1932

Abstract

The commercialization of lithium-ion batteries enabled the widespread use of portable consumer electronics and serious efforts to electrify trans-portation. Managing the potent brew of lithium-ion batteries in the large quantities necessary for vehicle propulsion is still challenging. From space applications a billion miles from Earth to the daily commute of a hybrid electric automobile, these batteries require sophisticated battery management systems based on accurate estimation of battery internal states. This system is the brain of the battery and is responsible for estimating the state of charge, state of health, state of power, and temperature. The state estimation relies on accurate prediction of complex electrochemical, thermal, and mechanical phenomena, which increases the importance of model and parameter accuracy. Moreover, as the batteries age, how should the parameters of the model change to accurately represent the performance, and how can we leverage the limited sensor information from the measured terminal voltage and sparse surface temperatures available in a battery system? With a frugal sensor set, what is the optimal sensor placement? This article reviews estimation techniques and error bounds regarding sensor noise and modeling errors, and concludes with an outlook on the research that will be necessary to enable fast charging, repurposing of batteries for grid energy storage, degradation prediction, and fault detection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-053018-023643
2019-05-03
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/control/2/1/annurev-control-053018-023643.html?itemId=/content/journals/10.1146/annurev-control-053018-023643&mimeType=html&fmt=ahah

Literature Cited

  1. 1. Statista. 2018. Worldwide number of battery electric vehicles in use from 2012 to 2017 (in 1,000s). Statista Accessed June 24, 2018. https://www.statista.com/statistics/270603/worldwide-number-of-hybrid-and-electric-vehicles-since-2009
  2. 2. Statista. 2018. Motor vehicle production of the United States and worldwide from 1999 to 2017. Statista Accessed June 24, 2018. https://www.statista.com/statistics/198488/us-and-global-motor-vehicle-production-since-1999
  3. 3.  Lin B, Wu W 2018. Why people want to buy electric vehicle: an empirical study in first-tier cities of China. Energy Policy 112:233–41
    [Google Scholar]
  4. 4.  Pillot C 2015. Battery market development for consumer electronics, automotive and industrial: materials requirements and trends Presentation given at the 5th Israeli Power Sources Conference, Herzelia, Israel, May 21
  5. 5. Statista. 2018. Projected battery costs as a share of large battery electric vehicle costs from 2016 to 2030. Statista Accessed June 24, 2018. https://www.statista.com/statistics/797638/battery-share-of-large-electric-vehicle-cost
  6. 6.  Samad NA, Kim Y, Siegel JB 2018. On power denials and lost energy opportunities in downsizing battery packs in hybrid electric vehicles. J. Energy Storage 16:187–96
    [Google Scholar]
  7. 7.  Christensen J, Newman J 2006. Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10:293–319
    [Google Scholar]
  8. 8.  Bower A, Guduru P, Sethuraman V 2011. A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J. Mech. Phys. Solids 59:804–28
    [Google Scholar]
  9. 9.  Cannarella J, Arnold CB 2014. State of health and charge measurements in lithium-ion batteries using mechanical stress. J. Power Sources 269:7–14
    [Google Scholar]
  10. 10.  Mohan S, Kim Y, Siegel JB, Samad NA, Stefanopoulou AG 2014. A phenomenological model of bulk force in a Li-ion battery pack and its application to state of charge estimation. J. Electrochem. Soc. 161:A2222–31
    [Google Scholar]
  11. 11.  Lu L, Han X, Li J, Hua J, Ouyang M 2013. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226:272–88
    [Google Scholar]
  12. 12.  Knobloch A, Kapusta C, Karp J, Plotnikov Y, Siegel JB, Stefanopoulou AG 2017. Fabrication of multi-measurand sensor for monitoring of a Li-ion battery. J. Electron. Packaging 140:031002
    [Google Scholar]
  13. 13.  Mensah-Brown AK, Lin X, Tabatowski-Bush BA, Anderson RD 2018. Sensor system for measuring battery internal state US Patent 9,970,993
  14. 14.  Hu Y, Yurkovich S, Guezennec Y, Yurkovich B 2011. Electro-thermal battery model identification for automotive applications. J. Power Sources 196:448–57
    [Google Scholar]
  15. 15.  Hu X, Li S, Peng H 2012. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 175:359–67
    [Google Scholar]
  16. 16.  Lin X, Perez HE, Mohan S, Siegel JB, Stefanopoulou AG et al. 2014. A lumped-parameter electro-thermal model for cylindrical batteries. J. Power Sources 257:1–11
    [Google Scholar]
  17. 17.  Prasad GK, Rahn CD 2014. Reduced order impedance models of lithium ion batteries. J. Dyn. Syst. Meas. Control 136:041012
    [Google Scholar]
  18. 18.  Doyle M, Fuller TF, Newman J 1993. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 140:1526–33
    [Google Scholar]
  19. 19.  Smith K, Wang CY 2006. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles. J. Power Sources 160:662–73
    [Google Scholar]
  20. 20.  Haran BS, Popov BN, White RE 1998. Determination of the hydrogen diffusion coefficient in metal hydrides by impedance spectroscopy. J. Power Sources 75:56–63
    [Google Scholar]
  21. 21.  Di Domenico D, Stefanopoulou A, Fiengo G 2010. Lithium-ion battery state of charge and critical surface charge estimation using an electrochemical model-based extended Kalman filter. J. Dyn. Syst. Meas. Control 132:061302
    [Google Scholar]
  22. 22.  Marcicki J, Canova M, Conlisk AT, Rizzoni G 2013. Design and parametrization analysis of a reduced-order electrochemical model of graphite/LiFePo4 cells for SOC/SOH estimation. J. Power Sources 237:310–24
    [Google Scholar]
  23. 23.  Moura SJ, Chaturvedi NA, Krstić M 2014. Adaptive partial differential equation observer for battery state-of-charge/state-of-health estimation via an electrochemical model. J. Dyn. Syst. Meas. Control 136:011015
    [Google Scholar]
  24. 24.  Fuller TF, Doyle M, Newman J 1994. Simulation and optimization of the dual lithium ion insertion cell. J. Electrochem. Soc. 141:1–10
    [Google Scholar]
  25. 25.  Doyle M, Meyers JP, Newman J 2000. Computer simulations of the impedance response of lithium rechargeable batteries. J. Electrochem. Soc. 147:99–110
    [Google Scholar]
  26. 26.  Plett GL 2004. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 2. Modeling and identification. J. Power Sources 134:262–76
    [Google Scholar]
  27. 27.  Plett GL 2004. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 3. State and parameter estimation. J. Power Sources 134:277–92
    [Google Scholar]
  28. 28.  Charkhgard M, Farrokhi M 2010. State-of-charge estimation for lithium-ion batteries using neural networks and EKF. IEEE Trans. Ind. Electron. 57:4178–87
    [Google Scholar]
  29. 29.  Saha B, Goebel K, Poll S, Christophersen J 2009. Prognostics methods for battery health monitoring using a Bayesian framework. IEEE Trans. Instrum. Meas. 58:291–96
    [Google Scholar]
  30. 30.  Xiong R, Sun F, Chen Z, He H 2014. A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles. Appl. Energy 113:463–76
    [Google Scholar]
  31. 31.  Johnson V 2002. Battery performance models in advisor. J. Power Sources 110:321–29
    [Google Scholar]
  32. 32.  Xu J, Mi CC, Cao B, Cao J 2013. A new method to estimate the state of charge of lithium-ion batteries based on the battery impedance model. J. Power Sources 233:277–84
    [Google Scholar]
  33. 33.  Alavi SMM, Birkl CR, Howey DA 2015. Time-domain fitting of battery electrochemical impedance models. J. Power Sources 288:345–52
    [Google Scholar]
  34. 34.  Ramadass P, Haran B, Gomadam PM, White R, Popov BN 2004. Development of first principles capacity fade model for Li-ion cells. J. Electrochem. Soc. 151:A196–203
    [Google Scholar]
  35. 35.  Arora P, Doyle M, White RE 1999. Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes. J. Electrochem. Soc. 146:3543–53
    [Google Scholar]
  36. 36.  Smith KA, Rahn CD, Wang CY 2010. Model-based electrochemical estimation and constraint management for pulse operation of lithium ion batteries. IEEE Trans. Control Syst. Technol. 18:654–63
    [Google Scholar]
  37. 37.  Suthar B, Ramadesigan V, Northrop PW, Gopaluni B, Santhanagopalan S et al. 2013. Optimal control and state estimation of lithium-ion batteries using reformulated models. 2013 American Control Conference5350–55 New York: IEEE
    [Google Scholar]
  38. 38.  Bizeray AM, Zhao S, Duncan SR, Howey DA 2015. Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter. J. Power Sources 296:400–12
    [Google Scholar]
  39. 39.  Stetzel KD, Aldrich LL, Trimboli MS, Plett GL 2015. Electrochemical state and internal variables estimation using a reduced-order physics-based model of a lithium-ion cell and an extended Kalman filter. J. Power Sources 278:490–505
    [Google Scholar]
  40. 40.  Tulsyan A, Tsai Y, Gopaluni RB, Braatz RD 2016. State-of-charge estimation in lithium-ion batteries: a particle filter approach. J. Power Sources 331:208–23
    [Google Scholar]
  41. 41.  Forman JC, Bashash S, Stein JL, Fathy HK 2011. Reduction of an electrochemistry-based Li-ion battery model via quasi-linearization and Padé approximation. J. Electrochem. Soc. 158:A93–101
    [Google Scholar]
  42. 42.  Schmidt AP, Bitzer M, Imre ÁW, Guzzella L 2010. Experiment-driven electrochemical modeling and systematic parameterization for a lithium-ion battery cell. J. Power Sources 195:5071–80
    [Google Scholar]
  43. 43.  Bartlett A, Marcicki J, Onori S, Rizzoni G, Yang XG, Miller T 2016. Electrochemical model-based state of charge and capacity estimation for a composite electrode lithium-ion battery. IEEE Trans. Control Syst. Technol. 24:384–99
    [Google Scholar]
  44. 44.  Tanim TR, Rahn CD, Wang CY 2015. A temperature dependent, single particle, lithium ion cell model including electrolyte diffusion. J. Dyn. Syst. Meas. Control 137:011005
    [Google Scholar]
  45. 45.  Randall AV, Perkins RD, Zhang X, Plett GL 2012. Controls oriented reduced order modeling of solid-electrolyte interphase layer growth. J. Power Sources 209:282–88
    [Google Scholar]
  46. 46.  Perkins RD, Randall AV, Zhang X, Plett GL 2012. Controls oriented reduced order modeling of lithium deposition on overcharge. J. Power Sources 209:318–25
    [Google Scholar]
  47. 47.  Santhanagopalan S, White RE 2006. Online estimation of the state of charge of a lithium ion cell. J. Power Sources 161:1346–55
    [Google Scholar]
  48. 48.  Dey S, Ayalew B, Pisu P 2015. Nonlinear robust observers for state-of-charge estimation of lithium-ion cells based on a reduced electrochemical model. IEEE Trans. Control Syst. Technol. 23:1935–42
    [Google Scholar]
  49. 49.  Tanim TR, Rahn CD, Wang CY 2015. State of charge estimation of a lithium ion cell based on a temperature dependent and electrolyte enhanced single particle model. Energy 80:731–39
    [Google Scholar]
  50. 50.  Klein R, Chaturvedi NA, Christensen J, Ahmed J, Findeisen R, Kojic A 2013. Electrochemical model based observer design for a lithium-ion battery. IEEE Trans. Control Syst. Technol. 21:289–301
    [Google Scholar]
  51. 51.  Dubarry M, Vuillaume N, Liaw BY 2009. From single cell model to battery pack simulation for Li-ion batteries. J. Power Sources 186:500–7
    [Google Scholar]
  52. 52.  Cordoba-Arenas A, Onori S, Rizzoni G 2015. A control-oriented lithium-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management. J. Power Sources 279:791–808
    [Google Scholar]
  53. 53.  Li Z, Huang J, Liaw BY, Zhang J 2017. On state-of-charge determination for lithium-ion batteries. J. Power Sources 348:281–301
    [Google Scholar]
  54. 54.  Haifeng D, Xuezhe W, Zechang S 2009. A new SOH prediction concept for the power lithium-ion battery used on HEVs. 2009 Vehicle Power and Propulsion Conference1649–53 New York: IEEE
    [Google Scholar]
  55. 55.  Prasad GK, Rahn CD 2013. Model based identification of aging parameters in lithium ion batteries. J. Power Sources 232:79–85
    [Google Scholar]
  56. 56.  Ng KS, Moo CS, Chen YP, Hsieh YC 2009. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Appl. Energy 86:1506–11
    [Google Scholar]
  57. 57.  Lin X 2018. Theoretical analysis of battery SOC estimation errors under sensor bias and variance. IEEE Trans. Ind. Electron. 65:7138–48
    [Google Scholar]
  58. 58.  Coleman M, Lee CK, Zhu C, Hurley WG 2007. State-of-charge determination from EMF voltage estimation: using impedance, terminal voltage, and current for lead-acid and lithium-ion batteries. IEEE Trans. Ind. Electron. 54:2550–57
    [Google Scholar]
  59. 59.  Lin X, Stefanopoulou AG, Laskowsky P, Freudenberg J, Li Y, Anderson RD 2011. State of charge estimation error due to parameter mismatch in a generalized explicit lithium ion battery model. ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control393–400 New York: ASME
    [Google Scholar]
  60. 60.  Mishra PP, Garg M, Mendoza S, Liu J, Rahn CD, Fathy HK 2017. How does model reduction affect lithium-ion battery state of charge estimation errors? Theory and experiments. J. Electrochem. Soc. 164:A237–51
    [Google Scholar]
  61. 61.  Tanim TR, Rahn CD 2015. Aging formula for lithium ion batteries with solid electrolyte interphase layer growth. J. Power Sources 294:239–47
    [Google Scholar]
  62. 62.  Bloom I, Cole B, Sohn J, Jones S, Polzin E et al. 2001. An accelerated calendar and cycle life study of Li-ion cells. J. Power Sources 101:238–47
    [Google Scholar]
  63. 63.  Wang J, Liu P, Hicks-Garner J, Sherman E, Soukiazian S et al. 2011. Cycle-life model for graphite-LiFePo4 cells. J. Power Sources 196:3942–48
    [Google Scholar]
  64. 64.  Lee J, Nam O, Cho B 2007. Li-ion battery SOC estimation method based on the reduced order extended Kalman filtering. J. Power Sources 174:9–15
    [Google Scholar]
  65. 65.  Plett GL 2006. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 1: introduction and state estimation. J. Power Sources 161:1356–68
    [Google Scholar]
  66. 66.  Zhang W, Shi W, Ma Z 2015. Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery. J. Power Sources 289:50–62
    [Google Scholar]
  67. 67.  Liu X, Chen Z, Zhang C, Wu J 2014. A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation. Appl. Energy 123:263–72
    [Google Scholar]
  68. 68.  Schwunk S, Armbruster N, Straub S, Kehl J, Vetter M 2013. Particle filter for state of charge and state of health estimation for lithium–iron phosphate batteries. J. Power Sources 239:705–10
    [Google Scholar]
  69. 69.  Kim IS 2006. The novel state of charge estimation method for lithium battery using sliding mode observer. J. Power Sources 163:584–90
    [Google Scholar]
  70. 70.  Moura SJ, Argomedo FB, Klein R, Mirtabatabaei A, Krstić M 2017. Battery state estimation for a single particle model with electrolyte dynamics. IEEE Trans. Control Syst. Technol. 25:453–68
    [Google Scholar]
  71. 71.  Xia B, Chen C, Tian Y, Sun W, Xu Z, Zheng W 2014. A novel method for state of charge estimation of lithium-ion batteries using a nonlinear observer. J. Power Sources 270:359–66
    [Google Scholar]
  72. 72.  Wang Y, Fang H, Zhou L, Wada T 2017. Revisiting the state-of-charge estimation for lithium-ion batteries: a methodical investigation of the extended Kalman filter approach. IEEE Control Syst. 37:73–96
    [Google Scholar]
  73. 73.  Barré A, Deguilhem B, Grolleau S, Gérard M, Suard F, Riu D 2013. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 241:680–89
    [Google Scholar]
  74. 74.  Berecibar M, Gandiaga I, Villarreal I, Omar N, Van Mierlo J, Van den Bossche P 2016. Critical review of state of health estimation methods of Li-ion batteries for real applications. Renew. Sustain. Energy Rev. 56:572–87
    [Google Scholar]
  75. 75.  Mohan S, Kim Y, Stefanopoulou AG 2016. Energy-conscious warm-up of Li-ion cells from subzero temperatures. IEEE Trans. Ind. Electron. 63:2954–64
    [Google Scholar]
  76. 76.  Mohan S, Siegel JB, Stefanopoulou AG, Vasudevan R 2018. An energy-optimal warm-up strategy for Li-ion batteries and its approximations. IEEE Trans. Control Syst. Technol. In press. https://doi.org/10.1109/TCST.2017.2785833
    [Crossref]
  77. 77.  Bloom I, Jansen AN, Abraham DP, Knuth J, Jones SA et al. 2005. Differential voltage analyses of high-power, lithium-ion cells: 1. Technique and application. J. Power Sources 139:295–303
    [Google Scholar]
  78. 78.  Weng C, Cui Y, Sun J, Peng H 2013. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression. J. Power Sources 235:36–44
    [Google Scholar]
  79. 79.  Samad NA, Kim Y, Siegel JB, Stefanopoulou AG 2016. Battery capacity fading estimation using a force-based incremental capacity analysis. J. Electrochem. Soc. 163:A1584–94
    [Google Scholar]
  80. 80.  Dubarry M, Truchot C, Liaw BY 2012. Synthesize battery degradation modes via a diagnostic and prognostic model. J. Power Sources 219:204–16
    [Google Scholar]
  81. 81.  Han X, Ouyang M, Lu L, Li J, Zheng Y, Li Z 2014. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification. J. Power Sources 251:38–54
    [Google Scholar]
  82. 82.  Mohtat P, Nezampasandarbabi F, Mohan S, Siegel JB, Stefanopoulou AG 2017. On identifying the aging mechanisms in Li-ion batteries using two points measurements. 2017 American Control Conference98–103 New York: IEEE
    [Google Scholar]
  83. 83.  Rezvanizaniani SM, Liu Z, Chen Y, Lee J 2014. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility. J. Power Sources 256:110–24
    [Google Scholar]
  84. 84.  Andre D, Nuhic A, Soczka-Guth T, Sauer DU 2013. Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electric vehicles. Eng. Appl. Artif. Intell. 26:951–61
    [Google Scholar]
  85. 85.  Liu J, Saxena A, Goebel K, Saha B, Wang W 2010. An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries Paper presented at the Annual Conference of the Prognostics and Health Management Society, Portland, OR, Oct. 10–16
  86. 86.  Shen W, Chan C, Lo E, Chau K 2002. A new battery available capacity indicator for electric vehicles using neural network. Energy Convers. Manag. 43:817–26
    [Google Scholar]
  87. 87.  Eddahech A, Briat O, Bertrand N, Delétage JY, Vinassa JM 2012. Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. Int. J. Electr. Power Energy Syst. 42:487–94
    [Google Scholar]
  88. 88.  Hansen T, Wang CJ 2005. Support vector based battery state of charge estimator. J. Power Sources 141:351–58
    [Google Scholar]
  89. 89.  Pattipati B, Sankavaram C, Pattipati K 2011. System identification and estimation framework for pivotal automotive battery management system characteristics. IEEE Trans. Syst. Man Cybernet. C 41:869–84
    [Google Scholar]
  90. 90.  Hu C, Jain G, Schmidt C, Strief C, Sullivan M 2015. Online estimation of lithium-ion battery capacity using sparse Bayesian learning. J. Power Sources 289:105–13
    [Google Scholar]
  91. 91.  Truchot C, Dubarry M, Liaw BY 2014. State-of-charge estimation and uncertainty for lithium-ion battery strings. Appl. Energy 119:218–27
    [Google Scholar]
  92. 92.  Lin X, Stefanopoulou AG, Li Y, Anderson RD 2015. State of charge imbalance estimation for battery strings under reduced voltage sensing. IEEE Trans. Control Syst. Technol. 23:1052–62
    [Google Scholar]
  93. 93.  Mohan S, Kim Y, Stefanopoulou AG 2015. On improving battery state of charge estimation using bulk force measurements. ASME 2015 Dynamic Systems and Control Conference pap. DSCC2015-9966 New York: ASME
    [Google Scholar]
  94. 94.  Kim Y, Samad NA, Oh KY, Siegel JB, Epureanu BI, Stefanopoulou AG 2016. Estimating state-of-charge imbalance of batteries using force measurements. 2016 American Control Conference1500–505 New York: IEEE
    [Google Scholar]
  95. 95.  Perez H, Moura SJ 2015. Sensitivity-based interval PDE observer for battery SOC estimation. 2015 American Control Conference323–28 New York: IEEE
    [Google Scholar]
  96. 96.  Mendoza S, Liu J, Mishra P, Fathy H 2017. On the relative contributions of bias and noise to lithium-ion battery state of charge estimation errors. J. Energy Storage 11:86–92
    [Google Scholar]
  97. 97.  Zhao S, Duncan SR, Howey DA 2016. Observability analysis and state estimation of lithium-ion batteries in the presence of sensor biases. IEEE Trans. Control Syst. Technol. 25:326–33
    [Google Scholar]
  98. 98.  Lehmann EL, Casella G 1998. Theory of Point Estimation New York: Springer. 2nd ed.
  99. 99.  Cramér H 1999. Mathematical Methods of Statistics Princeton, NJ: Princeton Univ. Press
  100. 100.  Forman JC, Moura SJ, Stein JL, Fathy HK 2012. Genetic identification and fisher identifiability analysis of the Doyle–Fuller–Newman model from experimental cycling of a LiFePo4 cell. J. Power Sources 210:263–75
    [Google Scholar]
  101. 101.  Ramadesigan V, Chen K, Burns NA, Boovaragavan V, Braatz RD, Subramanian VR 2011. Parameter estimation and capacity fade analysis of lithium-ion batteries using reformulated models. J. Electrochem. Soc. 158:A1048–54
    [Google Scholar]
  102. 102.  Zhang L, Lyu C, Hinds G, Wang L, Luo W et al. 2014. Parameter sensitivity analysis of cylindrical LiFePo4 battery performance using multi-physics modeling. J. Electrochem. Soc. 161:A762–76
    [Google Scholar]
  103. 103.  Vazquez-Arenas J, Gimenez LE, Fowler M, Han T, Chen S 2014. A rapid estimation and sensitivity analysis of parameters describing the behavior of commercial Li-ion batteries including thermal analysis. Energy Convers. Manag. 87:472–82
    [Google Scholar]
  104. 104.  Sharma A, Fathy HK 2014. Fisher identifiability analysis for a periodically-excited equivalent-circuit lithium-ion battery model. 2014 American Control Conference274–80 New York: IEEE
    [Google Scholar]
  105. 105.  Lin X, Stefanopoulou AG 2015. Analytic bound on accuracy of battery state and parameter estimation. J. Electrochem. Soc. 162:A1879–91
    [Google Scholar]
  106. 106.  Lin X 2016. On the analytic accuracy of battery SOC, capacity and resistance estimation. 2016 American Control Conference4006–11 New York: IEEE
    [Google Scholar]
  107. 107.  Lin X 2017. Analytic analysis of the data-dependent estimation accuracy of battery equivalent circuit dynamics. IEEE Control Syst. Lett. 1:304–9
    [Google Scholar]
  108. 108.  Klintberg A, Wik T, Fridholm B 2017. Theoretical bounds on the accuracy of state and parameter estimation for batteries. 2017 American Control Conference4035–41 New York: IEEE
    [Google Scholar]
  109. 109.  Rothenberger MJ, Docimo DJ, Ghanaatpishe M, Fathy HK 2015. Genetic optimization and experimental validation of a test cycle that maximizes parameter identifiability for a Li-ion equivalent-circuit battery model. J. Energy Storage 4:156–66
    [Google Scholar]
  110. 110.  Mendoza S, Rothenberger M, Hake A, Fathy H 2016. Optimization and experimental validation of a thermal cycle that maximizes entropy coefficient fisher identifiability for lithium iron phosphate cells. J. Power Sources 308:18–28
    [Google Scholar]
  111. 111.  Rothenberger MJ, Safi J, Liu J, Anstrom J, Brennan S, Fathy HK 2017. Improving lithium-ion battery pack diagnostics by optimizing the internal allocation of demand current for parameter identifiability. J. Dyn. Syst. Meas. Control 139:081001
    [Google Scholar]
  112. 112.  Song Z, Hou J, Hofmann H, Lin X, Sun J 2018. Parameter identification and maximum power estimation of battery/supercapacitor hybrid energy storage system based on Cramer-Rao bound analysis. IEEE Trans. Power Electron In press. https://doi.org/10.1109/TPEL.2018.2859317
    [Crossref]
  113. 113.  Park S, Kato D, Gima Z, Klein R, Moura S 2018. Optimal experimental design for parameterization of an electrochemical lithium-ion battery model. J. Electrochem. Soc. 165:A1309–23
    [Google Scholar]
  114. 114.  Mohan S, Kim Y, Stefanopoulou AG 2016. Estimating the power capability of Li-ion batteries using informationally partitioned estimators. IEEE Trans. Control Syst. Technol. 24:1643–54
    [Google Scholar]
  115. 115.  Lin X 2018. A data selection strategy for real-time estimation of battery parameters. 2018 American Control Conference2276–81 New York: IEEE
    [Google Scholar]
  116. 116.  Bandhauer TM, Garimella S, Fuller TF 2011. A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 158:1–25
    [Google Scholar]
  117. 117.  Feng X, Fang M, He X, Ouyang M, Lu L et al. 2014. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J. Power Sources 255:294–301
    [Google Scholar]
  118. 118.  Thomas KE, Newman J 2003. Heats of mixing and of entropy in porous insertion electrodes. J. Power Sources 119–121:844–49
    [Google Scholar]
  119. 119.  Bernardi D, Pawlikowski E, Newman J 1985. General energy balance for battery systems. J. Electrochem. Soc. 132:5–12
    [Google Scholar]
  120. 120.  Forgez C, Do DV, Friedrich G, Morcrette M, Delacourt C 2010. Thermal modeling of a cylindrical LiFePo4/graphite lithium-ion battery. J. Power Sources 195:2961–68
    [Google Scholar]
  121. 121.  Pals CR, Newman J 1995. Thermal modeling of the lithium/polymer battery: I. Discharge behavior of a single cell. J. Electrochem. Soc. 142:3274–81
    [Google Scholar]
  122. 122.  Pals CR, Newman J 1995. Thermal modeling of the lithium/polymer battery: II. Temperature profiles in a cell stack. J. Electrochem. Soc. 142:3282–88
    [Google Scholar]
  123. 123.  Guo M, Sikha G, White R 2011. Single-particle model for a lithium-ion cell: thermal behavior. J. Electrochem. Soc. 158:122–32
    [Google Scholar]
  124. 124.  Gu WB, Wang CY 2000. Thermal-electrochemical modeling of battery systems. J. Electrochem. Soc. 147:2910–22
    [Google Scholar]
  125. 125.  Kumaresan K, Sikha G, White RE 2008. Thermal model for a Li-ion cell. J. Electrochem. Soc. 155:A164–71
    [Google Scholar]
  126. 126.  Kim Y, Mohan S, Siegel JB, Stefanopoulou AG, Ding Y 2014. The estimation of temperature distribution in cylindrical battery cells under unknown cooling conditions. IEEE Trans. Control Syst. Technol. 22:2277–86
    [Google Scholar]
  127. 127.  Park CW, Jaura AK 2003. Dynamic thermal model of Li-ion battery for predictive behavior in hybrid and fuel cell vehicles Tech. Pap. 2003-01-2286, SAE Int., Warrendale, PA
  128. 128.  Muratori M, Ma N, Canova M, Guezennec Y 2010. A model order reduction method for the temperature estimation in a cylindrical Li-ion battery cell. ASME 2010 Dynamic Systems and Control Conference 1633–40 New York: ASME
    [Google Scholar]
  129. 129.  Chen S, Wan C, Wang Y 2005. Thermal analysis of lithium-ion batteries. J. Power Sources 140:111–24
    [Google Scholar]
  130. 130.  Muratori M, Canova M, Guezennec Y 2012. A spatially-reduced dynamic model for the thermal characterisation of Li-ion battery cells. Int. J. Veh. Des. 58:134–58
    [Google Scholar]
  131. 131.  Samba A, Omar N, Gualous H, Firouz Y, den Bossche PV et al. 2014. Development of an advanced two-dimensional thermal model for large size lithium-ion pouch cells. Electrochim. Acta 117:246–54
    [Google Scholar]
  132. 132.  Gerver RE, Meyers JP 2011. Three-dimensional modeling of electrochemical performance and heat generation of lithium-ion batteries in tabbed planar configurations. J. Electrochem. Soc. 158:A835–43
    [Google Scholar]
  133. 133.  Samad NA, Wang B, Siegel JB, Stefanopoulou AG 2017. Parameterization of battery electrothermal models coupled with finite element flow models for cooling. J. Dyn. Syst. Meas. Control 139:071003
    [Google Scholar]
  134. 134.  Samad NA 2016. Improved battery state estimation using novel sensing techniques PhD Thesis, Univ. Mich., Ann Arbor
  135. 135.  Smyshlyaev A, Krstić M, Chaturvedi N, Ahmed J, Kojic A 2011. PDE model for thermal dynamics of a large Li-ion battery pack. 2011 American Control Conference959–64 New York: IEEE
    [Google Scholar]
  136. 136.  Liu Z, Li HX 2014. A spatiotemporal estimation method for temperature distribution in lithium-ion batteries. IEEE Trans. Ind. Inf. 10:2300–7
    [Google Scholar]
  137. 137.  Lin X, Perez HE, Siegel JB, Stefanopoulou AG, Li Y et al. 2013. Online parameterization of lumped thermal dynamics in cylindrical lithium ion batteries for core temperature estimation and health monitoring. IEEE Trans. Control Syst. Technol. 21:1745–55
    [Google Scholar]
  138. 138.  He F, Ma L 2015. Thermal management of batteries employing active temperature control and reciprocating cooling flow. Int. J. Heat Mass Transfer 83:164–72
    [Google Scholar]
  139. 139.  Debert M, Colin G, Bloch G, Chamaillard Y 2013. An observer looks at the cell temperature in automotive battery packs. Control Eng. Pract. 21:1035–42
    [Google Scholar]
  140. 140.  Richardson RR, Ireland PT, Howey DA 2014. Battery internal temperature estimation by combined impedance and surface temperature measurement. J. Power Sources 265:254–61
    [Google Scholar]
  141. 141.  Dey S, Perez HE, Moura SJ 2019. Model-based battery thermal fault diagnostics: algorithms, analysis, and experiments. IEEE Trans. Control Syst. Technol. 27:576–87
    [Google Scholar]
  142. 142.  Lin X, Fu H, Perez HE, Siegel JB, Stefanopoulou AG et al. 2013. Parameterization and observability analysis of scalable battery clusters for onboard thermal management. Oil Gas Sci. Technol.–Rev. IFP Energ. Nouv. 68:165–78
    [Google Scholar]
  143. 143.  Tian N, Fang H, Wang Y 2019. 3-D temperature field reconstruction for a lithium-ion battery pack: a distributed Kalman filtering approach. IEEE Trans. Control Syst. Technol. 27:847–54
    [Google Scholar]
  144. 144.  Lin X 2014. Adaptive estimation of thermal dynamics and charge imbalance in battery strings PhD Thesis, Univ. Mich., Ann Arbor
  145. 145.  Lin X, Stefanopoulou AG, Siegel JB, Mohan S 2014. Temperature estimation in a battery string under frugal sensor allocation. ASME 2014 Dynamic Systems and Control Conference pap. DSCC2014-6352 New York: ASME
    [Google Scholar]
  146. 146.  Lin X, Perez HE, Siegel JB, Stefanopoulou AG 2019. Robust estimation of battery system temperature distribution under sparse sensing and uncertainty. IEEE Trans. Control Syst. Technol. In press. https://doi.org/10.1109/TCST.2019.2892019
    [Crossref]
  147. 147.  Samad NA, Siegel JB, Stefanopoulou AG, Knobloch A 2015. Observability analysis for surface sensor location in encased battery cells. 2015 American Control Conference299–304 New York: IEEE
    [Google Scholar]
  148. 148.  Xiao Y 2015. Model-based virtual thermal sensors for lithium-ion battery in EV applications. IEEE Trans. Ind. Electron. 62:3112–22
    [Google Scholar]
  149. 149.  Wolf P, Moura S, Krstić M 2012. On optimizing sensor placement for spatio-temporal temperature estimation in large battery packs. 2012 IEEE 51st Annual Conference on Decision and Control973–78 New York: IEEE
    [Google Scholar]
  150. 150.  Plett GL 2004. High-performance battery-pack power estimation using a dynamic cell model. IEEE Trans. Veh. Technol. 53:1586–93
    [Google Scholar]
  151. 151.  Belov D, Yang MH 2008. Failure mechanism of Li-ion battery at overcharge conditions. J. Solid State Electrochem. 12:885–94
    [Google Scholar]
  152. 152.  Belov D, Yang MH 2008. Investigation of the kinetic mechanism in overcharge process for Li-ion battery. Solid State Ionics 179:1816–21
    [Google Scholar]
  153. 153.  Zhao M, Dewald HD, Lemke FR, Staniewicz RJ 2000. Electrochemical stability of graphite-coated copper in lithiumion battery electrolytes. J. Electrochem. Soc. 147:3983–88
    [Google Scholar]
  154. 154.  Belov D, Yang MH 2006. Effects of overdischarge on performance and thermal stability of a Li-ion cell. J. Power Sources 160:1395–402
    [Google Scholar]
  155. 155.  Lin H, Chua D, Salomon M, Shiao HC, Hendrickson M et al. 2001. Low-temperature behavior of Li-ion cells. Electrochem. Solid-State Lett. 4:A71–73
    [Google Scholar]
  156. 156.  Ramadass P, Haran B, White R, Popov BN 2002. Capacity fade of Sony 18650 cells cycled at elevated temperatures: part II. Capacity fade analysis. J. Power Sources 112:614–20
    [Google Scholar]
  157. 157.  Abraham DP, Reynolds EM, Schultz PL, Jansen AN, Dees DW 2006. Temperature dependence of capacity and impedance data from fresh and aged high-power lithium-ion cells. J. Electrochem. Soc. 153:A1610–16
    [Google Scholar]
  158. 158.  Zackrisson M, Avellan L, Orlenius J 2010. Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles critical issues. J. Clean. Prod. 18:1517–29
    [Google Scholar]
  159. 159.  Han X, Ouyang M, Lu L, Li J 2014. Cycle life of commercial lithium-ion batteries with lithium titanium oxide anodes in electric vehicles. Energies 7:4895–909
    [Google Scholar]
  160. 160.  Lunz B, Yan Z, Gerschler JB, Sauer DU 2012. Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs. Energy Policy 46:511–19
    [Google Scholar]
  161. 161.  Zheng F, Jiang J, Sun B, Zhang W, Pecht M 2016. Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles. Energy 113:64–75
    [Google Scholar]
  162. 162.  Perez H, Shahmohammadhamedani N, Moura S 2015. Enhanced performance of Li-ion batteries via modified reference governors and electrochemical models. IEEE/ASME Trans. Mechatron. 20:1511–20
    [Google Scholar]
  163. 163.  Zhang X, Wang Y, Wu J, Chen Z 2018. A novel method for lithium-ion battery state of energy and state of power estimation based on multi-time-scale filter. Appl. Energy 216:442–51
    [Google Scholar]
  164. 164.  Malysz P, Ye J, Gu R, Yang H, Emadi A 2016. Battery state-of-power peak current calculation and verification using an asymmetric parameter equivalent circuit model. IEEE Trans. Veh. Technol. 65:4512–22
    [Google Scholar]
  165. 165.  Xiang S, Hu G, Huang R, Guo F, Zhou P 2018. Lithium-ion battery online rapid state-of-power estimation under multiple constraints. Energies 11:283
    [Google Scholar]
  166. 166.  Lee TK, Kim Y, Rizzo DM, Filipi ZS 2013. Battery power management in heavy-duty HEVs based on the estimated critical surface charge. Int. J. Veh. Des. 61:108–27
    [Google Scholar]
  167. 167.  Verbrugge MW, Wampler CW 2018. On the optimal sizing of batteries for electric vehicles and the influence of fast charge. J. Power Sources 384:312–17
    [Google Scholar]
  168. 168.  Pannala S, Zhang M, Siegel JB, Less GB, Stefanopoulou AG 2018. Mechanical measurements for early detection of thermal runaway induced by an internal short circuit. ECS Meet. Abstr. MA2018-01:368
    [Google Scholar]
  169. 169.  Cai T, Stefanopoulou AG, Siegel JB 2018. Modeling Li-ion battery thermal runaway using a three section thermal model Paper presented at the Dynamic Systems and Control Conference, Atlanta, GA, Sept. 30–Oct. 3
  170. 170.  Neubauer J, Smith K, Wood E, Pesaran A 2015. Identifying and overcoming critical barriers to widespread second use of PEV batteries Tech. Rep. NREL/TP-5400-63332, Natl. Renew. Energy Lab., Golden, CO. https://www.nrel.gov/docs/fy15osti/63332.pdf
  171. 171.  Guo M, White R 2011. Thermal model for lithium ion battery pack with mixed parallel and series configuration. J. Electrochem. Soc 1581166–76
    [Google Scholar]
/content/journals/10.1146/annurev-control-053018-023643
Loading
/content/journals/10.1146/annurev-control-053018-023643
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error