1932

Abstract

Biohybrid microrobots, composed of a living organism integrated with an artificial carrier, offer great advantages for the miniaturization of devices with onboard actuation, sensing, and control functionalities and can perform multiple tasks, including manipulation, cargo delivery, and targeting, at nano- and microscales. Over the past decade, various microorganisms and artificial carriers have been integrated to develop unique biohybrid microrobots that can swim or crawl inside the body, in order to overcome the challenges encountered by the current cargo delivery systems. Here, we first focus on the locomotion mechanisms of microorganisms at the microscale, crucial criteria for the selection of biohybrid microrobot components, and the integration of the selected artificial and biological components using various physical and chemical techniques. We then critically review biohybrid microrobots that have been designed and used to perform specific tasks in vivo. Finally, we discuss key challenges, including fabrication efficiency, swarm manipulation, in vivo imaging, and immunogenicity, that should be overcome before biohybrid microrobots transition to clinical use.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-053018-023803
2019-05-03
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/control/2/1/annurev-control-053018-023803.html?itemId=/content/journals/10.1146/annurev-control-053018-023803&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Sitti M 2009. Miniature devices: voyage of the microrobots. Nature 458:1121–22
    [Google Scholar]
  2. 2.  Sitti M 2018. Miniature soft robots—road to the clinic. Nat. Rev. Mater. 3:74–75
    [Google Scholar]
  3. 3.  Sitti M, Ceylan H, Hu W, Giltinan J, Turan M et al. 2015. Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE 103:205–24
    [Google Scholar]
  4. 4.  Ricotti L, Trimmer B, Feinberg AW, Raman R, Parker KK et al. 2017. Biohybrid actuators for robotics: a review of devices actuated by living cells. Sci. Robot. 2:eaaq0495
    [Google Scholar]
  5. 5.  Sitti M 2017. Mobile Microrobotics Cambridge, MA: MIT Press
  6. 6.  Friedl P, Weigelin B 2008. Interstitial leukocyte migration and immune function. Nat. Immunol. 9:960–69
    [Google Scholar]
  7. 7.  Bershadsky AD, Kozlov MM 2011. Crawling cell locomotion revisited. PNAS 108:20275–76
    [Google Scholar]
  8. 8.  Pollard TD, Cooper JA 2009. Actin, a central player in cell shape and movement. Science 326:1208–12
    [Google Scholar]
  9. 9.  Kruse K 2016. Cell crawling driven by spontaneous actin polymerization waves. Physical Models of Cell Motility IS Aranson 69–93 Cham, Switz: Springer
    [Google Scholar]
  10. 10.  Ananthakrishnan R, Ehrlicher A 2007. The forces behind cell movement. Int. J. Biol. Sci. 3:303–17
    [Google Scholar]
  11. 11.  Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P 2002. Molecular Biology of the Cell New York: Garland Sci.
  12. 12.  Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R et al. 2008. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55
    [Google Scholar]
  13. 13.  Friedl P 2004. Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell Biol. 16:14–23
    [Google Scholar]
  14. 14.  Fischbach MA, Bluestone JA, Lim WA 2013. Cell-based therapeutics: the next pillar of medicine. Sci. Transl. Med. 5:179ps7
    [Google Scholar]
  15. 15.  Nourshargh S, Alon R 2014. Leukocyte migration into inflamed tissues. Immunity 41:694–707
    [Google Scholar]
  16. 16.  Sundd P, Pospieszalska MK, Cheung LS, Konstantopoulos K, Ley K 2011. Biomechanics of leukocyte rolling. Biorheology 48:1–35
    [Google Scholar]
  17. 17.  Purcell EM 1977. Life at low Reynolds number. Am. J. Phys. 45:3–11
    [Google Scholar]
  18. 18.  Lowe G, Meister M, Berg HC 1987. Rapid rotation of flagellar bundles in swimming bacteria. Nature 325:637–40
    [Google Scholar]
  19. 19.  Lauga E, Powers TR 2009. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72:096601
    [Google Scholar]
  20. 20.  Brennen C, Winet H 1977. Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9:339–98
    [Google Scholar]
  21. 21.  Suarez SS, Pacey AA 2006. Sperm transport in the female reproductive tract. Hum. Reprod. Update 12:23–37
    [Google Scholar]
  22. 22.  Suarez SS 2016. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res 363:185–194
    [Google Scholar]
  23. 23.  Eisenbach M, Giojalas LC 2006. Sperm guidance in mammals – an unpaved road to the egg. Nat. Rev. Mol. Cell Biol. 7:276–85
    [Google Scholar]
  24. 24.  Nosrati R, Driouchi A, Yip CM, Sinton D 2015. Two-dimensional slither swimming of sperm within a micrometre of a surface. Nat. Commun. 6:8703
    [Google Scholar]
  25. 25.  Rüffer U, Nultsch W 1985. High‐speed cinematographic analysis of the movement of Chlamydomonas. . Cell Motil 5:251–63
    [Google Scholar]
  26. 26.  Rüffer U, Nultsch W 1987. Comparison of the beating of cis‐ and trans‐flagella of Chlamydomonas cells held on micropipettes. Cell Motil. Cytoskelet. 7:87–93
    [Google Scholar]
  27. 27.  Polin M, Tuval I, Drescher K, Gollub JP, Goldstein RE 2009. Chlamydomonas swims with two “gears” in a eukaryotic version of run-and-tumble locomotion. Science 325:487–90
    [Google Scholar]
  28. 28.  Frymier PD, Ford RM, Berg HC, Cummings PT 1995. Three-dimensional tracking of motile bacteria near a solid planar surface. PNAS 92:6195–99
    [Google Scholar]
  29. 29.  Lauga E, DiLuzio WR, Whitesides GM, Stone HA 2006. Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90:400–12
    [Google Scholar]
  30. 30.  DiLuzio WR, Turner L, Mayer M, Garstecki P, Weibel DB et al. 2005. Escherichia coli swim on the right-hand side. Nature 435:1271–74
    [Google Scholar]
  31. 31. Rothschild. 1963. Non-random distribution of bull spermatozoa in a drop of sperm suspension. Nature 198:1221–22
    [Google Scholar]
  32. 32.  Denissenko P, Kantsler V, Smith DJ, Kirkman-Brown J 2012. Human spermatozoa migration in microchannels reveals boundary-following navigation. PNAS 109:8007–10
    [Google Scholar]
  33. 33.  Tung C-K, Ardon F, Fiore AG, Suarez SS, Wu M 2014. Cooperative roles of biological flow and surface topography in guiding sperm migration revealed by a microfluidic model. Lab Chip 14:1348–56
    [Google Scholar]
  34. 34.  Veronika M, Britta K, Samuel S, Schmidt OG 2015. Sperm dynamics in tubular confinement. Small 11:781–85
    [Google Scholar]
  35. 35.  Berke AP, Turner L, Berg HC, Lauga E 2008. Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101:038102
    [Google Scholar]
  36. 36.  Drescher K, Dunkel J, Cisneros LH, Ganguly S, Goldstein RE 2011. Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering. PNAS 108:10940–45
    [Google Scholar]
  37. 37.  Kantsler V, Dunkel J, Polin M, Goldstein RE 2013. Ciliary contact interactions dominate surface scattering of swimming eukaryotes. PNAS 110:1187–92
    [Google Scholar]
  38. 38.  Lushi E, Kantsler V, Goldstein RE 2017. Scattering of biflagellate microswimmers from surfaces. Phys. Rev. E 96:023102
    [Google Scholar]
  39. 39.  Sipos O, Nagy K, Di Leonardo R, Galajda P 2015. Hydrodynamic trapping of swimming bacteria by convex walls. Phys. Rev. Lett. 114:258104
    [Google Scholar]
  40. 40.  Di Leonardo R, Angelani L, Dell'Arciprete D, Ruocco G, Iebba V et al. 2010. Bacterial ratchet motors. PNAS 107:9541–45
    [Google Scholar]
  41. 41.  Vizsnyiczai G, Frangipane G, Maggi C, Saglimbeni F, Bianchi S, Di Leonardo R 2017. Light controlled 3D micromotors powered by bacteria. Nat. Commun. 8:15974
    [Google Scholar]
  42. 42.  Galajda P, Keymer J, Chaikin P, Austin R 2007. A wall of funnels concentrates swimming bacteria. J. Bacteriol. 189:8704–7
    [Google Scholar]
  43. 43.  Koumakis N, Lepore A, Maggi C, Di Leonardo R 2013. Targeted delivery of colloids by swimming bacteria. Nat. Commun. 4:2588
    [Google Scholar]
  44. 44.  Fung YC 1981. Biomechanics: Mechanical Properties of Living Tissues New York: Springer
  45. 45.  Sznitman J, Arratia PE 2015. Complex Fluids in Biological Systems: Experiment, Theory, and Computation SE Spagnolie 245–81 New York: Springer
  46. 46.  Keim NC, Garcia M, Arratia PE 2012. Fluid elasticity can enable propulsion at low Reynolds number. Phys. Fluids 24:081703
    [Google Scholar]
  47. 47.  Qiu T, Lee T-C, Mark AG, Morozov KI, Münster R et al. 2014. Swimming by reciprocal motion at low Reynolds number. Nat. Commun. 5:5119
    [Google Scholar]
  48. 48.  Berg HC, Turner L 1979. Movement of microorganisms in viscous environments. Nature 278:349–51
    [Google Scholar]
  49. 49.  Martinez VA, Schwarz-Linek J, Reufer M, Wilson LG, Morozov AN, Poon WCK 2014. Flagellated bacterial motility in polymer solutions. PNAS 111:17771–76
    [Google Scholar]
  50. 50.  Patteson AE, Gopinath A, Goulian M, Arratia PE 2015. Running and tumbling with E. coli in polymeric solutions. Sci. Rep. 5:15761
    [Google Scholar]
  51. 51.  Tung C-K, Hu L, Fiore AG, Ardon F, Hickman DG et al. 2015. Microgrooves and fluid flows provide preferential passageways for sperm over pathogen Tritrichomonas foetus. . PNAS 112:5431–36
    [Google Scholar]
  52. 52.  Qin B, Gopinath A, Yang J, Gollub JP, Arratia PE 2015. Flagellar kinematics and swimming of algal cells in viscoelastic fluids. Sci. Rep. 5:9190
    [Google Scholar]
  53. 53.  Qu Z, Temel FZ, Henderikx R, Breuer KS 2018. Changes in the flagellar bundling time account for variations in swimming behavior of flagellated bacteria in viscous media. PNAS 115:1707–12
    [Google Scholar]
  54. 54.  Suarez SS, Dai X 1992. Hyperactivation enhances mouse sperm capacity for penetrating viscoelastic media. Biol. Reprod. 46:686–91
    [Google Scholar]
  55. 55.  Quill TA, Sugden SA, Rossi KL, Doolittle LK, Hammer RE, Garbers DL 2003. Hyperactivated sperm motility driven by CatSper2 is required for fertilization. PNAS 100:14869–74
    [Google Scholar]
  56. 56.  Li C, Qin B, Gopinath A, Arratia PE, Thomases B, Guy RD 2017. Flagellar swimming in viscoelastic fluids: role of fluid elastic stress revealed by simulations based on experimental data. J. R. Soc. Interface 14:20170289
    [Google Scholar]
  57. 57.  Nelson BJ, Kaliakatsos IK, Abbott JJ 2010. Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12:55–85
    [Google Scholar]
  58. 58.  Rismani Yazdi S, Nosrati R, Stevens CA, Vogel D, Davies PL, Escobedo C 2018. Magnetotaxis enables magnetotactic bacteria to navigate in flow. Small 14:1870019
    [Google Scholar]
  59. 59.  Felfoul O, Martel S 2013. Assessment of navigation control strategy for magnetotactic bacteria in microchannel: toward targeting solid tumors. Biomed. Microdevices 15:1015–24
    [Google Scholar]
  60. 60.  Lieleg O, Vladescu I, Ribbeck K 2010. Characterization of particle translocation through mucin hydrogels. Biophys. J. 98:1782–89
    [Google Scholar]
  61. 61.  Celli JP, Turner BS, Afdhal NH, Keates S, Ghiran I et al. 2009. Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. PNAS 106:14321–26
    [Google Scholar]
  62. 62.  Walker D, Käsdorf BT, Jeong H-H, Lieleg O, Fischer P 2015. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci. Adv. 1:e1500501
    [Google Scholar]
  63. 63.  Maeda K, Imae Y, Shioi JI, Oosawa F 1976. Effect of temperature on motility and chemotaxis of Escherichia coli. J. . Bacteriol 127:1039–46
    [Google Scholar]
  64. 64.  Magariyama Y, Sugiyama S, Kudo S 2001. Bacterial swimming speed and rotation rate of bundled flagella. FEMS Microbiol. Lett. 199:125–29
    [Google Scholar]
  65. 65.  Forbes NS 2010. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 10:785–94
    [Google Scholar]
  66. 66.  Kocijancic D, Felgner S, Frahm M, Komoll R-M, Iljazovic A et al. 2016. Therapy of solid tumors using probiotic Symbioflor-2–restraints and potential. Oncotarget 7:22605
    [Google Scholar]
  67. 67.  Darnton N, Turner L, Breuer K, Berg HC 2004. Moving fluid with bacterial carpets. Biophys. J. 86:1863–70
    [Google Scholar]
  68. 68.  Steager E, Kim C, Patel J, Bith S, Naik C et al. 2007. Control of microfabricated structures powered by flagellated bacteria using phototaxis. Appl. Phys. Lett. 90:263901
    [Google Scholar]
  69. 69.  Kim D, Liu A, Diller E, Sitti M 2012. Chemotactic steering of bacteria propelled microbeads. Biomed. Microdevices 14:1009–17
    [Google Scholar]
  70. 70.  Kojima M, Zhang Z, Nakajima M, Fukuda T 2012. High efficiency motility of bacteria-driven liposome with raft domain binding method. Biomed. Microdevices 14:1027–32
    [Google Scholar]
  71. 71.  Huh K, Oh D, Son SY, Yoo HJ, Song B et al. 2016. Laminar flow assisted anisotropic bacteria absorption for chemotaxis delivery of bacteria-attached microparticle. Micro Nano Syst. Lett. 4:1
    [Google Scholar]
  72. 72.  Taherkhani S, Mohammadi M, Daoud J, Martel S, Tabrizian M 2014. Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano 8:5049–60
    [Google Scholar]
  73. 73.  Stanton MM, Juliane S, Xing M, Albert ML, Samuel S 2016. Biohybrid Janus motors driven by Escherichia coli. Adv. Mater. . Interfaces 3:1500505
    [Google Scholar]
  74. 74.  Sahari A, Headen D, Behkam B 2012. Effect of body shape on the motile behavior of bacteria-powered swimming microrobots (BacteriaBots). Biomed. Microdevices 14:999–1007
    [Google Scholar]
  75. 75.  Magdanz V, Sanchez S, Schmidt OG 2013. Development of a sperm-flagella driven micro-bio-robot. Adv. Mater. 25:6581–88
    [Google Scholar]
  76. 76.  Stanton MM, Park BW, Miguel-Lopez A, Ma X, Sitti M, Sanchez S 2017. Biohybrid microtube swimmers driven by single captured bacteria. Small 13:1603679
    [Google Scholar]
  77. 77.  Hiratsuka Y, Miyata M, Tada T, Uyeda TQP 2006. A microrotary motor powered by bacteria. PNAS 103:13618–23
    [Google Scholar]
  78. 78.  Sokolov A, Apodaca MM, Grzybowski BA, Aranson IS 2010. Swimming bacteria power microscopic gears. PNAS 107:969–74
    [Google Scholar]
  79. 79.  Nguyen VD, Han JW, Choi YJ, Cho S, Zheng S et al. 2016. Active tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with targeting bacteria (Salmonella Typhimurium). Sens. Actuators B 224:217–24
    [Google Scholar]
  80. 80.  Nguyen VD, Han JW, Go G, Zhen J, Zheng S et al. 2017. Feasibility study of dual-targeting paclitaxel-loaded magnetic liposomes using electromagnetic actuation and macrophages. Sens. Actuators B 240:1226–36
    [Google Scholar]
  81. 81.  Han J, Zhen J, Nguyen VD, Go G, Choi Y et al. 2016. Hybrid-actuating macrophage-based microrobots for active cancer therapy. Sci. Rep. 6:28717
    [Google Scholar]
  82. 82.  Park BW, Zhuang J, Yasa O, Sitti M 2017. Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano 11:8910–23
    [Google Scholar]
  83. 83.  Shao J, Xuan M, Zhang H, Lin X, Wu Z, He Q 2017. Chemotaxis-guided hybrid neutrophil micromotors for targeted drug transport. Angew. Chem. Int. Ed. Engl. 56:12935–39
    [Google Scholar]
  84. 84.  Alapan Y, Yasa O, Schauer O, Giltinan J, Tabak AF et al. 2018. Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci. Robot. 3:eaar4423
    [Google Scholar]
  85. 85.  Geerts N, McGrath J, Stronk JN, Vanderlick TK, Huszar G 2014. Spermatozoa as a transport system of large unilamellar lipid vesicles into the oocyte. Reprod. Biomed. Online 28:451–61
    [Google Scholar]
  86. 86.  Stanton MM, Park BW, Vilela D, Bente K, Faivre D et al. 2017. Magnetotactic bacteria powered biohybrids target E. coli biofilms. ACS Nano 11:9968–78
    [Google Scholar]
  87. 87.  Luo C-H, Huang C-T, Su C-H, Yeh C-S 2016. Bacteria-mediated hypoxia-specific delivery of nanoparticles for tumors imaging and therapy. Nano Lett 16:3493–99
    [Google Scholar]
  88. 88.  Xie S, Zhao L, Song X, Tang M, Mo C, Li X 2017. Doxorubicin-conjugated Escherichia coli Nissle 1917 swimmers to achieve tumor targeting and responsive drug release. J. Control. Release 268:390–99
    [Google Scholar]
  89. 89.  Xu H, Medina-Sanchez M, Magdanz V, Schwarz L, Hebenstreit F, Schmidt OG 2018. Sperm-hybrid micromotor for targeted drug delivery. ACS Nano 12:327–37
    [Google Scholar]
  90. 90.  Behkam B, Sitti M 2008. Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads. Appl. Phys. Lett. 93:223901
    [Google Scholar]
  91. 91.  Cho S, Park SJ, Ko SY, Park J-O, Park S 2012. Development of bacteria-based microrobot using biocompatible poly(ethylene glycol). Biomed. Microdevices 14:1019–25
    [Google Scholar]
  92. 92.  Park D, Park SJ, Cho S, Lee Y, Lee YK et al. 2014. Motility analysis of bacteria-based microrobot (bacteriobot) using chemical gradient microchamber. Biotechnol. Bioeng. 111:134–43
    [Google Scholar]
  93. 93.  Donghai L, Hyunchul C, Sunghoon C, Semi J, Zhen J et al. 2015. A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor‐targeting therapy. Biotechnol. Bioeng. 112:1623–31
    [Google Scholar]
  94. 94.  Vikram SA, Metin S 2016. Patterned and specific attachment of bacteria on biohybrid bacteria‐driven microswimmers. Adv. Healthc. Mater. 5:2325–31
    [Google Scholar]
  95. 95.  Hu C-MJ, Fang RH, Wang K-C, Luk BT, Thamphiwatana S et al. 2015. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526:118–21
    [Google Scholar]
  96. 96.  Esteban-Fernández de Ávila B, Angsantikul P, Ramírez-Herrera DE, Soto F, Teymourian H et al. 2018. Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Sci. Robot. 3:eaat0485
    [Google Scholar]
  97. 97.  Esteban-Fernandez de Avila B, Gao W, Karshalev E, Zhang L, Wang J 2018. Cell-like micromotors. Acc. Chem. Res. 51:1901–10
    [Google Scholar]
  98. 98.  Singh A, Hosseinidoust Z, Park B-W, Yasa O, Sitti M 2017. Microemulsion-based soft bacteria-driven microswimmers for active cargo delivery. ACS Nano 11:9759–69
    [Google Scholar]
  99. 99.  Ceylan H, Yasa IC, Yasa O, Tabak AF, Giltinan J, Sitti M 2018. 3D-printed biodegradable microswimmer for drug delivery and targeted cell labeling. bioRxiv 379024. https://doi.org/10.1101/379024
    [Crossref]
  100. 100.  Bozuyuk U, Yasa O, Yasa IC, Ceylan H, Kizilel S, Sitti M 2018. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano 12:9617–25
    [Google Scholar]
  101. 101.  Alapan Y, Little JA, Gurkan UA 2014. Heterogeneous red blood cell adhesion and deformability in sickle cell disease. Sci. Rep. 4:7173
    [Google Scholar]
  102. 102.  Alapan Y, Fraiwan A, Kucukal E, Hasan MN, Ung R et al. 2016. Emerging point-of-care technologies for sickle cell disease screening and monitoring. Expert Rev. Med. Devices 13:1073–93
    [Google Scholar]
  103. 103.  Alapan Y, Kim C, Adhikari A, Gray KE, Gurkan-Cavusoglu E et al. 2016. Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease. Transl. Res. 173:74–91
    [Google Scholar]
  104. 104.  Carlsen RW, Sitti M 2014. Bio‐hybrid cell‐based actuators for microsystems. Small 10:3831–51
    [Google Scholar]
  105. 105.  Hosseinidoust Z, Mostaghaci B, Yasa O, Park BW, Singh AV, Sitti M 2016. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv. Drug Deliv. Rev. 106:27–44
    [Google Scholar]
  106. 106.  Behkam B, Sitti M 2007. Bacterial flagella-based propulsion and on/off motion control of microscale objects. Appl. Phys. Lett. 90:023902
    [Google Scholar]
  107. 107.  Park SJ, Bae H, Kim J, Lim B, Park J, Park S 2010. Motility enhancement of bacteria actuated microstructures using selective bacteria adhesion. Lab Chip 10:1706–11
    [Google Scholar]
  108. 108.  Mostaghaci B, Yasa O, Zhuang J, Sitti M 2017. Bioadhesive bacterial microswimmers for targeted drug delivery in the urinary and gastrointestinal tracts. Adv. Sci. 4:1700058
    [Google Scholar]
  109. 109.  Weibel DB, Garstecki P, Ryan D, DiLuzio WR, Mayer M et al. 2005. Microoxen: microorganisms to move microscale loads. PNAS 102:11963–67
    [Google Scholar]
  110. 110.  Stephan MT, Moon JJ, Um SH, Bershteyn A, Irvine DJ 2010. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16:1035
    [Google Scholar]
  111. 111.  Khalil ISM, Magdanz V, Sanchez S, Schmidt OG, Misra S 2014. Biocompatible, accurate, and fully autonomous: a sperm-driven micro-bio-robot. J. Micro-Bio Robot. 9:79–86
    [Google Scholar]
  112. 112.  Magdanz V, Medina-Sanchez M, Chen Y, Guix M, Schmidt OG 2015. How to improve spermbot performance. Adv. Funct. Mater. 25:2763–70
    [Google Scholar]
  113. 113.  Magdanz V, Guix M, Hebenstreit F, Schmidt OG 2016. Dynamic polymeric microtubes for the remote-controlled capture, guidance, and release of sperm cells. Adv. Mater. 28:4084–89
    [Google Scholar]
  114. 114.  Chen C, Chang X, Angsantikul P, Li J, Esteban-Fernández, de Ávila B et al. 2018. Chemotactic guidance of synthetic organic/inorganic payloads functionalized sperm micromotors. Adv. Biosyst. 2:1700160
    [Google Scholar]
  115. 115.  Choi M-R, Stanton-Maxey KJ, Stanley JK, Levin CS, Bardhan R et al. 2007. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 7:3759–65
    [Google Scholar]
  116. 116.  Kennedy LC, Bear AS, Young JK, Lewinski NA, Kim J et al. 2011. T cells enhance gold nanoparticle delivery to tumors in vivo. Nanoscale Res. Lett. 6:283
    [Google Scholar]
  117. 117.  Xue J, Zhao Z, Zhang L, Xue L, Shen S et al. 2017. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 12:692–700
    [Google Scholar]
  118. 118.  Felfoul O, Mohammadi M, Taherkhani S, de Lanauze D, Xu YZ et al. 2016. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11:941–47
    [Google Scholar]
  119. 119.  Kim DH, Cheang UK, Kőhidai L, Byun D, Kim MJ 2010. Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: a tool for fabrication of microbiorobots. Appl. Phys. Lett. 97:173702
    [Google Scholar]
  120. 120.  Carlsen RW, Edwards MR, Zhuang J, Pacoret C, Sitti M 2014. Magnetic steering control of multi-cellular bio-hybrid microswimmers. Lab Chip 14:3850–59
    [Google Scholar]
  121. 121.  Yan X, Zhou Q, Yu J, Xu T, Deng Y et al. 2015. Magnetite nanostructured porous hollow helical microswimmers for targeted delivery. Adv. Funct. Mater. 25:5333–42
    [Google Scholar]
  122. 122.  Yan X, Zhou Q, Vincent M, Deng Y, Yu J et al. 2017. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2:eaaq1155
    [Google Scholar]
  123. 123.  Yasa O, Erkoc P, Alapan Y, Sitti M 2018. Microalga-powered microswimmers toward active cargo delivery. Adv. Mater. 30:1804130
    [Google Scholar]
  124. 124.  Magdanz V, Medina-Sanchez M, Schwarz L, Xu HF, Elgeti J, Schmidt OG 2017. Spermatozoa as functional components of robotic microswimmers. Adv. Mater. 29:1606301
    [Google Scholar]
  125. 125.  Medina-Sanchez M, Schwarz L, Meyer AK, Hebenstreit F, Schmidt OG 2016. Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors. Nano Lett 16:555–61
    [Google Scholar]
  126. 126.  Edwards MR, Carlsen RW, Zhuang J, Sitti M 2014. Swimming characterization of Serratia marcescens for bio-hybrid micro-robotics. J. Micro-Bio Robot. 9:47–60
    [Google Scholar]
  127. 127.  Zhuang J, Sitti M 2016. Chemotaxis of bio-hybrid multiple bacteria-driven microswimmers. Sci. Rep. 6:32135
    [Google Scholar]
  128. 128.  Suh S, Traore MA, Behkam B 2016. Bacterial chemotaxis-enabled autonomous sorting of nanoparticles of comparable sizes. Lab Chip 16:1254–60
    [Google Scholar]
  129. 129.  Zhuang J, Carlsen RW, Sitti M 2015. pH-taxis of biohybrid microsystems. Sci. Rep. 5:11403
    [Google Scholar]
  130. 130.  Arabagi V, Behkam B, Cheung E, Sitti M 2011. Modeling of stochastic motion of bacteria propelled spherical microbeads. J. Appl. Phys. 109:114702
    [Google Scholar]
  131. 131.  Zhuang J, Wei G, Carlsen RW, Edwards MR, Marculescu R et al. 2014. Analytical modeling and experimental characterization of chemotaxis in Serratia marcescens. Phys. Rev. E 89:052704
    [Google Scholar]
  132. 132.  Cho S, Choi YJ, Zheng S, Han J, Ko SY et al. 2015. Modeling of chemotactic steering of bacteria-based microrobot using a population-scale approach. Biomicrofluidics 9:054116
    [Google Scholar]
  133. 133.  Zhuang J, Park BW, Sitti M 2017. Propulsion and chemotaxis in bacteria‐driven microswimmers. Adv. Sci. 4:1700109
    [Google Scholar]
  134. 134.  Park SJ, Park S-H, Cho S, Kim D-M, Lee Y et al. 2013. New paradigm for tumor theranostic methodology using bacteria-based microrobot. Sci. Rep. 3:3394
    [Google Scholar]
  135. 135.  Karmakar R, Uday Bhaskar RVS, Jesudasan RE, Tirumkudulu MS, Venkatesh KV 2016. Enhancement of swimming speed leads to a more-efficient chemotactic response to repellent. Appl. Environ. Microbiol. 82:1205–14
    [Google Scholar]
  136. 136.  Tran T-H, Kim DH, Kim J, Kim MJ, Byun D 2011. Use of an AC electric field in galvanotactic on/off switching of the motion of a microstructure blotted by Serratia marcescens. Appl. Phys. . Lett 99:063702
    [Google Scholar]
  137. 137.  Wu Z, Li T, Li J, Gao W, Xu T et al. 2014. Turning erythrocytes into functional micromotors. ACS Nano 8:12041–48
    [Google Scholar]
  138. 138.  Erkoc P, Yasa IC, Ceylan H, Yasa O, Alapan Y, Sitti M 2019. Mobile microrobots for active therapeutic delivery. Adv. Ther. 2:1800064
    [Google Scholar]
  139. 139.  Akin D, Sturgis J, Ragheb K, Sherman D, Burkholder K et al. 2007. Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat. Nanotechnol. 2:441–49
    [Google Scholar]
  140. 140.  Basel MT, Balivada S, Wang H, Shrestha TB, Seo GM et al. 2012. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int. J. Nanomed. 7:297–306
    [Google Scholar]
  141. 141.  Ceylan H, Giltinan J, Kozielski K, Sitti M 2017. Mobile microrobots for bioengineering applications. Lab Chip 17:1705–24
    [Google Scholar]
  142. 142.  Stanton MM, Sánchez S 2017. Pushing bacterial biohybrids to in vivo applications. Trends Biotechnol 35:910–13
    [Google Scholar]
  143. 143.  Medina-Sánchez M, Schmidt OG 2017. Medical microbots need better imaging and control. Nat. News 545:406–8
    [Google Scholar]
  144. 144.  Vilela D, Cossío U, Parmar J, Gómez-Vallejo V, Martínez A et al. 2018. Medical imaging for the tracking of micromotors. ACS Nano 12:1220–27
    [Google Scholar]
  145. 145.  Chan CTY, Lee JW, Cameron DE, Bashor CJ, Collins JJ 2015. ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment. Nat. Chem. Biol. 12:82–86
    [Google Scholar]
/content/journals/10.1146/annurev-control-053018-023803
Loading
/content/journals/10.1146/annurev-control-053018-023803
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error