1932

Abstract

Advanced measurement techniques and high-performance computing have made large data sets available for a range of turbulent flows in engineering applications. Drawing on this abundance of data, dynamical models that reproduce structural and statistical features of turbulent flows enable effective model-based flow control strategies. This review describes a framework for completing second-order statistics of turbulent flows using models based on the Navier–Stokes equations linearized around the turbulent mean velocity. Dynamical couplings between states of the linearized model dictate structural constraints on the statistics of flow fluctuations. Colored-in-time stochastic forcing that drives the linearized model is then sought to account for and reconcile dynamics with available data (that is, partially known statistics). The number of dynamical degrees of freedom that are directly affected by stochastic excitation is minimized as a measure of model parsimony. The spectral content of the resulting colored-in-time stochastic contribution can alternatively arise from a low-rank structural perturbation of the linearized dynamical generator, pointing to suitable dynamical corrections that may account for the absence of the nonlinear interactions in the linearized model.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-053018-023843
2020-05-03
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/control/3/1/annurev-control-053018-023843.html?itemId=/content/journals/10.1146/annurev-control-053018-023843&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Joslin RD. 1998. Aircraft laminar flow control. Annu. Rev. Fluid Mech. 30:1–29
    [Google Scholar]
  2. 2. 
    Gad-el-Hak M. 2000. Flow Control: Passive, Active, and Reactive Flow Management New York: Cambridge Univ. Press
    [Google Scholar]
  3. 3. 
    Choi H, Moin P. 2012. Grid-point requirements for large eddy simulation: Chapman's estimates revisited. Phys. Fluids 24:011702
    [Google Scholar]
  4. 4. 
    Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W et al. 2014. CFD Vision 2030 study: a path to revolutionary computational aerosciences Tech. Rep. CR-2014-218178, Natl. Aeronaut. Space Adm Washington, DC:
    [Google Scholar]
  5. 5. 
    Sagaut P. 2006. Large Eddy Simulation for Incompressible Flows: An Introduction Berlin: Springer
    [Google Scholar]
  6. 6. 
    Wilcox DC. 1998. Turbulence Modeling for CFD La Cañada, CA: DCW Ind, 2nd ed..
    [Google Scholar]
  7. 7. 
    Durbin PA, Reif BAP. 2011. Statistical Theory and Modeling for Turbulent Flows Chichester, UK: Wiley
    [Google Scholar]
  8. 8. 
    Kim J, Bewley TR. 2007. A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39:383–417
    [Google Scholar]
  9. 9. 
    Robinson SK. 1991. Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23:601–39
    [Google Scholar]
  10. 10. 
    Adrian RJ. 2007. Hairpin vortex organization in wall turbulence. Phys. Fluids 19:041301
    [Google Scholar]
  11. 11. 
    Smits AJ, McKeon BJ, Marusic I 2011. High–Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43:353–75
    [Google Scholar]
  12. 12. 
    Jiménez J. 2018. Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842:P1
    [Google Scholar]
  13. 13. 
    Rowley CW. 2005. Model reduction for fluids using balanced proper orthogonal decomposition. Int. J. Bifurc. Chaos 15:997–1013
    [Google Scholar]
  14. 14. 
    Lumley JL. 2007. Stochastic Tools in Turbulence Mineola, NY: Dover
    [Google Scholar]
  15. 15. 
    Schmid PJ. 2010. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656:5–28
    [Google Scholar]
  16. 16. 
    Jovanović MR, Schmid PJ, Nichols JW 2014. Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26:024103
    [Google Scholar]
  17. 17. 
    Rowley CW, Dawson ST. 2017. Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49:387–417
    [Google Scholar]
  18. 18. 
    Towne A, Schmidt OT, Colonius T 2018. Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847:821–67
    [Google Scholar]
  19. 19. 
    Noack BR, Morzyński M, Tadmor G 2011. Reduced-Order Modelling for Flow Control New York: Springer
    [Google Scholar]
  20. 20. 
    Tadmor G, Noack BR. 2011. Bernoulli, Bode, and Budgie. IEEE Control Syst. Mag. 31:218–23
    [Google Scholar]
  21. 21. 
    Trefethen LN, Trefethen AE, Reddy SC, Driscoll TA 1993. Hydrodynamic stability without eigenvalues. Science 261:578–84
    [Google Scholar]
  22. 22. 
    Schmid PJ. 2007. Nonmodal stability theory. Annu. Rev. Fluid Mech. 39:129–62
    [Google Scholar]
  23. 23. 
    Gustavsson LH. 1991. Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 224:241–60
    [Google Scholar]
  24. 24. 
    Butler KM, Farrell BF. 1992. Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4:1637
    [Google Scholar]
  25. 25. 
    Reddy SC, Henningson DS. 1993. Energy growth in viscous channel flows. J. Fluid Mech. 252:209–38
    [Google Scholar]
  26. 26. 
    Henningson DS, Reddy SC. 1994. On the role of linear mechanisms in transition to turbulence. Phys. Fluids 6:1396–98
    [Google Scholar]
  27. 27. 
    Schmid PJ, Henningson DS. 1994. Optimal energy density growth in Hagen-Poiseuille flow. J. Fluid Mech. 277:197–225
    [Google Scholar]
  28. 28. 
    Farrell BF, Ioannou PJ. 1993. Stochastic forcing of the linearized Navier-Stokes equations. Phys. Fluids A 5:2600–9
    [Google Scholar]
  29. 29. 
    Bamieh B, Dahleh M. 2001. Energy amplification in channel flows with stochastic excitation. Phys. Fluids 13:3258–69
    [Google Scholar]
  30. 30. 
    Jovanović MR. 2004. Modeling, analysis, and control of spatially distributed systems PhD Thesis, Univ Calif., Santa Barbara:
    [Google Scholar]
  31. 31. 
    Jovanović MR, Bamieh B. 2005. Componentwise energy amplification in channel flows. J. Fluid Mech. 534:145–83
    [Google Scholar]
  32. 32. 
    Ran W, Zare A, Hack MJP, Jovanović MR 2019. Stochastic receptivity analysis of boundary layer flow. Phys. Rev. Fluids 4:093901
    [Google Scholar]
  33. 33. 
    Butler KM, Farrell BF. 1993. Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids A 5:774–77
    [Google Scholar]
  34. 34. 
    Farrell BF, Ioannou PJ. 1993. Optimal excitation of three-dimensional perturbations in viscous constant shear flow. Phys. Fluids A 5:1390–400
    [Google Scholar]
  35. 35. 
    Farrell BF, Ioannou PJ. 1998. Perturbation structure and spectra in turbulent channel flow. Theor. Comput. Fluid Dyn. 11:237–50
    [Google Scholar]
  36. 36. 
    McKeon BJ, Sharma AS. 2010. A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658:336–82
    [Google Scholar]
  37. 37. 
    Moarref R, Sharma AS, Tropp JA, McKeon BJ 2013. Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels. J. Fluid Mech. 734:275–316
    [Google Scholar]
  38. 38. 
    Moarref R, Jovanović MR, Tropp JA, Sharma AS, McKeon BJ 2014. A low-order decomposition of turbulent channel flow via resolvent analysis and convex optimization. Phys. Fluids 26:051701
    [Google Scholar]
  39. 39. 
    McComb WD. 1991. The Physics of Fluid Turbulence Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  40. 40. 
    Kraichnan RH. 1959. The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5:497–543
    [Google Scholar]
  41. 41. 
    Kraichnan RH. 1971. An almost-Markovian Galilean-invariant turbulence model. J. Fluid Mech. 47:513–24
    [Google Scholar]
  42. 42. 
    Orszag SA. 1970. Analytical theories of turbulence. J. Fluid Mech. 41:363–86
    [Google Scholar]
  43. 43. 
    Monin AS, Yaglom AM. 1975. Statistical Fluid Mechanics: Mechanics of Turbulence 2 Cambridge, MA: MIT Press
    [Google Scholar]
  44. 44. 
    Farrell BF, Ioannou PJ. 1993. Stochastic dynamics of baroclinic waves. J. Atmos. Sci. 50:4044–57
    [Google Scholar]
  45. 45. 
    Farrell BF, Ioannou PJ. 1994. A theory for the statistical equilibrium energy spectrum and heat flux produced by transient baroclinic waves. J. Atmos. Sci. 51:2685–98
    [Google Scholar]
  46. 46. 
    DelSole T, Farrell BF. 1995. A stochastically excited linear system as a model for quasigeostrophic turbulence: analytic results for one- and two-layer fluids. J. Atmos. Sci. 52:2531–47
    [Google Scholar]
  47. 47. 
    Hwang Y, Cossu C. 2010. Amplification of coherent streaks in the turbulent Couette flow: an input-output analysis at low Reynolds number. J. Fluid Mech. 643:333–48
    [Google Scholar]
  48. 48. 
    Hwang Y, Cossu C. 2010. Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech. 664:51–73
    [Google Scholar]
  49. 49. 
    Jovanović MR, Bamieh B. 2001. Modelling flow statistics using the linearized Navier-Stokes equations. Proceedings of the 40th IEEE Conference on Decision and Control 54944–49 Piscataway, NJ: IEEE
    [Google Scholar]
  50. 50. 
    Pope SB. 2000. Turbulent Flows Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  51. 51. 
    Jones W, Launder B. 1972. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 15:301–14
    [Google Scholar]
  52. 52. 
    Launder B, Sharma B. 1974. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1:131–37
    [Google Scholar]
  53. 53. 
    Kim J, Moin P, Moser R 1987. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177:133–66
    [Google Scholar]
  54. 54. 
    Weideman JAC, Reddy SC. 2000. A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26:465–519
    [Google Scholar]
  55. 55. 
    Zare A, Jovanović MR, Georgiou TT 2017. Colour of turbulence. J. Fluid Mech. 812:636–80
    [Google Scholar]
  56. 56. 
    Malkus WVR. 1956. Outline of a theory of turbulent shear flow. J. Fluid Mech. 1:521–39
    [Google Scholar]
  57. 57. 
    Reynolds WC, Tiederman WG. 1967. Stability of turbulent channel flow with application to Malkus's theory. J. Fluid Mech. 27:253–72
    [Google Scholar]
  58. 58. 
    Georgiou TT. 2002. Spectral analysis based on the state covariance: the maximum entropy spectrum and linear fractional parametrization. IEEE Trans. Autom. Control 47:1811–23
    [Google Scholar]
  59. 59. 
    Georgiou TT. 2002. The structure of state covariances and its relation to the power spectrum of the input. IEEE Trans. Autom. Control 47:1056–66
    [Google Scholar]
  60. 60. 
    Moin P, Moser R. 1989. Characteristic-eddy decomposition of turbulence in a channel. J. Fluid Mech. 200:471–509
    [Google Scholar]
  61. 61. 
    Zare A, Chen Y, Jovanović MR, Georgiou TT 2017. Low-complexity modeling of partially available second-order statistics: theory and an efficient matrix completion algorithm. IEEE Trans. Autom. Control 62:1368–83
    [Google Scholar]
  62. 62. 
    Chen Y, Jovanović MR, Georgiou TT 2013. State covariances and the matrix completion problem. 52nd IEEE Conference on Decision and Control1702–7 Piscataway, NJ: IEEE
    [Google Scholar]
  63. 63. 
    Boyd S, Vandenberghe L. 2004. Convex Optimization Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  64. 64. 
    Goodwin GC, Payne RL. 1977. Dynamic System Identification: Experiment Design and Data Analysis New York: Academic
    [Google Scholar]
  65. 65. 
    Fazel M. 2002. Matrix rank minimization with applications PhD Thesis, Stanford Univ Stanford, CA:
    [Google Scholar]
  66. 66. 
    Recht B, Fazel M, Parrilo PA 2010. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev 52:471–501
    [Google Scholar]
  67. 67. 
    Hotz A, Skelton RE. 1987. Covariance control theory. Int. J. Control 46:13–32
    [Google Scholar]
  68. 68. 
    Yasuda K, Skelton RE, Grigoriadis KM 1993. Covariance controllers: a new parametrization of the class of all stabilizing controllers. Automatica 29:785–88
    [Google Scholar]
  69. 69. 
    Grigoriadis KM, Skelton RE. 1994. Alternating convex projection methods for covariance control design. Int. J. Control 60:1083–106
    [Google Scholar]
  70. 70. 
    Chen Y, Georgiou TT, Pavon M 2016. Optimal steering of a linear stochastic system to a final probability distribution, part II. IEEE Trans. Autom. Control 61:1170–80
    [Google Scholar]
  71. 71. 
    Lin F, Jovanović MR. 2009. Least-squares approximation of structured covariances. IEEE Trans. Autom. Control 54:1643–48
    [Google Scholar]
  72. 72. 
    Zorzi M, Ferrante A. 2012. On the estimation of structured covariance matrices. Automatica 48:2145–51
    [Google Scholar]
  73. 73. 
    Zare A, Jovanović MR, Georgiou TT 2016. Perturbation of system dynamics and the covariance completion problem. 2016 IEEE 55th Conference on Decision and Control7036–41 Piscataway, NJ: IEEE
    [Google Scholar]
  74. 74. 
    Zare A, Mohammadi H, Dhingra NK, Georgiou TT, Jovanović MR 2020. Proximal algorithms for large-scale statistical modeling and sensor/actuator selection. IEEE Trans. Autom. Control https://doi.org/10.1109/TAC.2019.2948268
    [Crossref] [Google Scholar]
  75. 75. 
    Zare A, Jovanović MR, Georgiou TT 2015. Alternating direction optimization algorithms for covariance completion problems. 2015 American Control Conference515–20 Piscataway, NJ: IEEE
    [Google Scholar]
  76. 76. 
    Toh KC, Todd MJ, Tütüncü RH 1999. SDPT3—a MATLAB software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11:545–81
    [Google Scholar]
  77. 77. 
    Grant M, Boyd S. 2014. CVX: Matlab software for disciplined convex programming, version 2.1. CVX Research http://cvxr.com/cvx
    [Google Scholar]
  78. 78. 
    Sasaki K, Piantanida S, Cavalieri AVG, Jordan P 2017. Real-time modelling of wavepackets in turbulent jets. J. Fluid Mech. 821:458–81
    [Google Scholar]
  79. 79. 
    Beneddine S, Sipp D, Arnault A, Dandois J, Lesshafft L 2016. Conditions for validity of mean flow stability analysis. J. Fluid Mech. 798:485–504
    [Google Scholar]
  80. 80. 
    Beneddine S, Yegavian R, Sipp D, Leclaire B 2017. Unsteady flow dynamics reconstruction from mean flow and point sensors: an experimental study. J. Fluid Mech. 824:174–201
    [Google Scholar]
  81. 81. 
    Towne A, Lozano-Durán A, Yang X 2019. Resolvent-based estimation of space-time flow statistics. arXiv1901.07478 [physics.flu-dyn]
  82. 82. 
    Morra P, Semeraro O, Henningson DS, Cossu C 2019. On the relevance of Reynolds stresses in resolvent analyses of turbulent wall-bounded flows. J. Fluid Mech. 867:969–84
    [Google Scholar]
  83. 83. 
    Moser RD, Kim J, Mansour NN 1999. DNS of turbulent channel flow up to Reτ = 590. Phys. Fluids 11:943–45
    [Google Scholar]
  84. 84. 
    Del Álamo JC, Jiménez J 2003. Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15:41–44
    [Google Scholar]
  85. 85. 
    Del Álamo JC, Jiménez J, Zandonade P, Moser RD 2004. Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500:135–44
    [Google Scholar]
  86. 86. 
    Monty JP, Stewart JA, Williams RC, Chong MS 2007. Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589:147–56
    [Google Scholar]
  87. 87. 
    Moarref R, Jovanović MR. 2012. Model-based design of transverse wall oscillations for turbulent drag reduction. J. Fluid Mech. 707:205–40
    [Google Scholar]
  88. 88. 
    Reynolds WC, Hussain AKMF. 1972. The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54:263–88
    [Google Scholar]
  89. 89. 
    Del Álamo JC, Jiménez J 2006. Linear energy amplification in turbulent channels. J. Fluid Mech. 559:205–13
    [Google Scholar]
  90. 90. 
    Cossu C, Pujals G, Depardon S 2009. Optimal transient growth and very large-scale structures in turbulent boundary layers. J. Fluid Mech. 619:79–94
    [Google Scholar]
  91. 91. 
    Pujals G, García-Villalba M, Cossu C, Depardon S 2009. A note on optimal transient growth in turbulent channel flows. Phys. Fluids 21:015109
    [Google Scholar]
  92. 92. 
    Hœpffner J, Chevalier M, Bewley TR, Henningson DS 2005. State estimation in wall-bounded flow systems. Part 1. Perturbed laminar flows. J. Fluid Mech. 534:263–94
    [Google Scholar]
  93. 93. 
    Chevalier M, Hœpffner J, Bewley TR, Henningson DS 2006. State estimation in wall-bounded flow systems. Part 2. Turbulent flows. J. Fluid Mech. 552:167–87
    [Google Scholar]
  94. 94. 
    Bewley TR, Liu S. 1998. Optimal and robust control and estimation of linear paths to transition. J. Fluid Mech. 365:305–49
    [Google Scholar]
  95. 95. 
    Högberg M, Bewley TR, Henningson DS 2003. Linear feedback control and estimation of transition in plane channel flow. J. Fluid Mech. 481:149–75
    [Google Scholar]
  96. 96. 
    Fransson JHM, Talamelli A, Brandt L, Cossu C 2006. Delaying transition to turbulence by a passive mechanism. Phys. Rev. Lett. 96:064501
    [Google Scholar]
  97. 97. 
    Jovanović MR. 2008. Turbulence suppression in channel flows by small amplitude transverse wall oscillations. Phys. Fluids 20:014101
    [Google Scholar]
  98. 98. 
    Moarref R, Jovanović MR. 2010. Controlling the onset of turbulence by streamwise traveling waves. Part 1: receptivity analysis. J. Fluid Mech. 663:70–99
    [Google Scholar]
  99. 99. 
    Lieu BK, Moarref R, Jovanović MR 2010. Controlling the onset of turbulence by streamwise traveling waves. Part 2: direct numerical simulations. J. Fluid Mech. 663:100–19
    [Google Scholar]
  100. 100. 
    Hoda N, Jovanović MR, Kumar S 2008. Energy amplification in channel flows of viscoelastic fluids. J. Fluid Mech. 601:407–24
    [Google Scholar]
  101. 101. 
    Hoda N, Jovanović MR, Kumar S 2009. Frequency responses of streamwise-constant perturbations in channel flows of Oldroyd-B fluids. J. Fluid Mech. 625:411–34
    [Google Scholar]
  102. 102. 
    Jovanović MR, Kumar S. 2010. Transient growth without inertia. Phys. Fluids 22:023101
    [Google Scholar]
  103. 103. 
    Jovanović MR, Kumar S. 2011. Nonmodal amplification of stochastic disturbances in strongly elastic channel flows. J. Non-Newton. Fluid Mech. 166:755–78
    [Google Scholar]
  104. 104. 
    Lieu BK, Jovanović MR, Kumar S 2013. Worst-case amplification of disturbances in inertialess Couette flow of viscoelastic fluids. J. Fluid Mech. 723:232–63
    [Google Scholar]
  105. 105. 
    Jeun J, Nichols JW, Jovanović MR 2016. Input-output analysis of high-speed axisymmetric isothermal jet noise. Phys. Fluids 28:047101
    [Google Scholar]
  106. 106. 
    Hildebrand N, Dwivedi A, Nichols JW, Jovanović MR, Candler GV 2018. Simulation and stability analysis of oblique shock wave/boundary layer interactions at Mach 5.92. Phys. Rev. Fluids 3:013906
    [Google Scholar]
  107. 107. 
    Dwivedi A, Sidharth GS, Nichols JW, Candler GV, Jovanović MR 2019. Reattachment vortices in hypersonic compression ramp flow: an input-output analysis. J. Fluid Mech. 880:113–35
    [Google Scholar]
  108. 108. 
    Reed HL, Saric WS, Arnal D 1996. Linear stability theory applied to boundary layers. Annu. Rev. Fluid Mech. 28:389–428
    [Google Scholar]
  109. 109. 
    Herbert T. 1997. Parabolized stability equations. Annu. Rev. Fluid Mech. 29:245–83
    [Google Scholar]
  110. 110. 
    Högberg M, Henningson DS. 2002. Linear optimal control applied to instabilities in spatially developing boundary layers. J. Fluid Mech. 470:151–79
    [Google Scholar]
  111. 111. 
    Ran W, Zare A, Hack MJP, Jovanović MR 2019. Modeling mode interactions in boundary layer flows via parabolized Floquet equations. Phys. Rev. Fluids 4:023901
    [Google Scholar]
  112. 112. 
    Candès EJ, Recht B. 2009. Exact matrix completion via convex optimization. Found. Comput. Math. 9:717–72
    [Google Scholar]
  113. 113. 
    Absil PA, Mahony R, Sepulchre R 2008. Optimization Algorithms on Matrix Manifolds Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  114. 114. 
    Grussler C, Zare A, Jovanović MR, Rantzer A 2016. The use of the r* heuristic in covariance completion problems. 2016 IEEE 55th Conference on Decision and Control1978–83 Piscataway, NJ: IEEE
    [Google Scholar]
  115. 115. 
    Grussler C, Rantzer A, Giselsson P 2018. Low-rank optimization with convex constraints. IEEE Trans. Autom. Control 63:4000–7
    [Google Scholar]
  116. 116. 
    Candes EJ, Li X, Soltanolkotabi M 2015. Phase retrieval via Wirtinger flow: theory and algorithms. IEEE Trans. Inf. Theory 61:1985–2007
    [Google Scholar]
  117. 117. 
    Sun R, Luo ZQ. 2016. Guaranteed matrix completion via non-convex factorization. IEEE Trans. Inf. Theory 62:6535–79
    [Google Scholar]
  118. 118. 
    Ge R, Lee JD, Ma T 2016. Matrix completion has no spurious local minimum. Advances in Neural Information Processing Systems 29 DD Lee, M Sugiyama, UV Luxburg, I Guyon, R Garnett 2973–81 Red Hook, NY: Curran
    [Google Scholar]
  119. 119. 
    Karabasov SA, Afsar MZ, Hynes TP, Dowling AP, McMullan WA et al. 2010. Jet noise: acoustic analogy informed by large eddy simulation. AIAA J 48:1312–25
    [Google Scholar]
  120. 120. 
    Leib SJ, Goldstein ME. 2011. Hybrid source model for predicting high-speed jet noise. AIAA J 49:1324–35
    [Google Scholar]
/content/journals/10.1146/annurev-control-053018-023843
Loading
/content/journals/10.1146/annurev-control-053018-023843
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error