1932

Abstract

This article reviews the current state of the art in the development of modular reconfigurable robot (MRR) systems and suggests promising future research directions. A wide variety of MRR systems have been presented to date, and these robots promise to be versatile, robust, and low cost compared with other conventional robot systems. MRR systems thus have the potential to outperform traditional systems with a fixed morphology when carrying out tasks that require a high level of flexibility. We begin by introducing the taxonomy of MRRs based on their hardware architecture. We then examine recent progress in the hardware and the software technologies for MRRs, along with remaining technical issues. We conclude with a discussion of open challenges and future research directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-053018-023834
2019-05-03
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/control/2/1/annurev-control-053018-023834.html?itemId=/content/journals/10.1146/annurev-control-053018-023834&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Eppinger SD, Ulrich KT 1995. Product Design and Development New York: McGraw-Hill
    [Google Scholar]
  2. 2.  Yim M, Duff DG, Roufas KD 2000. PolyBot: a modular reconfigurable robot. ICRA 2000: IEEE International Conference on Robotics and Automation 1514–20 New York: IEEE
    [Google Scholar]
  3. 3.  Stoy K, Brandt D, Christensen DJ, Brandt D 2010. Self-Reconfigurable Robots: An Introduction Cambridge, MA: MIT Press
    [Google Scholar]
  4. 4.  Yim M, Shen WM, Salemi B, Rus D, Moll M et al. 2007. Modular self-reconfigurable robot systems. IEEE Robot. Autom. Mag. 14:143–52
    [Google Scholar]
  5. 5.  Fukuda T, Nakagawa S, Kawauchi Y, Buss M 1989. Structure decision method for self organising robots based on cell structures-CEBOT. 1989 IEEE International Conference on Robotics and Automation 2695–700 New York: IEEE
    [Google Scholar]
  6. 6.  Paulos J, Eckenstein N, Tosun T, Seo J, Davey J et al. 2015. Automated self-assembly of large maritime structures by a team of robotic boats. IEEE Trans. Autom. Sci. Eng. 12:958–68
    [Google Scholar]
  7. 7.  Saldaña D, Gabrich B, Li G, Yim M, Kumar V 2018. ModQuad: the flying modular structure that self-assembles in midair. 2018 IEEE International Conference on Robotics and Automation691–98 New York: IEEE
    [Google Scholar]
  8. 8.  Rus D, Vona M 2001. Crystalline robots: self-reconfiguration with compressible unit modules. Auton. Robots 10:107–24
    [Google Scholar]
  9. 9.  Yim M, Zhang Y, Roufas K, Duff D, Eldershaw C 2002. Connecting and disconnecting for chain self-reconfiguration with PolyBot. IEEE/ASME Trans. Mechatron. 7:442–51
    [Google Scholar]
  10. 10.  Murata S, Yoshida E, Kamimura A, Kurokawa H, Tomita K, Kokaji S 2002. M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7:431–41
    [Google Scholar]
  11. 11.  Davey J, Kwok N, Yim M 2012. Emulating self-reconfigurable robots - design of the SMORES system. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems4464–69 New York: IEEE
    [Google Scholar]
  12. 12.  Spinos A, Carroll D, Kientz T, Yim M 2017. Variable topology truss: design and analysis. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems2717–22 New York: IEEE
    [Google Scholar]
  13. 13.  Yim M, White P, Park M, Sastra J 2009. Modular self-reconfigurable robots. Encyclopedia of Complexity and Systems Science RA Meyers New York: Springer. https://doi.org/10.1007/978-0-387-30440-3_334
    [Google Scholar]
  14. 14.  Miura K, Furuya H, Suzuki K 1985. Variable geometry truss and its application to deployable truss and space crane arm. Acta Astronaut. 12:599–607
    [Google Scholar]
  15. 15.  Hamlin GJ, Sanderson AC 1997. TETROBOT: a modular approach to parallel robotics. IEEE Robot. Autom. Mag. 4:142–50
    [Google Scholar]
  16. 16.  Chirikjian GS 1994. Hyper-redundant manipulator dynamics: a continuum approximation. Adv. Robot. 9:217–43
    [Google Scholar]
  17. 17.  Kirby BT, Aksak B, Campbell JD, Hoburg JF, Mowry TC et al. 2007. A modular robotic system using magnetic force effectors. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems2787–93 New York: IEEE
    [Google Scholar]
  18. 18.  Kurokawa H, Tomita K, Kamimura A, Kokaji S, Hasuo T, Murata S 2008. Distributed self-reconfiguration of M-TRAN III modular robotic system. Int. J. Robot. Res. 27:373–86
    [Google Scholar]
  19. 19.  Spröwitz A, Moeckel R, Vespignani M, Bonardi S, Ijspeert AJ 2014. Roombots: a hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot. Robot. Auton. Syst. 62:1016–33
    [Google Scholar]
  20. 20.  Liedke J, Matthias R, Winkler L, Wörn H 2013. The collective self-reconfigurable modular organism (CoSMO). 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics New York: IEEE. https://doi.org/10.1109/AIM.2013.6584059
    [Google Scholar]
  21. 21.  Wei H, Chen Y, Tan J, Wang T 2011. Sambot: a self-assembly modular robot system. IEEE/ASME Trans. Mechatron. 16:745–57
    [Google Scholar]
  22. 22.  Baca J, Hossain S, Dasgupta P, Nelson CA, Dutta A 2014. ModRED: hardware design and reconfiguration planning for a high dexterity modular self-reconfigurable robot for extra-terrestrial exploration. Robot. Auton. Syst. 62:1002–15
    [Google Scholar]
  23. 23.  Belke CH, Paik J 2017. Mori: a modular origami robot. IEEE/ASME Trans. Mechatron. 22:2153–64
    [Google Scholar]
  24. 24.  Zhao M, Anzai T, Shi F, Chen X, Okada K, Inaba M 2018. Design, modeling, and control of an aerial robot dragon: a dual-rotor-embedded multilink robot with the ability of multi-degree-of-freedom aerial transformation. IEEE Robot. Automat. Lett. 3:1176–83
    [Google Scholar]
  25. 25.  Robertson MA, Paik J 2017. New soft robots really suck: vacuum-powered systems empower diverse capabilities. Sci. Robot. 2:eaan6357
    [Google Scholar]
  26. 26.  Agarwal G, Robertson MA, Sonar H, Paik J 2017. Design and computational modeling of a modular, compliant robotic assembly for human lumbar unit and spinal cord assistance. Sci. Rep. 7:14391
    [Google Scholar]
  27. 27.  Romanishin JW, Gilpin K, Claici S, Rus D 2015. 3D M-Blocks: self-reconfiguring robots capable of locomotion via pivoting in three dimensions. 2015 IEEE International Conference on Robotics and Automation1925–32 New York: IEEE
    [Google Scholar]
  28. 28.  Gilpin K, Knaian A, Rus D 2010. Robot pebbles: one centimeter modules for programmable matter through self-disassembly. 2010 IEEE International Conference on Robotics and Automation2485–92 New York: IEEE
    [Google Scholar]
  29. 29.  White PJ, Yim M 2010. Reliable external actuation for full reachability in robotic modular self-reconfiguration. Int. J. Robot. Res. 29:598–612
    [Google Scholar]
  30. 30.  Diller E, Pawashe C, Floyd S, Sitti M 2011. Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. Int. J. Robot. Res. 30:1667–80
    [Google Scholar]
  31. 31.  Tolley MT, Felton SM, Miyashita S, Aukes D, Rus D, Wood RJ 2014. Self-folding origami: shape memory composites activated by uniform heating. Smart Mater. Struct. 23:094006
    [Google Scholar]
  32. 32.  White PJ, Latscha S, Schlaefer S, Yim M 2011. Dielectric elastomer bender actuator applied to modular robotics. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems408–13 New York: IEEE
    [Google Scholar]
  33. 33.  Zhang X, Zhang G, Nakamura K, Ueha S 2011. A robot finger joint driven by hybrid multi-DOF piezoelectric ultrasonic motor. Sens. Actuators A 169:206–10
    [Google Scholar]
  34. 34.  Yan S, Zhang F, Qin Z, Wen S 2006. A 3-DOFs mobile robot driven by a piezoelectric actuator. Smart Mater. Struct. 15:N7–13
    [Google Scholar]
  35. 35.  Hines L, Arabagi V, Sitti M 2012. Shape memory polymer-based flexure stiffness control in a miniature flapping-wing robot. IEEE Trans. Robot. 28:987–90
    [Google Scholar]
  36. 36.  Bae WG, Choi JH, Lee SH, Kang D, Jung KW, Suh KY 2010. Centering mechanism for micro vessel robot using micropatterned shape memory polymers. 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics594–98 New York: IEEE
    [Google Scholar]
  37. 37.  Zhakypov Z, Huang JL, Paik J 2016. A novel torsional shape memory alloy actuator: modeling, characterization, and control. IEEE Robot. Autom. Mag. 23:365–74
    [Google Scholar]
  38. 38.  Zhakypov Z, Paik J 2018. Design methodology for constructing multimaterial origami robots and machines. IEEE Trans. Robot. 34:151–65
    [Google Scholar]
  39. 39.  Firouzeh A, Paik J 2017. Soft actuation and sensing towards robot-assisted facial rehabilitation. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems306–13 New York: IEEE
    [Google Scholar]
  40. 40.  Sheng J, Gandhi D, Gullapalli RP, Simard JM, Desai JP 2017. Development of a meso-scale SMA-based torsion actuator for image-guided procedures. IEEE Trans. Robot. 33:240–48
    [Google Scholar]
  41. 41.  Paik JK, Wood RJ 2012. A bidirectional shape memory alloy folding actuator. Smart Mater. Struct. 21:065013
    [Google Scholar]
  42. 42.  Pulnev S, Nikolaev V, Priadko A, Rogov A, Chikiryaka A, Nikanorov S 2009. Shape memory effect and linear actuators based on Cu-Al-Ni single crystals. Bull. Russ. Acad. Sci. Phys. 73:1398
    [Google Scholar]
  43. 43.  Torres-Jara E, Gilpin K, Karges J, Wood RJ, Rus D 2010. Compliant modular shape memory alloy actuators. IEEE Robot. Autom. Mag. 17:478–87
    [Google Scholar]
  44. 44.  Kohl M, Just E, Pfleging W, Miyazaki S 2000. SMA microgripper with integrated antagonism. Sens. Actuators A 83:208–13
    [Google Scholar]
  45. 45.  Mineta T, Mitsui T, Watanabe Y, Kobayashi S, Haga Y, Esashi M 2001. Batch fabricated flat meandering shape memory alloy actuator for active catheter. Sens. Actuators A 88:112–20
    [Google Scholar]
  46. 46.  Whitney JP, Sreetharan PS, Ma KY, Wood RJ 2011. Pop-up book MEMS. J. Micromech. Microeng. 21:115021
    [Google Scholar]
  47. 47.  Paik J, Byoungkwon A, Rus D, Wood RJ 2011. Robotic origamis: self-morphing modular robot Paper presented at the 2nd International Conference on Morphological Computation, Venice, Italy, Sept. 12–14
    [Google Scholar]
  48. 48.  Kamimura A, Kurokawa H, Yoshida E, Tomita K, Kokaji S, Murata S 2004. Distributed adaptive locomotion by a modular robotic system, M-TRAN II. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems 32370–77 New York: IEEE
    [Google Scholar]
  49. 49.  Liedke J, Wörn H 2011. CoBoLD—a bonding mechanism for modular self-reconfigurable mobile robots. 2011 IEEE International Conference on Robotics and Biomimetics2025–30 New York: IEEE
    [Google Scholar]
  50. 50.  Kotay K, Rus D, Vona M, McGray C 1998. The self-reconfiguring robotic molecule. 1998 IEEE International Conference on Robotics and Automation 1424–31 New York: IEEE
    [Google Scholar]
  51. 51.  Tosun T, Davey J, Liu C, Yim M 2016. Design and characterization of the EP-Face connector. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems45–51 New York: IEEE
    [Google Scholar]
  52. 52.  Yoshida E, Murata S, Kokaji S, Kamimura A, Tomita K, Kurokawa H 2002. Get back in shape!. IEEE Robot. Autom. Mag. 9:454–60
    [Google Scholar]
  53. 53.  Murata S, Yoshida E, Tomita K, Kurokawa H, Kamimura A, Kokaji S 2000. Hardware design of modular robotic system. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems 32210–17 New York: IEEE
    [Google Scholar]
  54. 54.  White P, Zykov V, Bongard JC, Lipson H 2005. Three dimensional stochastic reconfiguration of modular robots. Robotics: Science and Systems I S Thrun, GS Sukhatme, S Schaal161–68 Cambridge, MA: MIT Press
    [Google Scholar]
  55. 55.  Swissler P, Rubenstein M 2018. FireAnt: a modular robot with full-body continuous docks. 2018 IEEE International Conference on Robotics and Automation6812–17 New York: IEEE
    [Google Scholar]
  56. 56.  Brandt D, Christensen DJ, Lund HH 2007. ATRON robots: versatility from self-reconfigurable modules. 2007 International Conference on Mechatronics and Automation26–32 New York: IEEE
    [Google Scholar]
  57. 57.  Tosun T, Edgar D, Liu C, Tsabedze T, Yim M 2017. PaintPots: low cost, accurate, highly customizable potentiometers for position sensing. 2017 IEEE International Conference on Robotics and Automation1212–18 New York: IEEE
    [Google Scholar]
  58. 58.  Salemi B, Moll M, Shen WM 2006. SUPERBOT: a deployable, multi-functional, and modular self-reconfigurable robotic system. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems3636–41 New York: IEEE
    [Google Scholar]
  59. 59.  Groß R, Bonani M, Mondada F, Dorigo M 2006. Autonomous self-assembly in a swarm-bot. Proceedings of the 3rd International Symposium on Autonomous Minirobots for Research and Edutainment (AMiRE 2005) K Murase, K Sekiyama, T Naniwa, N Kubota, J Sitte314–22 Berlin: Springer
    [Google Scholar]
  60. 60.  Kernbach S, Schlachter F, Humza R, Liedke J, Popesku S et al. 2011. Heterogeneity for increasing performance and reliability of self-reconfigurable multi-robot organisms. arXiv:1109.2288 [cs.RO]
  61. 61.  Lyder A, Garcia RFM, Stoy K 2010. Genderless connection mechanism for modular robots introducing torque transmission between modules. Proceedings of the ICRA Workshop on Modular Robots: State of the Art77–81 New York: IEEE
    [Google Scholar]
  62. 62.  Parrott C, Dodd TJ, Groß R 2014. HiGen: a high-speed genderless mechanical connection mechanism with single-sided disconnect for self-reconfigurable modular robots. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems3926–32 New York: IEEE
    [Google Scholar]
  63. 63.  Pacheco M, Fogh R, Lund HH, Christensen DJ 2015. Fable II: design of a modular robot for creative learning. 2015 IEEE International Conference on Robotics and Automation6134–39 New York: IEEE
    [Google Scholar]
  64. 64.  Magnenat S, Philippsen R, Mondada F 2012. Autonomous construction using scarce resources in unknown environments. Auton. Robots 33:467–85
    [Google Scholar]
  65. 65.  Tosun T, Daudelin J, Jing G, Kress-Gazit H, Campbell M, Yim M 2017. Perception-informed autonomous environment augmentation with modular robots. arXiv:1710.01840 [cs.RO]
  66. 66.  Zhu Y, Zhao J, Cui X, Wang X, Tang S et al. 2013. Design and implementation of UBot: a modular self-reconfigurable robot. 2013 IEEE International Conference on Mechatronics and Automation1217–22 New York: IEEE
    [Google Scholar]
  67. 67.  Shen WM, Salemi B, Will P 2002. Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots. IEEE Trans. Robot. Autom. 18:700–12
    [Google Scholar]
  68. 68.  Fitch R, Butler Z 2008. Million module march: scalable locomotion for large self-reconfiguring robots. Int. J. Robot. Res. 27:331–43
    [Google Scholar]
  69. 69.  Rubenstein M, Cornejo A, Nagpal R 2014. Programmable self-assembly in a thousand-robot swarm. Science 345:795–99
    [Google Scholar]
  70. 70.  Tomita K, Murata S, Kurokawa H, Yoshida E, Kokaji S 1999. Self-assembly and self-repair method for a distributed mechanical system. IEEE Trans. Robot. Autom. 15:1035–45
    [Google Scholar]
  71. 71.  Yim M, Duff D, Roufas K 2000. PolyBot: a modular reconfigurable robot. ICRA 2000: IEEE International Conference on Robotics and Automation 1514–20 New York: IEEE
    [Google Scholar]
  72. 72.  Yim M, Reich J, Berlin AA 2000. Two approaches to distributed manipulation. Distributed Manipulation KF Böhringer, H Choset237–61 Boston: Springer
    [Google Scholar]
  73. 73.  Zakin M 2007. The next revolution in materials Presentation at DARPA's 25th Systems and Technology Symposium (DARPATech), Anaheim, CA, Aug. 7. http://archive.darpa.mil/DARPATech2007/proceedings/dt07-dso-zakin-materials.pdf
    [Google Scholar]
  74. 74.  Goldstein SC, Campbell JD, Mowry TC 2005. Programmable matter. Computer 38:99–101
    [Google Scholar]
  75. 75.  White PJ, Posner ML, Yim M 2010. Strength analysis of miniature folded right angle tetrahedron chain programmable matter. 2010 IEEE International Conference on Robotics and Automation2785–90 New York: IEEE
    [Google Scholar]
  76. 76.  Collins F, Yim M 2016. Design of a spherical robot arm with the spiral zipper prismatic joint. 2016 IEEE International Conference on Robotics and Automation2137–43 New York: IEEE
    [Google Scholar]
  77. 77.  Stoy K, Christensen DJ, Brandt D, Bordignon M, Schultz UP 2009. Exploit morphology to simplify docking of self-reconfigurable robots. Distributed Autonomous Robotic Systems 8 H Asama, H Kurokawa, J Ota, K Sekiyama441–52 Berlin: Springer
    [Google Scholar]
  78. 78.  Østergaard EH, Kassow K, Beck R, Lund HH 2006. Design of the ATRON lattice-based self-reconfigurable robot. Auton. Robots 21:165–83
    [Google Scholar]
  79. 79.  Eckenstein N, Yim M 2014. Area of acceptance for 3D self-aligning robotic connectors: concepts, metrics, and designs. 2014 IEEE International Conference on Robotics and Automation1227–33 New York: IEEE
    [Google Scholar]
  80. 80.  Nilsson M 1999. Symmetric docking in 2D: a bound on self-alignable offsets Paper presented at the International Association of Science and Technology for Development (IASTED) Conference on Robotics and Applications, Santa Barbara, CA, Oct. 28–30
    [Google Scholar]
  81. 81.  Fu G, Menciassi A, Dario P 2011. Development of a genderless and fail-safe connection system for autonomous modular robots. 2011 IEEE International Conference on Robotics and Biomimetics877–82 New York: IEEE
    [Google Scholar]
  82. 82.  Kutzer M, Moses M, Brown C, Scheidt D, Chirikjian G, Armand M 2010. Design of a new independently-mobile reconfigurable modular robot. 2010 IEEE International Conference on Robotics and Automation2758–64 New York: IEEE
    [Google Scholar]
  83. 83.  Unsal C, Khosla PK 2000. Solutions for 3D self-reconfiguration in a modular robotic system: implementation and motion planning. Sensor Fusion and Decentralized Control in Robotic Systems III GT McKee, PS Schenker388–401 SPIE Proc. Vol. 4196. Bellingham, WA: Soc. Photo-Opt. Instrum. Eng.
    [Google Scholar]
  84. 84.  Castano A, Behar A, Will P 2002. The CONRO modules for reconfigurable robots. IEEE/ASME Trans. Mechatron. 7:403–9
    [Google Scholar]
  85. 85.  Garcia R, Hiller J, Stoy K, Lipson H 2011. A vacuum-based bonding mechanism for modular robotics. IEEE Trans. Robot. 27:876–90
    [Google Scholar]
  86. 86.  Cong JJ, Fitch R 2011. The X-CLAW self-aligning connector for self-reconfiguring modular robots Paper presented at the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Workshop on Reconfigurable Modular Robotics: Challenges of Mechatronic and Bio-Chemo-Hybrid Systems, San Francisco, Sept. 25
    [Google Scholar]
  87. 87.  Badescu M, Mavroidis C 2003. Novel active connector for modular robotic systems. IEEE/ASME Trans. Mechatron. 8:342–51
    [Google Scholar]
  88. 88.  Shen WM, Kovac R, Rubenstein M 2009. SINGO: a single-end-operative and genderless connector for self-reconfiguration, self-assembly and self-healing. 2009 IEEE International Conference on Robotics and Automation4253–58 New York: IEEE
    [Google Scholar]
  89. 89.  Nilsson M 2002. Connectors for self-reconfiguring robots. IEEE/ASME Trans. Mechatron. 7:473–74
    [Google Scholar]
  90. 90.  Vasilescu I, Varshavskaya P, Kotay K, Rus D 2005. Autonomous Modular Optical Underwater Robot (AMOUR) design, prototype and feasibility study. Proceedings of the 2005 IEEE International Conference on Robotics and Automation1603–9 New York: IEEE
    [Google Scholar]
  91. 91.  Eckenstein N, Yim M 2017. Modular robot connector area of acceptance from configuration space obstacles. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems3550–55 New York: IEEE
    [Google Scholar]
  92. 92.  Kress-Gazit H, Fainekos GE, Pappas GJ 2009. Temporal-logic-based reactive mission and motion planning. IEEE Trans. Robot. 25:1370–81
    [Google Scholar]
  93. 93.  Mason MT 2001. Mechanics of Robotic Manipulation Cambridge, MA: MIT Press
    [Google Scholar]
  94. 94.  Chen IM, Burdick JW 1998. Enumerating the non-isomorphic assembly configurations of modular robotic systems. Int. J. Robot. Res. 17:702–19
    [Google Scholar]
  95. 95.  Nguyen A, Guibas LJ, Yim M 2000. Controlled module density helps reconfiguration planning. Algorithmic and Computational Robotics: New Directions BR Donald, K Lynch, D Rus23–36 Natick, MA: AK Peters
    [Google Scholar]
  96. 96.  Park M, Chitta S, Teichman A, Yim M 2008. Automatic configuration recognition methods in modular robots. Int. J. Robot. Res. 27:403–21
    [Google Scholar]
  97. 97.  Chen IM, Burdick JW 1995. Determining task optimal modular robot assembly configurations. Proceedings of 1995 IEEE International Conference on Robotics and Automation 1132–37 New York: IEEE
    [Google Scholar]
  98. 98.  Morrow JD, Khosla PK 1995. Sensorimotor primitives for robotic assembly skills. Proceedings of 1995 IEEE International Conference on Robotics and Automation 21894–99 New York: IEEE
    [Google Scholar]
  99. 99.  Paredis CJJ, Brown HB, Khosla PK 1996. A rapidly deployable manipulator system. Proceedings of IEEE International Conference on Robotics and Automation 21434–39 New York: IEEE
    [Google Scholar]
  100. 100.  Farritor S, Dubowsky S 2001. On modular design of field robotic systems. Auton. Robots 10:57–65
    [Google Scholar]
  101. 101.  Jing G, Tosun T, Yim M, Kress-Gazit H 2016. An end-to-end system for accomplishing tasks with modular robots. Robotics: Science and Systems XII D Hsu, N Amato, S Berman, S Jacobs chap. 25 N.p.: Robot. Sci. Syst. Found.
    [Google Scholar]
  102. 102.  Şucan IA, Kruse JF, Yim M, Kavraki LE 2008. Reconfiguration for modular robots using kinodynamic motion planning. ASME 2008 Dynamic Systems and Control Conference1429–31 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  103. 103.  Murray RM, Li Z, Sastry SS 1994. A Mathematical Introduction to Robotic Manipulation Boca Raton, FL: CRC
    [Google Scholar]
  104. 104.  LaValle S 2006. Planning Algorithms Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  105. 105.  Latombe JC 1991. Robot Motion Planning Int. Series Eng. Comput. Sci. Vol. 124 New York: Springer
    [Google Scholar]
  106. 106.  Lynch KM, Park FC 2017. Modern Robotics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  107. 107.  Demaine ED, O'Rourke J 2008. Geometric Folding Algorithms: Linkages, Origami, Polyhedra Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  108. 108.  Yim M, Goldberg D, Casal A 2000. Connectivity planning for closed-chain reconfiguration. Sensor Fusion and Decentralized Control in Robotic Systems III GT McKee, PS Schenker388–401 SPIE Proc. Vol. 4196. Bellingham, WA: Soc. Photo-Opt. Instrum. Eng.
    [Google Scholar]
  109. 109.  Werfel J, Nagpal R 2008. Three-dimensional construction with mobile robots and modular blocks. Int. J. Robot. Res. 27:463–79
    [Google Scholar]
  110. 110.  Romanishin JW, Gilpin K, Claici S, Rus D 2015. 3D M-blocks: self-reconfiguring robots capable of locomotion via pivoting in three dimensions. 2015 IEEE International Conference on Robotics and Automation1925–32 New York: IEEE
    [Google Scholar]
  111. 111.  Seo J, Yim M, Kumar V 2013. Assembly planning for planar structures of a brick wall pattern with rectangular modular robots. 2013 IEEE International Conference on Automation Science and Engineering1016–21 New York: IEEE
    [Google Scholar]
  112. 112.  Seo J, Yim M, Kumar V 2016. Assembly sequence planning for constructing planar structures with rectangular modules. 2016 IEEE International Conference on Robotics and Automation5477–82 New York: IEEE
    [Google Scholar]
  113. 113.  Cormen TH, Leiserson CE, Rivest RL, Stein C 2009. Introduction to Algorithms Cambridge, MA: MIT Press
    [Google Scholar]
  114. 114.  Casal A 2002. Reconfiguration planning for modular self-reconfigurable robots PhD Thesis, Stanford Univ., Stanford, CA
    [Google Scholar]
  115. 115.  Hou F, Shen WM 2008. Distributed, dynamic, and autonomous reconfiguration planning for chain-type self-reconfigurable robots. 2008 IEEE International Conference on Robotics and Automation3135–40 New York: IEEE
    [Google Scholar]
  116. 116.  Dutta A, Dasgupta P, Nelson C 2018. Distributed configuration formation with modular robots using (sub)graph isomorphism-based approach. Auton. Robots In press. https://doi.org/10.1007/s10514-018-9759-9
    [Crossref] [Google Scholar]
  117. 117.  Şucan IA, Kruse JF, Yim M, Kavraki LE 2008. Kinodynamic motion planning with hardware demonstrations. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems1661–66 New York: IEEE
    [Google Scholar]
  118. 118.  Nagy Z, Oung R, Abbott JJ, Nelson BJ 2008. Experimental investigation of magnetic self-assembly for swallowable modular robots. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems1915–20 New York: IEEE
    [Google Scholar]
/content/journals/10.1146/annurev-control-053018-023834
Loading
/content/journals/10.1146/annurev-control-053018-023834
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error