of islanded microgrids with droop control. IEEE Trans. Ind. Electron. 62:4344–54
    [Google Scholar]
  45. 45.
    Vorobev P, Huang PH, Al Hosani M, Kirtley JL, Turitsyn K 2017. A framework for development of universal rules for microgrids stability and control. 2017 IEEE 56th Annual Conference on Decision and Control5125–30 Piscataway, NJ: IEEE
    [Google Scholar]
  46. 46.
    Subotić I, Groß D, Colombino M, Dörfler F. 2020. A Lyapunov framework for nested dynamical systems on multiple time scales with application to converter-based power systems. IEEE Trans. Autom. Control 66:5909–24
    [Google Scholar]
  47. 47.
    Groß D, Colombino M, Brouillon JS, Dörfler F. 2019. The effect of transmission-line dynamics on grid-forming dispatchable virtual oscillator control. IEEE Trans. Control Netw. Syst. 6:1148–60
    [Google Scholar]
  48. 48.
    Ortega R, van der Schaft AJ, Mareels I, Maschke B. 2001. Putting energy back in control. IEEE Control Syst. Mag. 21:218–33
    [Google Scholar]
  49. 49.
    Arghir C, Jouini T, Dörfler F. 2018. Grid-forming control for power converters based on matching of synchronous machines. Automatica 95:273–82
    [Google Scholar]
  50. 50.
    Arghir C, Dörfler F. 2019. The electronic realization of synchronous machines: model matching, angle tracking, and energy shaping techniques. IEEE Trans. Power Electron. 35:4398–410
    [Google Scholar]
  51. 51.
    Li C, Cvetkovic I, Burgos R, Boroyevich D. 2018. Assessment of virtual synchronous machine based control in grid-tied power converters. 2018 International Power Electronics Conference790–94 Piscataway, NJ: IEEE
    [Google Scholar]
  52. 52.
    Huang L, Xin H, Wang Z, Wu K, Wang H et al. 2017. A virtual synchronous control for voltage-source converters utilizing dynamics of DC-link capacitor to realize self-synchronization. IEEE Trans. Emerg. Sel. Top. Power Electron. 5:1565–77
    [Google Scholar]
  53. 53.
    Curi S, Groß D, Dörfler F. 2017. Control of low-inertia power grids: a model reduction approach. 2017 IEEE 56th Annual Conference on Decision and Control5708–13 Piscataway, NJ: IEEE
    [Google Scholar]
  54. 54.
    Groß D, Sánchez-Sánchez E, Prieto-Araujo E, Gomis-Bellmunt O. 2022. Dual-port grid-forming control of MMCs and its applications to grids of grids. IEEE Trans. Power Deliv 374721–35
    [Google Scholar]
  55. 55.
    Groß D, Dörfler F. 2017. On the steady-state behavior of low-inertia power systems. IFAC-PapersOnLine 50:110735–41
    [Google Scholar]
  56. 56.
    Rocabert J, Luna A, Blaabjerg F, Rodríguez P. 2012. Control of power converters in AC microgrids. IEEE Trans. Power Electron. 27:4734–49
    [Google Scholar]
  57. 57.
    Simpson-Porco JW, Dörfler F, Bullo F. 2017. Voltage stabilization in microgrids via quadratic droop control. IEEE Trans. Autom. Control 62:1239–53
    [Google Scholar]
  58. 58.
    Capitanescu F, Martinez Ramos J, Panciatici P, Kirschen D, Marano Marcolini A et al. 2011. State-of-the-art, challenges, and future trends in security constrained optimal power flow. Electr. Power Syst. Res. 81:1731–41
    [Google Scholar]
  59. 59.
    Dörfler F, Chertkov M, Bullo F. 2013. Synchronization in complex oscillator networks and smart grids. PNAS 110:2005–10
    [Google Scholar]
  60. 60.
    Schiffer J, Ortega R, Astolfi A, Raisch J, Sezi T. 2014. Conditions for stability of droop-controlled inverter-based microgrids. Automatica 50:2457–69
    [Google Scholar]
  61. 61.
    Gomis-Bellmunt O, Sánchez-Sánchez E, Arévalo-Soler J, Prieto-Araujo E. 2021. Principles of operation of grids of DC and AC subgrids interconnected by power converters. IEEE Trans. Power Deliv. 36:1107–17
    [Google Scholar]
  62. 62.
    Poolla BK, Groß D, Dörfler F. 2019. Placement and implementation of grid-forming and grid-following virtual inertia and fast frequency response. IEEE Trans. Power Syst. 34:3035–46
    [Google Scholar]
  63. 63.
    Colombino M, Groß D, Brouillon JS, Dörfler F. 2019. Global phase and magnitude synchronization of coupled oscillators with application to the control of grid-forming power inverters. IEEE Trans. Autom. Control 64:4496–511
    [Google Scholar]
  64. 64.
    Lasseter RH, Chen Z, Pattabiraman D 2020. Grid-forming inverters: a critical asset for the power grid. IEEE Trans. Emerg. Sel. Top. Power Electron. 8:925–35
    [Google Scholar]
  65. 65.
    Debry MS, Denis G, Prevost T. 2019. Characterization of the grid-forming function of a power source based on its external frequency smoothing capability. 2019 IEEE Milan PowerTech Piscataway, NJ: IEEE https://doi.org/10.1109/PTC.2019.8810409
    [Crossref] [Google Scholar]
  66. 66.
    Chung SK. 2000. A phase tracking system for three phase utility interface inverters. IEEE Trans. Power Electron. 15:431–38
    [Google Scholar]
  67. 67.
    Dong D, Wen B, Boroyevich D, Mattavelli P, Xue Y. 2015. Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions. IEEE Trans. Ind. Electron. 62:310–21
    [Google Scholar]
  68. 68.
    Jafarpour S, Purba V, Johnson B, Dhople S, Bullo F. 2021. Singular perturbation and small-signal stability for inverter networks. IEEE Trans. Control Netw. Syst. 9:979–92
    [Google Scholar]
  69. 69.
    Bevrani H, Ise T, Miura Y. 2014. Virtual synchronous generators: a survey and new perspectives. Int. J. Electr. Power Energy Syst. 54:244–54
    [Google Scholar]
  70. 70.
    Bala S, Venkataramanan G. 2010. On the choice of voltage regulators for droop-controlled voltage source converters in microgrids to ensure stability. 2010 IEEE Energy Conversion Congress and Exposition3448–55 Piscataway, NJ: IEEE
    [Google Scholar]
  71. 71.
    Cvetkovic I, Boroyevich D, Burgos R, Li C, Mattavelli P. 2015. Modeling and control of grid-connected voltage-source converters emulating isotropic and anisotropic synchronous machines. 2015 IEEE 16th Workshop on Control and Modeling for Power Electronics Piscataway, NJ: IEEE https://doi.org/10.1109/COMPEL.2015.7236454
    [Crossref] [Google Scholar]
  72. 72.
    Pogaku N, Prodanovic M, Green TC. 2007. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans. Power Electron. 22:613–25
    [Google Scholar]
  73. 73.
    D'Arco S, Suul JA, Fosso AB. 2015. A Virtual Synchronous Machine implementation for distributed control of power converters in SmartGrids. Electr. Power Syst. Res. 122:180–97
    [Google Scholar]
  74. 74.
    Ajala O, Lu M, Dhople S, Johnson BB, Dominguez-Garcia A. 2021. Model reduction for inverters with current limiting and dispatchable virtual oscillator control. IEEE Trans. Energy Convers 372250–59
    [Google Scholar]
  75. 75.
    Qoria T, Gruson F, Colas F, Guillaud X, Debry MS, Prevost T. 2018. Tuning of cascaded controllers for robust grid-forming voltage source converter. 2018 Power Systems Computation Conference Piscataway, NJ: IEEE https://doi.org/10.23919/PSCC.2018.8443018
    [Crossref] [Google Scholar]
  76. 76.
    Johnson B, Salapaka S, Lundstrom B, Salapaka M. 2016. Optimal structures for voltage controllers in inverters. 22nd International Symposium on Mathematical Theory of Networks and Systems596–601 Minneapolis: Univ. Minn.
    [Google Scholar]
  77. 77.
    Paquette AD, Divan DM. 2015. Virtual impedance current limiting for inverters in microgrids with synchronous generators. IEEE Trans. Ind. Appl. 51:1630–38
    [Google Scholar]
  78. 78.
    Xin H, Huang L, Zhang L, Wang Z, Hu J 2016. Synchronous instability mechanism of pf droop-controlled voltage source converter caused by current saturation. IEEE Trans. Power Syst. 31:5206–7
    [Google Scholar]
  79. 79.
    He J, Li YW. 2011. Analysis, design, and implementation of virtual impedance for power electronics interfaced distributed generation. IEEE Trans. Ind. Appl. 47:2525–38
    [Google Scholar]
  80. 80.
    Groß D, Dörfler F. 2019. Projected grid-forming control for current-limiting of power converters. 2019 57th Annual Allerton Conference on Communication, Control, and Computing326–33 Piscataway, NJ: IEEE
    [Google Scholar]
  81. 81.
    Chandorkar M, Divan D, Adapa R. 1993. Control of parallel connected inverters in standalone AC supply systems. IEEE Trans. Ind. Appl. 29:136–43
    [Google Scholar]
  82. 82.
    Zhang L, Harnefors L, Nee HP. 2010. Power-synchronization control of grid-connected voltage-source converters. IEEE Trans. Power Syst. 25:809–20
    [Google Scholar]
  83. 83.
    Zhong QC, Weiss G. 2011. Synchronverters: inverters that mimic synchronous generators. IEEE Trans. Ind. Electron. 58:1259–67
    [Google Scholar]
  84. 84.
    Schiffer J, Goldin D, Raisch J, Sezi T. 2013. Synchronization of droop-controlled microgrids with distributed rotational and electronic generation. 52nd IEEE Conference on Decision and Control2334–39 Piscataway, NJ: IEEE
    [Google Scholar]
  85. 85.
    D'Arco S, Suul JA 2013. Virtual synchronous machines – classification of implementations and analysis of equivalence to droop controllers for microgrids. 2013 IEEE Grenoble PowerTech Piscataway, NJ: IEEE https://doi.org/10.1109/PTC.2013.6652456
    [Crossref] [Google Scholar]
  86. 86.
    D'Arco S, Suul JA 2014. Equivalence of virtual synchronous machines and frequency-droops for converter-based microgrids. IEEE Trans. Smart Grid 5:394–95
    [Google Scholar]
  87. 87.
    Fouad A, Vittal V. 1988. The transient energy function method. Int. J. Electr. Power Energy Syst. 10:233–46
    [Google Scholar]
  88. 88.
    Chiang HD. 2011. Direct Methods for Stability Analysis of Electric Power Systems: Theoretical Foundation, BCU Methodologies, and Applications Hoboken, NJ: Wiley & Sons
  89. 89.
    Gholami A, Sun A. 2021. Stability of multi-microgrids: new certificates, distributed control, and Braess's paradox. IEEE Trans. Control Netw. Syst. 9:308–19
    [Google Scholar]
  90. 90.
    Aracil J, Gordillo F. 2002. On the control of oscillations in DC-AC converters. IEEE 2002 28th Annual Conference of the Industrial Electronics Society, Vol. 42820–25 Piscataway, NJ: IEEE
    [Google Scholar]
  91. 91.
    Tôrres LAB, Hespanha JP, Moehlis J. 2012. Power supply synchronization without communication. 2012 IEEE Power and Energy Society General Meeting Piscataway, NJ: IEEE https://doi.org/10.1109/PESGM.2012.6344905
    [Crossref] [Google Scholar]
  92. 92.
    Johnson BB, Dhople SV, Hamadeh AO, Krein PT. 2014. Synchronization of parallel single-phase inverters with virtual oscillator control. IEEE Trans. Power Electron. 29:6124–38
    [Google Scholar]
  93. 93.
    Tôrres LAB, Hespanha JP, Moehlis J. 2015. Synchronization of identical oscillators coupled through a symmetric network with dynamics: a constructive approach with applications to parallel operation of inverters. IEEE Trans. Autom. Control 60:3226–41
    [Google Scholar]
  94. 94.
    Johnson BB, Sinha M, Ainsworth NG, Dörfler F, Dhople SV. 2016. Synthesizing virtual oscillators to control islanded inverters. IEEE Trans. Power Electron. 31:6002–15
    [Google Scholar]
  95. 95.
    Sinha M, Dörfler F, Johnson BB, Dhople SV. 2017. Uncovering droop control laws embedded within the nonlinear dynamics of Van der Pol oscillators. IEEE Trans. Control Netw. Syst. 4:347–58
    [Google Scholar]
  96. 96.
    Seo GS, Colombino M, Subotić I, Johnson B, Groß D, Dörfler F. 2019. Dispatchable virtual oscillator control for decentralized inverter-dominated power systems: analysis and experiments. 2019 IEEE Applied Power Electronics Conference and Exposition561–66 Piscataway, NJ: IEEE
    [Google Scholar]
  97. 97.
    Awal MA, Husain I. 2021. Unified virtual oscillator control for grid-forming and grid-following converters. IEEE Trans. Emerg. Sel. Top. Power Electron. 9:4573–86
    [Google Scholar]
  98. 98.
    Subotić I, Groß D. 2022. Power-balancing dual-port grid-forming power converter control for renewable integration and hybrid AC/DC power systems. IEEE Trans. Control Netw. Syst. 91949–61
    [Google Scholar]
  99. 99.
    NERC (N. Am. Electr. Reliab. Corp.) 2017. 1,200 MW fault induced solar photovoltaic resource interruption disturbance report Rep., NERC Atlanta, GA:
  100. 100.
    Chen M, Zhou D, Tayyebi A, Prieto-Araujo E, Dörfler F, Blaabjerg F. 2022. Generalized multivariable grid-forming control design for power converters. IEEE Trans. Smart Grid 13:2873–85
    [Google Scholar]
  101. 101.
    Huang L, Xin H, Dörfler F. 2020. H-control of grid-connected converters: design, objectives and decentralized stability certificates. IEEE Trans. Smart Grid 11:3805–16
    [Google Scholar]
  102. 102.
    Borsche TS, Liu T, Hill DJ. 2015. Effects of rotational inertia on power system damping and frequency transients. 2015 54th IEEE Conference on Decision and Control5940–46 Piscataway, NJ: IEEE
    [Google Scholar]
  103. 103.
    Winkelman JR, Chow JH, Bowler BC, Avramovic B, Kokotovic PV. 1981. An analysis of interarea dynamics of multi-machine systems. IEEE Trans. Power Appar. Syst. PAS-100:754–63
    [Google Scholar]
  104. 104.
    Pates R, Mallada E. 2019. Robust scale-free synthesis for frequency control in power systems. IEEE Trans. Control Netw. Syst. 6:1174–84
    [Google Scholar]
  105. 105.
    Hoke A, Gevorgian V, Shah S, Koralewicz P, Kenyon RW, Kroposki B. 2021. Island power systems with high levels of inverter-based resources: stability and reliability challenges. IEEE Electrif. Mag. 9:174–91
    [Google Scholar]
  106. 106.
    Kenyon RW, Wang B, Hoke A, Tan J, Antonio C, Hodge BM 2021. Validation of Maui PSCAD model: motivation, methodology, and lessons learned. 2020 52nd North American Power Symposium Piscataway, NJ: IEEE https://doi.org/10.1109/NAPS50074.2021.9449773
    [Crossref] [Google Scholar]
  107. 107.
    Poolla BK, Bolognani S, Dörfler F. 2017. Optimal placement of virtual inertia in power grids. IEEE Trans. Autom. Control 62:6209–20
    [Google Scholar]
  108. 108.
    Pulgar-Painemal H, Wang Y, Silva-Saravia H. 2017. On inertia distribution, inter-area oscillations and location of electronically-interfaced resources. IEEE Trans. Power Syst. 33:995–1003
    [Google Scholar]
  109. 109.
    Guggilam SS, Zhao C, Dall'Anese E, Chen YC, Dhople SV. 2018. Optimizing DER participation in inertial and primary-frequency response. IEEE Trans. Power Syst. 33:5194–205
    [Google Scholar]
  110. 110.
    Venkatraman A, Markovic U, Shchetinin D, Vrettos E, Aristidou P, Hug G. 2021. Improving dynamic performance of low-inertia systems through eigensensitivity optimization. IEEE Trans. Power Syst. 36:4075–88
    [Google Scholar]
  111. 111.
    Poolla BK, Groß D, Borsche T, Bolognani S, Dörfler F 2018. Virtual inertia placement in electric power grids. Energy Markets and Responsive Grids S Meyn, T Samad, I Hiskens, J Stoustrup 281–305 New York: Springer
    [Google Scholar]
  112. 112.
    Poolla BK, Bolognani S, Li N, Dörfler F. 2020. A market mechanism for virtual inertia. IEEE Trans. Smart Grid 11:3570–79
    [Google Scholar]
  113. 113.
    Jiang Y, Pates R, Mallada E. 2020. Dynamic droop control in low-inertia power systems. IEEE Trans. Autom. Control 66:3518–33
    [Google Scholar]
  114. 114.
    Tavakoli SD, Fekriasl S, Prieto-Araujo E, Beerten J, Gomis-Bellmunt O. 2021. Optimal H control design for MMC-based HVDC links. IEEE Trans. Power Deliv. 37:786–97
    [Google Scholar]
  115. 115.
    Sánchez-Sánchez E, Groß D, Prieto-Araujo E, Dörfler F, Gomis-Bellmunt O. 2019. Optimal multivariable MMC energy-based control for DC voltage regulation in HVDC applications. IEEE Trans. Power Deliv. 35:999–1009
    [Google Scholar]
  116. 116.
    Pudjianto D, Ramsay C, Strbac G. 2007. Virtual power plant and system integration of distributed energy resources. IET Renew. Power Gener. 1:10–16
    [Google Scholar]
  117. 117.
    Marinescu B, Gomis-Bellmunt O, Dörfler F, Schulte H, Sigrist L. 2021. Dynamic virtual power plant: a new concept for grid integration of renewable energy sources. arXiv:2108.00153 [eess.SY]
  118. 118.
    Ghasemi H, Melki J. 2019. Investigation of frequency containment reserves with inertial response and batteries MS Thesis, KTH R. Inst. Technol. Stockholm:
  119. 119.
    Kenyon RW, Hoke AF, Tan J, Kroposki BD, Hodge BS. 2020. Grid-following inverters and synchronous condensers: a grid-forming pair? Rep., Natl. Renew. Energy Lab. Golden, CO:
  120. 120.
    Li W, Joos G. 2008. A power electronic interface for a battery supercapacitor hybrid energy storage system for wind applications. 2008 IEEE Power Electronics Specialists Conference1762–68 Piscataway, NJ: IEEE
    [Google Scholar]
  121. 121.
    Zhong W, Chen J, Liu M, Murad MAA, Milano F 2021. Coordinated control of virtual power plants to improve power system short-term dynamics. Energies 14:1182
    [Google Scholar]
  122. 122.
    Björk J, Johansson KH, Dörfler F. 2022. Dynamic virtual power plant design for fast frequency reserves: coordinating hydro and wind. IEEE Trans. Control Netw. Syst. In press. https://doi.org/10.1109/TCNS.2022.3181553
    [Crossref] [Google Scholar]
  123. 123.
    Haberle V, Fisher MW, Araujo EP, Dörfler F. 2021. Control design of dynamic virtual power plants: an adaptive divide-and-conquer approach. IEEE Trans. Power Syst. 37:4040–55
    [Google Scholar]
/content/journals/10.1146/annurev-control-052622-032657
Loading
/content/journals/10.1146/annurev-control-052622-032657
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error