1932

Abstract

Robotic micromanipulation is a relatively young field. However, after three decades of development and evolution, the fundamental physics; techniques for sensing, actuation, and control; tool sets and systems; and, more importantly, a research community are now in place. This article reviews the fundamentals of robotic micromanipulation, including how micromanipulators and end effectors are actuated and controlled, how remote physical fields are utilized for micromanipulation, how visual servoing is implemented under an optical microscope, how force is sensed and controlled at the micro- and nanonewton levels, and the similarities and differences between robotic manipulation at the micro- and macroscales. We also review representative milestones over the past three decades and discuss potential future trends of this field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-053018-023755
2019-05-03
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/control/2/1/annurev-control-053018-023755.html?itemId=/content/journals/10.1146/annurev-control-053018-023755&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Fukuda T, Fujiyoshi M, Arai F, Matsuura H 1991. Design and dextrous control of micromanipulator with 6 DOF. Proceedings of the 1991 IEEE International Conference on Robotics and Automation1628–33 New York: IEEE
    [Google Scholar]
  2. 2.  Arai F, Ando D, Fukuda T, Nonoda Y, Oota T 1995. Micro manipulation based on micro physics-strategy based on attractive force reduction and stress measurement. Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems: Human Robot Interaction and Cooperative Robots 2236–41 New York: IEEE
    [Google Scholar]
  3. 3.  Fearing RS 1995. Survey of sticking effects for micro parts handling. Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems: Human Robot Interaction and Cooperative Robots 2212–17 New York: IEEE
    [Google Scholar]
  4. 4.  Rembold U, Fatikow S 1997. Autonomous microrobots. J. Intell. Robot. Syst. 19:375–91
    [Google Scholar]
  5. 5.  Kallio P, Zhou Q, Koivo HN 1998. Control issues in micromanipulation. Proceedings of the 1998 International Symposium on Micromechatronics and Human Science135–41 New York: IEEE
    [Google Scholar]
  6. 6.  Nelson BJ, Zhou Y, Vikramaditya B 1998. Sensor-based microassembly of hybrid MEMS devices. IEEE Control Syst 18:35–45
    [Google Scholar]
  7. 7.  Bohringer K-F, Donald BR, MacDonald NC 1999. Programmable force fields for distributed manipulation, with applications to MEMS actuator arrays and vibratory parts feeders. Int. J. Robot. Res. 18:168–200
    [Google Scholar]
  8. 8.  Sun Y, Nelson BJ 2002. Biological cell injection using an autonomous microrobotic system. Int. J. Robot. Res. 21:861–68
    [Google Scholar]
  9. 9.  Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J 2005. Microscopic artificial swimmers. Nature 437:862–65
    [Google Scholar]
  10. 10.  Donald BR, Levey CG, McGray CG, Paprotny I, Rus D 2006. An untethered, electrostatic, globally controllable MEMS micro-robot. J. Microelectromech. Syst. 15:1–15
    [Google Scholar]
  11. 11.  Yesin KB, Vollmers K, Nelson BJ 2006. Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int. J. Robot. Res. 25:527–36
    [Google Scholar]
  12. 12.  Ghosh A, Fischer P 2009. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9:2243–45
    [Google Scholar]
  13. 13.  Martel S, Tremblay CC, Ngakeng S, Langlois G 2006. Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl. Phys. Lett. 89:233904
    [Google Scholar]
  14. 14.  Magdanz V, Sanchez S, Schmidt OG 2013. Development of a sperm-flagella driven micro-bio-robot. Adv. Mater. 25:6581–88
    [Google Scholar]
  15. 15.  Agnus J, Chaillet N, Clévy C, Dembélé S, Gauthier M et al. 2013. Robotic microassembly and micromanipulation at FEMTO-ST. J. Micro-Bio Robot. 8:91–106
    [Google Scholar]
  16. 16.  Lu Z, Zhang X, Leung C, Esfandiari N, Casper RF, Sun Y 2011. Robotic ICSI (intracytoplasmic sperm injection). IEEE Trans. Biomed. Eng. 58:2102–8
    [Google Scholar]
  17. 17.  Sitti M, Ceylan H, Hu W, Giltinan J, Turan M et al. 2015. Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE 103:205–24
    [Google Scholar]
  18. 18.  Felfoul O, Mohammadi M, Taherkhani S, De Lanauze D, Zhong Xu Y et al. 2016. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11:941–47
    [Google Scholar]
  19. 19.  Yan X, Zhou Q, Vincent M, Deng Y, Yu J et al. 2017. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2:eaaq1155
    [Google Scholar]
  20. 20.  Li J, Esteban-Fernández de Ávila B, Gao W, Zhang L, Wang J 2017. Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2:eaam6431
    [Google Scholar]
  21. 21.  Abbott JJ, Nagy Z, Beyeler F, Nelson BJ 2007. Robotics in the small, part I: microbotics. IEEE Robot. Autom. Mag. 14:92–103
    [Google Scholar]
  22. 22.  Diller E, Sitti M 2011. Micro-scale mobile robotics. Found. Trends Robot. 2:143–259
    [Google Scholar]
  23. 23.  Dong L, Nelson BJ 2007. Robotics in the small, part II: nanorobotics. IEEE Robot. Autom. Mag. 14:111–21
    [Google Scholar]
  24. 24.  Shi C, Luu DK, Yang Q, Liu J, Chen J et al. 2016. Recent advances in nanorobotic manipulation inside scanning electron microscopes. Microsyst. Nanoeng. 2:16024
    [Google Scholar]
  25. 25.  Li M, Dang D, Xi N, Wang Y, Liu L 2018. A review of nanoscale characterizing individual DNA behaviors using atomic force microscopy. IEEE Trans. Nanotechnol. 17:920–33
    [Google Scholar]
  26. 26.  Liu J, Siragam V, Gong Z, Chen J, Fridman MD et al. 2015. Robotic adherent cell injection for characterizing cell-cell communication. IEEE Trans. Biomed. Eng. 62:119–25
    [Google Scholar]
  27. 27.  Kodandaramaiah SB, Flores FJ, Holst GL, Singer AC, Han X et al. 2018. Multi-neuron intracellular recording in vivo via interacting autopatching robots. eLife 7:e24656
    [Google Scholar]
  28. 28.  Das AN, Murthy R, Popa DO, Stephanou HE 2012. A multiscale assembly and packaging system for manufacturing of complex micro-nano devices. IEEE Trans. Autom. Sci. Eng. 9:160–70
    [Google Scholar]
  29. 29.  Xu Q 2015. Design, fabrication, and testing of an MEMS microgripper with dual-axis force sensor. IEEE Sens. J. 15:6017–26
    [Google Scholar]
  30. 30.  Wang F, Liang C, Tian Y, Zhao X, Zhang D 2016. Design and control of a compliant microgripper with a large amplification ratio for high-speed micro manipulation. IEEE/ASME Trans. Mechatron. 21:1262–71
    [Google Scholar]
  31. 31.  Zeman MJF, Bordatchev EV, Knopf GK 2006. Design, kinematic modeling and performance testing of an electro-thermally driven microgripper for micromanipulation applications. J. Micromech. Microeng. 16:1540
    [Google Scholar]
  32. 32.  Nikdel N, Nikdel P, Badamchizadeh MA, Hassanzadeh I 2014. Using neural network model predictive control for controlling shape memory alloy-based manipulator. IEEE Trans. Ind. Electron. 61:1394–401
    [Google Scholar]
  33. 33.  Xu Q, Li Y 2011. Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier. Mech. Mach. Theory. 46:183–200
    [Google Scholar]
  34. 34.  Yun Y, Li Y 2011. Optimal design of a 3-PUPU parallel robot with compliant hinges for micromanipulation in a cubic workspace. Robot. Comput. Integr. Manuf. 27:977–85
    [Google Scholar]
  35. 35.  Li Y, Xu Q 2009. Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator. IEEE Trans. Robot. 25:645–57
    [Google Scholar]
  36. 36.  Yang S, Xu Q 2017. A review on actuation and sensing techniques for MEMS-based microgrippers. J. Micro-Bio Robot. 13:1–14
    [Google Scholar]
  37. 37.  Verotti M, Dochshanov A, Belfiore NP 2017. A comprehensive survey on microgrippers design: mechanical structure. J. Mech. Des. 139:60801–26
    [Google Scholar]
  38. 38.  Zhang XP, Leung C, Lu Z, Esfandiari N, Casper RF, Sun Y 2012. Controlled aspiration and positioning of biological cells in a micropipette. IEEE Trans. Biomed. Eng. 59:1032–40
    [Google Scholar]
  39. 39.  Anis YH, Holl MR, Meldrum DR 2010. Automated selection and placement of single cells using vision-based feedback control. IEEE Trans. Autom. Sci. Eng. 7:598–606
    [Google Scholar]
  40. 40.  Shojaei-Baghini E, Zheng Y, Sun Y 2013. Automated micropipette aspiration of single cells. Ann. Biomed. Eng. 41:1208–16
    [Google Scholar]
  41. 41.  Wang Z, Latt WT, Tan SYM, Ang WT 2015. Visual servoed three-dimensional cell rotation system. IEEE Trans. Biomed. Eng. 62:2498–507
    [Google Scholar]
  42. 42.  Xie H, Régnier S 2011. Development of a flexible robotic system for multiscale applications of micro/nanoscale manipulation and assembly. IEEE/ASME Trans. Mechatron. 16:266–76
    [Google Scholar]
  43. 43.  Xie H, Zhang H, Song J, Meng X, Wen Y, Sun L 2018. High-precision automated micromanipulation and adhesive microbonding with cantilevered micropipette probes in dynamic probing mode. IEEE/ASME Trans. Mechatron. 23:1425–35
    [Google Scholar]
  44. 44.  Guillaume-Gentil O, Potthoff E, Ossola D, Franz CM, Zambelli T, Vorholt JA 2014. Force-controlled manipulation of single cells: from AFM to FluidFM. Trends Biotechnol 32:381–88
    [Google Scholar]
  45. 45.  Chen BK, Zhang Y, Sun Y 2009. Active release of microobjects using a MEMS microgripper to overcome adhesion forces. J. Microelectromech. Syst. 18:652–59
    [Google Scholar]
  46. 46.  Vasudev A, Jagtiani A, Du L, Zhe J 2009. A low-voltage droplet microgripper for micro-object manipulation. J. Micromech. Microeng. 19:075005
    [Google Scholar]
  47. 47.  Fan Z, Rong W, Wang L, Sun L 2015. A single-probe capillary microgripper induced by dropwise condensation and inertial release. J. Micromech. Microeng. 25:115011
    [Google Scholar]
  48. 48.  Eric D, Metin S 2014. Three-dimensional programmable assembly by untethered magnetic robotic micro-grippers. Adv. Funct. Mater. 24:4397–404
    [Google Scholar]
  49. 49.  Ghosh A, Yoon C, Ongaro F, Scheggi S, Selaru FM et al. 2017. Stimuli-responsive soft untethered grippers for drug delivery and robotic surgery. Front. Mech. Eng. 3:7
    [Google Scholar]
  50. 50.  Wang X, Luo M, Wu H, Zhang Z, Liu J et al. 2018. A three-dimensional magnetic tweezer system for intraembryonic navigation and measurement. IEEE Trans. Robot. 34:240–47
    [Google Scholar]
  51. 51.  Vonthron M, Lalande V, Bringout G, Tremblay C, Martel S 2011. A MRI-based integrated platform for the navigation of microdevices and microrobots. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems1285–90 New York: IEEE
    [Google Scholar]
  52. 52.  Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ 2010. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans. Robot. 26:1006–17
    [Google Scholar]
  53. 53.  Schuerle S, Erni S, Flink M, Kratochvil BE, Nelson BJ 2013. Three-dimensional magnetic manipulation of micro- and nanostructures for applications in life sciences. IEEE Trans. Magn. 49:321–30
    [Google Scholar]
  54. 54.  Ryan P, Diller E 2017. Magnetic actuation for full dexterity microrobotic control using rotating permanent magnets. IEEE Trans. Robot. 33:1398–409
    [Google Scholar]
  55. 55.  Zhang J, Onaizah O, Sadri A, Diller E 2017. A generic label-free microfluidic microobject sorter using a magnetic elastic diverter. Biomed. Microdevices 19:43
    [Google Scholar]
  56. 56.  Wang X, Luo M, Ho C, Zhang Z, Zhao Q et al. 2018. Robotic intracellular manipulation: 3D navigation and measurement inside a single cell. 2018 IEEE International Conference on Robotics and Automation2716–21 New York: IEEE
    [Google Scholar]
  57. 57.  Mair LO, Evans BA, Nacev A, Stepanov PY, Hilaman R et al. 2017. Magnetic microkayaks: propulsion of microrods precessing near a surface by kilohertz frequency, rotating magnetic fields. Nanoscale 9:3375–81
    [Google Scholar]
  58. 58.  Chen XZ, Jang B, Ahmed D, Hu C, De Marco C et al. 2018. Small-scale machines driven by external power sources. Adv. Mater. 30:1705061
    [Google Scholar]
  59. 59.  Zhang L, Abbott JJ, Dong L, Kratochvil BE, Bell D, Nelson BJ 2009. Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94:064107
    [Google Scholar]
  60. 60.  Peters C, Hoop M, Pané S, Nelson BJ, Hierold C 2016. Degradable magnetic composites for minimally invasive interventions: device fabrication, targeted drug delivery, and cytotoxicity tests. Adv. Mater. 28:533–38
    [Google Scholar]
  61. 61.  Qiu F, Fujita S, Mhanna R, Zhang L, Simona BR, Nelson BJ 2015. Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv. Funct. Mater. 25:1666–71
    [Google Scholar]
  62. 62.  Wang B, Chan KF, Yu J, Wang Q, Yang L et al. 2018. Reconfigurable swarms of ferromagnetic colloids for enhanced local hyperthermia. Adv. Funct. Mater. 28:1705701
    [Google Scholar]
  63. 63.  Zhang J, Onaizah O, Middleton K, You L, Diller E 2017. Reliable grasping of three-dimensional untethered mobile magnetic microgripper for autonomous pick-and-place. IEEE Robot. Autom. Lett. 2:835–40
    [Google Scholar]
  64. 64.  Arai F, Yoshikawa K, Sakami T, Fukuda T 2004. Synchronized laser micromanipulation of multiple targets along each trajectory by single laser. Appl. Phys. Lett. 85:4301–3
    [Google Scholar]
  65. 65.  Alam MK, Koomsoon E, Zou H, Yi C, Li C-W et al. 2018. Recent advances in microfluidic technology for manipulation and analysis of biological cells (2007–2017). Anal. Chim. Acta 1044:29–65
    [Google Scholar]
  66. 66.  Chen T, Shi LZ, Zhu Q, Chandsawangbhuwana C, Berns MW 2011. Optical tweezers and non-ratiometric fluorescent-dye-based studies of respiration in sperm mitochondria. J. Opt. 13:044010
    [Google Scholar]
  67. 67.  Leach J, Howard D, Roberts S, Gibson G, Gothard D et al. 2009. Manipulation of live mouse embryonic stem cells using holographic optical tweezers. J. Mod. Opt. 56:448–52
    [Google Scholar]
  68. 68.  Neuman KC, Abbondanzieri EA, Landick R, Gelles J, Block SM 2003. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell 115:437–47
    [Google Scholar]
  69. 69.  Li X, Liu C, Chen S, Wang Y, Cheng SH, Sun D 2017. In vivo manipulation of single biological cells with an optical tweezers-based manipulator and a disturbance compensation controller. IEEE Trans. Robot. 33:1200–12
    [Google Scholar]
  70. 70.  Banerjee AG, Pomerance A, Losert W, Gupta SK 2010. Developing a stochastic dynamic programming framework for optical tweezer-based automated particle transport operations. IEEE Trans. Autom. Sci. Eng. 7:218–27
    [Google Scholar]
  71. 71.  Wu Y, Sun D, Huang W, Xi N 2013. Dynamics analysis and motion planning for automated cell transportation. IEEE/ASME Trans. Mechatron. 18:706–13
    [Google Scholar]
  72. 72.  Rabaud D, Thibault P, Raven JP, Hugon O, Lacot E, Marmottant P 2011. Manipulation of confined bubbles in a thin microchannel: drag and acoustic Bjerknes forces. Phys. Fluids 23:042003
    [Google Scholar]
  73. 73.  Samandari M, Abrinia K, Sanati-Nezhad A 2017. Acoustic manipulation of bio-particles at high frequencies: an analytical and simulation approach. Micromachines 8:290
    [Google Scholar]
  74. 74.  Guo F, Mao Z, Chen Y, Xie Z, Lata JP et al. 2016. Three-dimensional manipulation of single cells using surface acoustic waves. PNAS 113:1522–27
    [Google Scholar]
  75. 75.  Li P, Mao Z, Peng Z, Zhou L, Chen Y et al. 2015. Acoustic separation of circulating tumor cells. PNAS 112:4970–75
    [Google Scholar]
  76. 76.  Naseer SM, Manbachi A, Samandari M, Walch P, Gao Y et al. 2017. Surface acoustic waves induced micropatterning of cells in gelatin methacryloyl (GelMA) hydrogels. Biofabrication 9:015020
    [Google Scholar]
  77. 77.  Ding X, Lin S-CS, Kiraly B, Yue H, Li S et al. 2012. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. PNAS 109:11105–9
    [Google Scholar]
  78. 78.  Velev OD, Bhatt KH 2006. On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2:738–50
    [Google Scholar]
  79. 79.  Urbano RL, Clyne AM 2016. An inverted dielectrophoretic device for analysis of attached single cell mechanics. Lab Chip 16:561–73
    [Google Scholar]
  80. 80.  Kumemura M, Collard D, Sakaki N, Yamahata C, Hosogi M et al. 2011. Single-DNA-molecule trapping with silicon nanotweezers using pulsed dielectrophoresis. J. Micromech. Microeng. 21:054020
    [Google Scholar]
  81. 81.  Valley JK, Ohta AT, Neale SL, Hsu H-Y, Neale SL et al. 2009. Optoelectronic tweezers as a tool for parallel single-cell manipulation and stimulation. IEEE Trans. Biomed. Circuits Syst. 3:424–31
    [Google Scholar]
  82. 82.  Liu X, Shi Q, Lin Y, Kojima M, Mae Y et al. 2018. Hydrodynamic tweezers: trapping and transportation in microscale using vortex induced by oscillation of a single piezoelectric actuator. Sensors 18:2002
    [Google Scholar]
  83. 83.  Pieters RS, Tung HW, Sargent DF, Nelson BJ 2014. Non-contact manipulation for automated protein crystal harvesting using a rolling microrobot. IFAC Proc. Vol. 19:7480–85
    [Google Scholar]
  84. 84.  Leung C, Lu Z, Zhang XP, Sun Y 2012. Three-dimensional rotation of mouse embryos. IEEE Trans. Biomed. Eng. 59:1049–56
    [Google Scholar]
  85. 85.  Zhang Z, Liu J, Wang X, Zhao Q, Zhou C et al. 2017. Robotic pick-and-place of multiple embryos for vitrification. IEEE Robot. Autom. Lett. 2:570–76
    [Google Scholar]
  86. 86.  Chaumette F, Hutchinson S 2006. Visual servo control. I. Basic approaches. IEEE Robot. Autom. Mag. 13:82–90
    [Google Scholar]
  87. 87.  Hu S, Sun D 2011. Automatic transportation of biological cells with a robot-tweezer manipulation system. Int. J. Robot. Res. 30:1681–94
    [Google Scholar]
  88. 88.  Tamadazte B, Piat NLF, Dembélé S 2011. Robotic micromanipulation and microassembly using monoview and multiscale visual servoing. IEEE/ASME Trans. Mechatron. 16:277–87
    [Google Scholar]
  89. 89.  Vikramaditya B, Nelson BJ 1997. Visually guided microassembly using optical microscopes and active vision techniques. Proceedings of the 1997 International Conference on Robotics and Automation3172–77 New York: IEEE
    [Google Scholar]
  90. 90.  Benhimane S, Malis E 2003. Vision-based control with respect to planar and nonplanar objects using a zooming camera. Proceedings of ICAR 2003: The 11th International Conference on Advanced Robotics991–96 New York: IEEE
    [Google Scholar]
  91. 91.  Zhou Y, Nelson BJ 1999. Calibration of a parametric model of an optical microscope. Opt. Eng. 38:1989–95
    [Google Scholar]
  92. 92.  Ammi M, Frémont V, Ferreira A 2009. Automatic camera-based microscope calibration for a telemicromanipulation system using a virtual pattern. IEEE Trans. Robot. 25:184–91
    [Google Scholar]
  93. 93.  Jiang W, Yin Z 2016. Seeing the invisible in differential interference contrast microscopy images. Med. Image Anal. 34:65–81
    [Google Scholar]
  94. 94.  Obara B, Roberts MAJ, Armitage JP, Grau V 2013. Bacterial cell identification in differential interference contrast microscopy images. BMC Bioinform 14:134
    [Google Scholar]
  95. 95.  Heise B, Sonnleitner A, Klement EP 2005. DIC image reconstruction on large cell scans. Microsc. Res. Tech. 66:312–20
    [Google Scholar]
  96. 96.  Sariola V, Jääskelinen M, Zhou Q 2010. Hybrid microassembly combining robotics and water droplet self-alignment. IEEE Trans. Robot. 26:965–77
    [Google Scholar]
  97. 97.  Chung SE, Dong X, Sitti M 2015. Three-dimensional heterogeneous assembly of coded microgels using an untethered mobile microgripper. Lab Chip 15:1667–76
    [Google Scholar]
  98. 98.  Steager EB, Selman Sakar M, Magee C, Kennedy M, Cowley A, Kumar V 2013. Automated biomanipulation of single cells using magnetic microrobots. Int. J. Robot. Res. 32:346–59
    [Google Scholar]
  99. 99.  Jonkman J, Brown CM 2015. Any way you slice it—a comparison of confocal microscopy techniques. J. Biomol. Tech. 26:54–65
    [Google Scholar]
  100. 100.  Wang WH, Liu XY, Sun Y 2007. Contact detection in microrobotic manipulation. Int. J. Robot. Res. 26:821–28
    [Google Scholar]
  101. 101.  Liu J, Zhang Z, Wang X, Liu H, Zhao Q et al. 2017. Automated robotic measurement of 3-D cell morphologies. IEEE Robot. Autom. Lett. 2:499–505
    [Google Scholar]
  102. 102.  Sun Y, Duthaler S, Nelson BJ 2004. Autofocusing in computer microscopy: selecting the optimal focus algorithm. Microsc. Res. Tech. 65:139–49
    [Google Scholar]
  103. 103.  Taute KM, Gude S, Tans SJ, Shimizu TS 2015. High-throughput 3D tracking of bacteria on a standard phase contrast microscope. Nat. Commun. 6:8776
    [Google Scholar]
  104. 104.  Baek YM, Tanaka S, Harada K, Sugita N, Morita A et al. 2014. Robust visual tracking of robotic forceps under a microscope using kinematic data fusion. IEEE/ASME Trans. Mechatron. 19:278–88
    [Google Scholar]
  105. 105.  Tamadazte B, Marchand E, Dembélé S, Le Fort-Piat N 2010. CAD model-based tracking and 3D visual-based control for MEMS microassembly. Int. J. Robot. Res. 29:1416–34
    [Google Scholar]
  106. 106.  Zhang Z, Dai C, Huang JY, Wang X, Liu J et al. 2019. Robotic immobilization of motile sperm for clinical intracytoplasmic sperm injection. IEEE Trans. Biomed. Eng 66:444–52
    [Google Scholar]
  107. 107.  Diller E, Giltinan J, Sitti M 2013. Independent control of multiple magnetic microrobots in three dimensions. Int. J. Robot. Res. 32:614–31
    [Google Scholar]
  108. 108.  Wei Y, Xu Q 2015. An overview of micro-force sensing techniques. Sens. Actuators A 234:359–74
    [Google Scholar]
  109. 109.  Jing W, Cappelleri D 2014. A magnetic microrobot with in situ force sensing capabilities. Robotics 3:106–19
    [Google Scholar]
  110. 110.  Gou X, Yang H, Fahmy TM, Wang Y, Sun D 2014. Direct measurement of cell protrusion force utilizing a robot-aided cell manipulation system with optical tweezers for cell migration control. Int. J. Robot. Res. 33:1782–92
    [Google Scholar]
  111. 111.  Jun L, Leung C, Zhe L, Yu S, Liu J et al. 2013. Quantitative analysis of locomotive behavior of human sperm head and tail. IEEE Trans. Biomed. Eng. 60:390–96
    [Google Scholar]
  112. 112.  Zhou Y, Nelson BJ, Vikramaditya B 1998. Fusing force and vision feedback for micromanipulation. Proceedings of the 1998 IEEE International Conference on Robotics and Automation 21220–25 New York: IEEE
    [Google Scholar]
  113. 113.  Dario P 2001. PI force control of a microgripper for assembling biomedical microdevices. IEE Proc. Circuits Devices Syst. 148:348–52
    [Google Scholar]
  114. 114.  Huang H, Sun D, Mills JK, Li WJ, Cheng SH 2009. Visual-based impedance control of out-of-plane cell injection systems. IEEE Trans. Autom. Sci. Eng. 6:565–71
    [Google Scholar]
  115. 115.  Seifabadi R, Rezaei SM, Ghidary SS, Zareinejad M 2013. A teleoperation system for micro positioning with haptic feedback. Int. J. Control. Autom. Syst. 11:768–75
    [Google Scholar]
  116. 116.  Onda K, Arai F 2012. Multi-beam bilateral teleoperation of holographic optical tweezers. Opt. Express 20:3633–41
    [Google Scholar]
  117. 117.  Fatikow S, Seyfried J, Fahlbusch S, Buerkle A, Schmoeckel F 2000. Flexible microrobot-based microassembly station. J. Intell. Robot. Syst. Theory Appl. 27:135–69
    [Google Scholar]
  118. 118.  Yang G, Gaines JA, Nelson BJ 2003. A supervisory wafer-level 3D microassembly system for hybrid MEMS fabrication. J. Intell. Robot. Syst. Theory Appl. 37:43–68
    [Google Scholar]
  119. 119.  Kim S, Wu J, Carlson A, Jin SH, Kovalsky A et al. 2010. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. PNAS 107:17095–100
    [Google Scholar]
  120. 120.  Lee CH, Kim DR, Zheng X 2010. Fabricating nanowire devices on diverse substrates by simple transfer-printing methods. PNAS 107:9950–55
    [Google Scholar]
  121. 121.  Mastrangeli M, Abbasi S, Varel C, Van Hoof C, Celis JP, Böhringer KF 2009. Self-assembly from milli- to nanoscales: methods and applications. J. Micromech. Microeng. 19:083001
    [Google Scholar]
  122. 122.  Chang B, Shah A, Zhou Q, Ras RHA, Hjort K 2015. Self-transport and self-alignment of microchips using microscopic rain. Sci. Rep. 5:14966
    [Google Scholar]
  123. 123.  Donald BR, Levey CG, Paprotny I, Rus D 2013. Planning and control for microassembly of structures composed of stress-engineered MEMS microrobots. Int. J. Robot. Res. 32:218–46
    [Google Scholar]
  124. 124.  Wang H, Huang Q, Shi Q, Yue T, Chen S et al. 2015. Automated assembly of vascular-like microtube with repetitive single-step contact manipulation. IEEE Trans. Biomed. Eng. 62:2620–28
    [Google Scholar]
  125. 125.  Xu F, Wu CAM, Rengarajan V, Finley TD, Keles HO et al. 2011. Three-dimensional magnetic assembly of microscale hydrogels. Adv. Mater. 23:4254–60
    [Google Scholar]
  126. 126.  Tasoglu S, Diller E, Guven S, Sitti M, Demirci U 2014. Untethered micro-robotic coding of three-dimensional material composition. Nat. Commun. 5:3124
    [Google Scholar]
  127. 127.  Roberts KP, Bischof JC, Nelson BJ 2003. Mechanical property characterization of mouse zona pellucida. IEEE Trans. Nanobiosci. 2:279–86
    [Google Scholar]
  128. 128.  Pillarisetti A, Member S, Pekarev M, Brooks AD, Desai JP, Member A 2007. Evaluating the effect of force feedback in cell injection. IEEE Trans. Autom. Sci. Eng. 4:322–31
    [Google Scholar]
  129. 129.  Liu X, Kim K, Zhang Y, Sun Y 2009. Nanonewton force sensing and control in microrobotic cell manipulation. Int. J. Robot. Res. 28:1065–76
    [Google Scholar]
  130. 130.  Xie Y, Sun D, Liu C, Tse HY, Cheng SH 2010. A force control approach to a robot-assisted cell microinjection system. Int. J. Robot. Res. 29:1222–32
    [Google Scholar]
  131. 131.  Xu Q 2015. Robust impedance control of a compliant microgripper for high-speed position/force regulation. IEEE Trans. Ind. Electron. 62:1201–9
    [Google Scholar]
  132. 132.  Arcese L, Fruchard M, Ferreira A 2013. Adaptive controller and observer for a magnetic microrobot. IEEE Trans. Robot. 29:1060–67
    [Google Scholar]
  133. 133.  Kallio P, Ritala T, Lukkari M, Kuikka S 2007. Injection guidance system for cellular microinjections. Int. J. Robot. Res. 26:1303–13
    [Google Scholar]
  134. 134.  Wang W, Sun Y, Zhang M, Anderson R, Langille L, Chan W 2008. A system for high-speed microinjection of adherent cells. Rev. Sci. Instrum. 79:104302
    [Google Scholar]
  135. 135.  Liu J, Siragam V, Chen J, Fridman MD, Hamilton RM, Sun Y 2014. High-throughput measurement of gap junctional intercellular communication. AJP Hear. Circ. Physiol. 306:H1708–13
    [Google Scholar]
  136. 136.  Liu J, Wen J, Zhang Z, Liu H, Sun Y 2015. Voyage inside the cell: microsystems and nanoengineering for intracellular measurement and manipulation. Microsyst. Nanoeng. 1:15020
    [Google Scholar]
  137. 137.  Esteban-Fernández de Ávila B, Angsantikul P, Li J, Lopez-Ramirez MA, Ramírez-Herrera DE et al. 2017. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8:272
    [Google Scholar]
  138. 138.  Yim S, Gultepe E, Gracias DH, Sitti M 2014. Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers. IEEE Trans. Biomed. Eng. 61:513–21
    [Google Scholar]
  139. 139.  Filgueiras-Rama D, Estrada A, Shachar J, Castrejón S, Doiny D et al. 2013. Remote magnetic navigation for accurate, real-time catheter positioning and ablation in cardiac electrophysiology procedures. J. Vis. Exp. 74:e3658
    [Google Scholar]
  140. 140.  Li J, Li X, Luo T, Wang R, Liu C et al. 2018. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 3:eaat8829
    [Google Scholar]
  141. 141.  Sahari A, Traore MA, Scharf BE, Behkam B 2014. Directed transport of bacteria-based drug delivery vehicles: bacterial chemotaxis dominates particle shape. Biomed. Microdevices 16:717–25
    [Google Scholar]
  142. 142.  Alapan Y, Yasa O, Schauer O, Giltinan J, Tabak AF et al. 2018. Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci. Robot. 3:eaar4423
    [Google Scholar]
  143. 143.  Dournes G, Menut F, Macey J, Fayon M, Chateil JF et al. 2016. Lung morphology assessment of cystic fibrosis using MRI with ultra-short echo time at submillimeter spatial resolution. Eur. Radiol. 26:3811–20
    [Google Scholar]
  144. 144.  Burghardt AJ, Link TM, Majumdar S 2011. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin. Orthop. Relat. Res. 469:2179–93
    [Google Scholar]
  145. 145.  Untenberger M, Tan Z, Voit D, Joseph AA, Roeloffs V et al. 2016. Advances in real-time phase-contrast flow MRI using asymmetric radial gradient echoes. Magn. Reson. Med. 75:1901–8
    [Google Scholar]
  146. 146.  Fei C, Chiu CT, Chen X, Chen Z, Ma J et al. 2016. Ultrahigh frequency (100 MHz–300 MHz) ultrasonic transducers for optical resolution medical imagining. Sci. Rep. 6:28360
    [Google Scholar]
  147. 147.  Sigrist RMS, Liau J, Kaffas AE, Chammas MC, Willmann JK 2017. Ultrasound elastography: review of techniques and clinical applications. Theranostics 7:1303–29
    [Google Scholar]
  148. 148.  Wang LV, Yao J 2016. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 13:627–38
    [Google Scholar]
  149. 149.  Masubuchi S, Morimoto M, Morikawa S, Onodera M, Asakawa Y et al. 2018. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun. 9:1413
    [Google Scholar]
/content/journals/10.1146/annurev-control-053018-023755
Loading
/content/journals/10.1146/annurev-control-053018-023755
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error