1932

Abstract

This article surveys manipulation, including both biological and robotic manipulation. Biology inspires robotics and demonstrates aspects of manipulation that are far in the future of robotics. Robotics develops concepts and principles that become evident only in the creative process. Robotics also provides a test of our understanding. As Richard Feynman put it: “What I cannot create, I do not understand.”

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-060117-104848
2018-05-28
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/control/1/1/annurev-control-060117-104848.html?itemId=/content/journals/10.1146/annurev-control-060117-104848&mimeType=html&fmt=ahah

Literature Cited

  1. 1. euRobotics. 2013. Robotics 2020: strategic research agenda for robotics in Europe SRA Doc., euRobotics, Brussels. https://ec.europa.eu/research/industrial_technologies/pdf/robotics-ppp-roadmapn.pdf
    [Google Scholar]
  2. 2.  Miller D 2015. 2015 NASA technology roadmaps: TA4: robotics and autonomous systems Roadmap Doc., NASA, Washington, DC. Available at https://www.nasa.gov/offices/oct/home/roadmaps
    [Google Scholar]
  3. 3.  Mason MT 2001. Mechanics of Robotic Manipulation Cambridge, MA: MIT Press
    [Google Scholar]
  4. 4.  Davidson D 2001. Essays on Actions and Events Oxford, UK: Clarendon, 2nd ed..
    [Google Scholar]
  5. 5.  Buehler M, Koditschek DE, Kindlmann PJ 1994. Planning and control of robotic juggling and catching tasks. Int. J. Robot. Res. 13:101–18
    [Google Scholar]
  6. 6.  Rizzi AA, Koditschek DE 1993. Further progress in robot juggling: the spatial two-juggle. 1993 IEEE International Conference on Robotics and Automation 3919–24 New York: IEEE
    [Google Scholar]
  7. 7.  Yubuki N, Leander BS 2013. Evolution of microtubule organizing centers across the tree of eukaryotes. Plant J 75:230–44
    [Google Scholar]
  8. 8.  Marzke M 1983. Joint functions and grips of the Australopithecus afarensis hand, with special reference to the region of the capitate. J. Hum. Evol. 12:197–211
    [Google Scholar]
  9. 9.  Marzke MW 1996. Evolution of the hand and bipedality. Handbook of Human Symbolic Evolution A Lock, CR Peters 126–47 Oxford, UK: Clarendon
    [Google Scholar]
  10. 10.  Richmond BG, Roach NT, Ostrofsky KR 2016. Evolution of the early hominin hand. The Evolution of the Primate Hand: Anatomical, Developmental, Functional, and Paleontological Evidence TL Kivell, P Lemelin, BG Richmond, D Schmitt 515–43 New York: Springer
    [Google Scholar]
  11. 11.  Williams-Hatala EM 2016. Biomechanics of the human hand: from stone tools to computer keyboards. The Evolution of the Primate Hand: Anatomical, Developmental, Functional, and Paleontological Evidence TL Kivell, P Lemelin, BG Richmond, D Schmitt 285–312 New York: Springer
    [Google Scholar]
  12. 12.  Johanson DC, Taieb M 1976. Plio-pleistocene hominid discoveries in Hadar, Ethiopia. Nature 260:293–97
    [Google Scholar]
  13. 13.  Roach NT, Venkadesan M, Rainbow MJ, Lieberman DE 2013. Elastic energy storage in the shoulder and the evolution of high-speed throwing in homo. Nature 498:483–86
    [Google Scholar]
  14. 14.  Darwin C 1871. The Descent of Man, and Selection in Relation to Sex London: John Murray
    [Google Scholar]
  15. 15. Guinness. 2017. Fastest delivery of a cricket ball (male) http://www.guinnessworldrecords.com/world-records/fastest-bowl-of-a-cricket-ball
    [Google Scholar]
  16. 16.  Arndt J 2016. How Aroldis Chapman threw the fastest pitch ever. Huffington Post Aug. 28. https://www.huffingtonpost.com/entry/how-aroldis-chapman-threw-the-fastest-pitch-ever_us_57c38390e4b06384eb4066ef
    [Google Scholar]
  17. 17.  Savage-Rumbaugh ES, Lewin R 1994. Kanzi: The Ape at the Brink of the Human Mind New York: Wiley
    [Google Scholar]
  18. 18. WildNet Afr. 1997. Baboons stone highway motorists. WildNet Africa News Archive Jan. 8. http://www.cs.cmu.edu/∼mason/baboons08011997.pdf
    [Google Scholar]
  19. 19.  Isaac B 1987. Throwing and human evolution. Afr. Archaeol. Rev. 5:3–17
    [Google Scholar]
  20. 20.  Coddington J, Sobrevila C 1987. Web manipulation and two stereotyped attack behaviors in the ogre-faced spider Deinopis spinosus Marx (Araneae, Deinopidae). J. Arachnol. 15:213–25
    [Google Scholar]
  21. 21.  Kullman E 1959. Beobachtungen und betrachtungen zum verhalten der theridiidae Conopistha argyrodes. . Mitt. Zool. Mus. Berlin 35:275–92
    [Google Scholar]
  22. 22.  Hölldobler B, Wilson EO 2010. The Leafcutter Ants: Civilization by Instinct New York: Norton
    [Google Scholar]
  23. 23.  Weir AAS, Chappell J, Kacelnik A 2002. Shaping of hooks in New Caledonian crows. Science 297:981
    [Google Scholar]
  24. 24.  Teleki G 1974. Chimpanzee subsistence technology: materials and skills. J. Hum. Evol. 3:575–94
    [Google Scholar]
  25. 25.  Auersperg AMI, von Bayern AMP, Gajdon GK, Huber L, Kacelnik A 2011. Flexibility in problem solving and tool use of kea and New Caledonian crows in a multi access box paradigm. PLOS ONE 6:e20231
    [Google Scholar]
  26. 26.  Klump BC, Sugasawa S, St Clair JJH, Rutz C 2015. Hook tool manufacture in New Caledonian crows: behavioural variation and the influence of raw materials. BMC Biol 13:97
    [Google Scholar]
  27. 27.  Byrne R, Corp N, Byrne J 2001. Manual dexterity in the gorilla: bimanual and digit role differentiation in a natural task. Anim. Cogn. 4:347–61
    [Google Scholar]
  28. 28.  Child J 1963. The potato show. The French Chef season 1, episode 22, aired June 22
    [Google Scholar]
  29. 29.  Schlesinger G 1919. Der mechanische Aufbau der künstlichen Glieder. Ersatzglieder und Arbeitshilfen M Borchardt, K Hartmann, RR Leymann, G Schlesinger, H Schwiening 321–661 Berlin: Springer
    [Google Scholar]
  30. 30.  Cutkosky M, Wright P 1986. Modeling manufacturing grips and correlations with the design of robotic hands. 1986 IEEE International Conference on Robotics and Automation 31533–39 New York: IEEE
    [Google Scholar]
  31. 31.  Napier J, Tuttle RH 1993. Hands Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  32. 32.  Feix T, Pawlik R, Schmiedmayer H, Romero J, Kragić D 2009. The generation of a comprehensive grasp taxonomy Presented at Robot. Sci. Syst. Conf., Workshop Underst. Hum. Hand Adv. Robot. Manip., Seattle, WA, June 28–July 1. http://www.csc.kth.se/∼danik/taxonomyGRASP.pdf
    [Google Scholar]
  33. 33.  Elliott J, Connolly K 1984. A classification of manipulative hand movements. Dev. Med. Child Neurol. 26:283–96
    [Google Scholar]
  34. 34.  Marzke M 1997. Precision grips, hand morphology, and tools. Am. J. Phys. Anthropol. 102:91–110
    [Google Scholar]
  35. 35.  Siciliano B, Khatib O, eds. 2008. Springer Handbook of Robotics New York: Springer
    [Google Scholar]
  36. 36.  Mason MT 2012. Creation myths: the beginnings of robotics research. IEEE Robot. Autom. Mag. 19:72–77
    [Google Scholar]
  37. 37.  Sheridan T 1989. Telerobotics. Automatica 25:487–507
    [Google Scholar]
  38. 38.  Hokayem PF, Spong MW 2006. Bilateral teleoperation: an historical survey. Automatica 42:2035–57
    [Google Scholar]
  39. 39.  Goertz R, Bevilacqua F 1952. A force-reflecting positional servomechanism. Nucleonics 10:43–45
    [Google Scholar]
  40. 40.  Goertz R 1952. Fundamentals of general-purpose remote manipulators. Nucleonics 10:36–42
    [Google Scholar]
  41. 41.  Goertz R, Thompson W 1954. Electronically controlled manipulator. Nucleonics 12:46–47
    [Google Scholar]
  42. 42.  Goertz R 1954. Mechanical master-slave manipulator. Nucleonics 12:45–46
    [Google Scholar]
  43. 43.  Goertz R 1963. Manipulators used for handling radioactive materials. Human Factors in Technology E Bennett, J Degan, J Spiegel 425–43 New York: McGraw-Hill
    [Google Scholar]
  44. 44.  Niemeyer G, Preusche C, Stramigioli S, Lee D 2016. Telerobotics. See Ref. 35 1085–108
  45. 45.  Shachtman N 2009. Military gears up for bomb-bot 2.0. Wired Feb. 25. https://www.wired.com/2009/02/new-bomb-dispos
    [Google Scholar]
  46. 46. NASA. 1993. Wisoff on the arm Photo, NASA Washington, DC: https://upload.wikimedia.org/wikipedia/commons/d/d0/Wisoff_on_the_Arm_-_GPN-2000-001069.jpg
    [Google Scholar]
  47. 47.  van den Berg J, Miller S, Duckworth D, Hu H, Wan A et al. 2010. Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations. 2010 IEEE International Conference on Robotics and Automation2074–81 New York: IEEE
    [Google Scholar]
  48. 48.  Zappella L, Béjar B, Hager G, Vidal R 2013. Surgical gesture classification from video and kinematic data. Med. Image Anal. 17:732–45
    [Google Scholar]
  49. 49.  Devol GC Jr 1961. Programmed article transfer US Patent No 2988237
    [Google Scholar]
  50. 50.  Pierce J 2011. George C. Devol, inventor of robot arm, dies at 99. New York Times, Aug. 15, p. B16
  51. 51. Int. Fed. Robot. 2016. World robotics report 2016 Rep., Int. Fed. Robot., Frankfurt am Main, Ger.
    [Google Scholar]
  52. 52.  Byrne K, Proto J, Kruysman B, Bitterman M 2014. The power of engineering, the invention of artists. Robotic Fabrication in Architecture, Art and Design W McGee, M Ponce de Leon 399–405 Cham, Switz.: Springer
    [Google Scholar]
  53. 53.  Goldberg K 2001. The Robot in the Garden: Telerobotics and Telepistemology in the Age of the Internet Cambridge, MA: MIT Press
    [Google Scholar]
  54. 54.  Adler JR Jr., Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL 1997. The CyberKnife: a frameless robotic system for radiosurgery. Stereotact. Funct. Neurosurg. 69:124–28
    [Google Scholar]
  55. 55.  Paul RP 1981. Robot Manipulators: Mathematics, Programming, and Control: The Computer Control of Robot Manipulators Cambridge, MA: MIT Press
    [Google Scholar]
  56. 56.  Whitney DE 1972. The mathematics of coordinated control of prosthetic arms and manipulators. J. Dyn. Syst. Meas. Control 94:303–9
    [Google Scholar]
  57. 57.  Vukobratovic M, Potkonjak V 1982. Dynamics of Manipulation Robots: Theory and Application Berlin: Springer
    [Google Scholar]
  58. 58.  Sitti M 2007. Microscale and nanoscale robotics systems. IEEE Robot. Autom. Mag. 14:53–60
    [Google Scholar]
  59. 59.  Kube CR, Zhang H 1993. Collective robotics: from social insects to robots. Adapt. Behav. 2:189–218
    [Google Scholar]
  60. 60.  Werfel J, Petersen K, Nagpal R 2014. Designing collective behavior in a termite-inspired robot construction team. Science 343:754–58
    [Google Scholar]
  61. 61.  Khatib O, Yokoi K, Brock O, Chang K, Casal A 1999. Robots in human environments: basic autonomous capabilities. Int. J. Robot. Res. 18:684–96
    [Google Scholar]
  62. 62.  Brock O, Park J, Toussaint M 2016. Mobility and manipulation. See Ref. 35 1007–36
  63. 63.  Srinivasa SS, Ferguson D, Helfrich CJ, Berenson D, Collet A et al. 2010. HERB: a home exploring robotic butler. Auton. Robots 28:5–20
    [Google Scholar]
  64. 64.  Bohren J, Rusu RB, Jones EG, Marder-Eppstein E, Pantofaru C et al. 2011. Towards autonomous robotic butlers: lessons learned with the PR2. 2011 IEEE International Conference on Robotics and Automation5568–75 New York: IEEE
    [Google Scholar]
  65. 65.  Borst C, Wimbock T, Schmidt F, Fuchs M, Brunner B et al. 2009. Rollin' Justin—mobile platform with variable base. 2009 IEEE International Conference on Robotics and Automation1597–98 New York: IEEE
    [Google Scholar]
  66. 66.  Ernst HA 1962. MH-1, a computer-operated mechanical hand. AIEE-IRE '62 (Spring): Proceedings of the May 1–3, 1962, Spring Joint Computer Conference39–51 New York: ACM
    [Google Scholar]
  67. 67.  Paul R, Pingle K, Feldman J, Kay A 1971. Instant insanity - computer vision & robotics Film recorded at Artif. Intell. Lab., Stanford Univ., Stanford, CA. https://www.youtube.com/watch?v=O1oJzUSlTeY
    [Google Scholar]
  68. 68.  Nilsson NJ 1984. Shakey the robot Tech. Note 323, SRI Int., Menlo Park, CA
    [Google Scholar]
  69. 69.  Kitano H, Asada M, Kuniyoshi Y, Noda I, Osawai E, Matsubara H 1998. RoboCup: a challenge problem for AI and robotics. RoboCup-97: Robot Soccer World Cup I H Kitano 1–19 Berlin: Springer
    [Google Scholar]
  70. 70.  Hackett D, Pippine J, Watson A, Sullivan C, Pratt G 2013. An overview of the DARPA Autonomous Robotic Manipulation (ARM) program. J. Robot. Soc. Jpn. 31:326–29
    [Google Scholar]
  71. 71.  Pratt G, Manzo J 2013. The DARPA robotics challenge. IEEE Robot. Autom. Mag. 20:10–12
    [Google Scholar]
  72. 72.  Correll N, Bekris KE, Berenson D, Brock O, Causo A et al. 2018. Analysis and observations from the first Amazon picking challenge. IEEE Trans. Autom. Sci. Eng. 15:172–88
    [Google Scholar]
  73. 73.  Hollis RL, Salcudean SE, Allan AP 1991. A six-degree-of-freedom magnetically levitated variable compliance fine-motion wrist: design, modeling, and control. IEEE Trans. Robot. Autom. 7:320–32
    [Google Scholar]
  74. 74.  Makino H 2014. Development of the SCARA. J. Robot. Mechatron. 26:5–8
    [Google Scholar]
  75. 75.  Makino H, Furuya N 1980. Selective compliance assembly robot arm. Proceedings of the First International Conference on Assembly Automation77–86 Bedford, UK: IFS
    [Google Scholar]
  76. 76.  Rey L, Clavel R 1999. The Delta parallel robot. Parallel Kinematic Machines CR Boër, L Molinari-Tosatti, KS Smith 401–17 London: Springer
    [Google Scholar]
  77. 77.  Engelberger J, Lock D, Willis K 1980. Robotics in Practice: Management and Applications of Industrial Robots New York: AMACOM
    [Google Scholar]
  78. 78.  Atkar PN, Greenfield A, Conner DC, Choset H, Rizzi AA 2005. Uniform coverage of automotive surface patches. Int. J. Robot. Res. 24:883–98
    [Google Scholar]
  79. 79.  Inoue H 1971. Computer controlled bilateral manipulator. Bull. JSME 14:199–207
    [Google Scholar]
  80. 80.  Mason MT 1981. Compliance and force control for computer-controlled manipulators. IEEE Trans. Syst. Man Cybernet. 11:418–32
    [Google Scholar]
  81. 81.  Raibert MH, Craig JJ 1981. Hybrid position/force control of manipulators. J. Dyn. Syst. Meas. Control 102:126–33
    [Google Scholar]
  82. 82.  Hogan N 1980. Mechanical impedance control in assistive devices and manipulators. Proceedings of the 1980 Joint Automatic Control Conference pap. TA-10-B. Dayton, OH: Autom. Control Counc.
    [Google Scholar]
  83. 83.  Khatib O 1987. A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3:43–53
    [Google Scholar]
  84. 84.  Bischoff R, Kurth J, Schreiber G, Koeppe R, Albu-Schaeffer A et al. 2010. The KUKA-DLR lightweight robot arm - a new reference platform for robotics research and manufacturing. 2010 41st International Symposium on Robotics and 2010 6th German Conference on Robotics (ROBOTIK)741–48 Berlin: VDE
    [Google Scholar]
  85. 85.  Villani L, De Schutter J 2016. Force control. See Ref. 35 195–220
  86. 86.  Pratt GA, Williamson MM 1995. Series elastic actuators. 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems: Human Robot Interaction and Cooperative Robots 1399–406 New York: IEEE
    [Google Scholar]
  87. 87.  Laliberté T, Gosselin C 1998. Simulation and design of underactuated mechanical hands. Mech. Mach. Theory 33:39–57
    [Google Scholar]
  88. 88.  Dollar A, Howe R 2010. The highly adaptive SDM hand: design and performance evaluation. Int. J. Robot. Res. 29:585–97
    [Google Scholar]
  89. 89.  Monkman G, Hesse S, Steinmann R 2007. Robot Grippers New York: Wiley
    [Google Scholar]
  90. 90.  Birglen L, Schlicht T 2018. A statistical review of industrial robotic grippers. Robot. Comput.-Integr. Manuf. 49:88–97
    [Google Scholar]
  91. 91.  Monkman G 1997. An analysis of astrictive prehension. Int. J. Robot. Res. 16:1–10
    [Google Scholar]
  92. 92.  Lozano-Pérez T, Wesley M 1979. An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 22:560–70
    [Google Scholar]
  93. 93.  Lanczos C 1970. The Variational Principles of Mechanics Toronto: Univ. Toronto Press
    [Google Scholar]
  94. 94.  Kavraki L, Svestka P, Latombe J, Overmars M 1996. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12:566–80
    [Google Scholar]
  95. 95.  Kavraki LE, LaValle SM 2016. Motion planning. See Ref. 35 139–62
  96. 96.  Tomovic R, Boni G 1962. An adaptive artificial hand. IRE Trans. Autom. Control 7:3–10
    [Google Scholar]
  97. 97.  Salisbury JK Jr 1982. Kinematic and force analysis of articulated hands PhD Thesis, Dep. Mech. Eng., Stanford Univ Stanford, CA:
    [Google Scholar]
  98. 98.  Jacobsen S, Wood J, Knutti D, Biggers K 1984. The Utah/MIT dextrous hand: work in progress. Int. J. Robot. Res. 3:21–50
    [Google Scholar]
  99. 99.  Ulrich NT 1989. Grasping with mechanical intelligence Tech. Rep. MS-CIS-89-51, Univ. Pa., Philadelphia
    [Google Scholar]
  100. 100.  Butterfass J, Grebenstein M, Liu H, Hirzinger G 2001. DLR-Hand II: next generation of a dextrous robot hand. 2001 IEEE International Conference on Robotics and Automation 1109–14 New York: IEEE
    [Google Scholar]
  101. 101.  Catalano M, Grioli G, Farnioli E, Serio A, Piazza C, Bicchi A 2014. Adaptive synergies for the design and control of the Pisa/IIT softhand. Int. J. Robot. Res. 33:768–82
    [Google Scholar]
  102. 102.  Birglen L, Laliberté T, Gosselin C 2008. Underactuated Robotic Hands Berlin: Springer
    [Google Scholar]
  103. 103.  Hanafusa H, Asada H 1977. A robot hand with elastic fingers and its application to assembly process. In IFAC Proc. . Vol 10:127–38
    [Google Scholar]
  104. 104.  Lakshminarayana I 1978. The mechanics of form closure Tech. Pap. 78-DET 32, ASME, New York
    [Google Scholar]
  105. 105.  Asada H, By AB 1985. Kinematic analysis of workpart fixturing for flexible assembly with automatically reconfigurable fixtures. IEEE J. Robot. Autom. 1:86–94
    [Google Scholar]
  106. 106.  Mishra B, Schwartz JT, Sharir M 1987. On the existence and synthesis of multifinger positive grips. Algorithmica 2:541–58
    [Google Scholar]
  107. 107.  Rimon E, Burdick JW 1995. New bounds on the number of frictionless fingers required to immobilize planar objects. J. Robot. Syst. 12:433–51
    [Google Scholar]
  108. 108.  Bicchi A 1995. On the closure properties of robotic grasping. Int. J. Robot. Res. 14:319–34
    [Google Scholar]
  109. 109.  Bicchi A, Kumar V 2000. Robotic grasping and contact: a review. 2000 ICRA: International Conference Robotics and Automation348–53 New York: IEEE
    [Google Scholar]
  110. 110.  Bicchi A 2000. Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Trans. Robot. Autom. 16:652–62
    [Google Scholar]
  111. 111.  Miller A, Allen P 2004. Graspit! A versatile simulator for robotic grasping. IEEE Robot. Autom. Mag. 11:110–22
    [Google Scholar]
  112. 112.  Ciocarlie M, Allen P 2009. Hand posture subspaces for dexterous robotic grasping. Int. J. Robot. Res. 28:851–67
    [Google Scholar]
  113. 113.  Lozano-Pérez T, Jones J, Mazer E, O'Donnell P, Grimson W et al. 1987. Handey: a robot system that recognizes, plans, and manipulates. 1987 IEEE International Conference on Robotics and Automation 4843–49 New York: IEEE
    [Google Scholar]
  114. 114.  Stilman M, Schamburek JU, Kuffner J, Asfour T 2007. Manipulation planning among movable obstacles. 2007 IEEE International Conference on Robotics and Automation3327–32 New York: IEEE
    [Google Scholar]
  115. 115.  Alami R, Simeon T, Laumond JP 1989. A geometrical approach to planning manipulation tasks. The case of discrete placements and grasps. The Fifth International Symposium on Robotics Research453–63 Cambridge, MA: MIT Press
    [Google Scholar]
  116. 116.  Simunovic S 1975. Force information in assembly processes. Proceedings of the 5th International Symposium on Industrial Robots415–31 Dearborn, MI: SME
    [Google Scholar]
  117. 117.  Whitney DE 1983. Quasi-static assembly of compliantly supported rigid parts. ASME J. Dyn. Syst. Meas. Control 104:65–77
    [Google Scholar]
  118. 118.  Whitney DE, Nevins JL 1979. What is the remote center compliance and what can it do. ? In Proceedings of 9th International Symposium and Exposition on Industrial Robots (ISIR)135–52 Dearborn, MI: SME
    [Google Scholar]
  119. 119.  Murray RM, Li Z, Sastry SS 1994. A Mathematical Introduction to Robotic Manipulation Boca Raton, FL: CRC
    [Google Scholar]
  120. 120.  Mason MT, Salisbury JK Jr 1985. Robot Hands and the Mechanics of Manipulation Cambridge, MA: MIT Press
    [Google Scholar]
  121. 121.  Marigo A, Bicchi A 2000. Rolling bodies with regular surface: controllability theory and applications. IEEE Trans. Autom. Control 45:1586–99
    [Google Scholar]
  122. 122.  Trinkle J, Paul R 1990. Planning for dexterous manipulation with sliding contacts. Int. J. Robot. Res. 9:24–48
    [Google Scholar]
  123. 123.  Rus D 1999. In-hand dexterous manipulation of piecewise-smooth 3-D objects. Int. J. Robot. Res. 18:355–81
    [Google Scholar]
  124. 124.  Chavan-Dafle N, Rodriguez A, Paolini R, Tang B, Srinivasa S et al. 2014. Extrinsic dexterity: in-hand manipulation with external forces. 2014 IEEE International Conference on Robotics and Automation (ICRA)1578–85 New York: IEEE
    [Google Scholar]
  125. 125.  Viña B FE, Karayiannidis Y, Pauwels K, Smith C, Kragić D 2015. In-hand manipulation using gravity and controlled slip. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)5636–41 New York: IEEE
    [Google Scholar]
  126. 126.  Hou Y, Jia Z, Johnson A, Mason MT 2016. Robust planar dynamic pivoting by regulating inertial and grip forces Presented at Workshop Algorithmic Found. Robot., 12th, San Francisco, Dec 18–20
    [Google Scholar]
  127. 127.  Shi J, Woodruff JZ, Umbanhowar PB, Lynch KM 2017. Dynamic in-hand sliding manipulation. IEEE Trans. Robot. 33:778–95
    [Google Scholar]
  128. 128.  Chavan-Dafle N, Rodriguez A 2017. Sampling-based planning of in-hand manipulation with external pushes. arXiv1707.00318
  129. 129.  Mason MT 1986. Mechanics and planning of manipulator pushing operations. Int. J. Robot. Res. 5:53–71
    [Google Scholar]
  130. 130.  Lynch KM, Mason MT 1995. Stable pushing: mechanics, controllability, and planning. Algorithmic Foundations of Robotics K Goldberg, D Halperin, J-C Latombe, R Wilson 239–62 Boston, MA: A.K. Peters
    [Google Scholar]
  131. 131.  Dogar MR, Srinivasa SS 2011. A framework for push-grasping in clutter. Robotics: Science and Systems VII H Durrant-Whyte, N Roy, P Abbeel 65–72 Cambridge, MA: MIT Press
    [Google Scholar]
  132. 132.  Yu KT, Bauza M, Fazeli N, Rodriguez A 2016. More than a million ways to be pushed. A high-fidelity experimental dataset of planar pushing. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)30–37 New York: IEEE
    [Google Scholar]
  133. 133.  Chang LY, Zeglin GJ, Pollard NS 2008. Preparatory object rotation as a human-inspired grasping strategy. Humanoids 2008 – 8th IEEE-RAS International Conference on Humanoid Robots527–34 New York: IEEE
    [Google Scholar]
  134. 134.  Goldberg KY 1993. Orienting polygonal parts without sensors. Algorithmica 10:201–25
    [Google Scholar]
  135. 135.  Erdmann MA 1998. An exploration of nonprehensile two-palm manipulation. Int. J. Robot. Res. 17:485–503
    [Google Scholar]
  136. 136.  Erdmann MA, Mason MT 1988. An exploration of sensorless manipulation. IEEE J. Robot. Autom. 4:369–79
    [Google Scholar]
  137. 137.  Peshkin MA, Sanderson AC 1988. Planning robotic manipulation strategies for workpieces that slide. IEEE J. Robot. Autom. 4:524–31
    [Google Scholar]
  138. 138.  Mason MT, Rodriguez A, Srinivasa SS, Vazquez AS 2012. Autonomous manipulation with a general-purpose simple hand. Int. J. Robot. Res. 31:688–703
    [Google Scholar]
  139. 139.  Berretty RP, Overmars MH, van der Stappen A 2002. Orienting polyhedral parts by pushing. Comput. Geom. 21:21–38
    [Google Scholar]
  140. 140.  Salisbury JK 1987. Whole arm manipulation. Proceedings of the 4th International Symposium on Robotics Research R Bolles, B Roth 183–89 Cambridge, MA: MIT Press
    [Google Scholar]
  141. 141.  Shepard RN, Metzler J 1971. Mental rotation of three-dimensional objects. Science 171:701–3
    [Google Scholar]
  142. 142.  Balkcom DJ, Mason MT 2008. Robotic origami folding. Int. J. Robot. Res. 27:613–27
    [Google Scholar]
  143. 143.  Maitin-Shepard J, Cusumano-Towner M, Lei J, Abbeel P 2010. Cloth grasp point detection based on multiple-view geometric cues with application to robotic towel folding. 2010 IEEE International Conference on Robotics and Automation2308–15 New York: IEEE
    [Google Scholar]
  144. 144.  Lemelin P, Schmitt D 2016. On primitiveness, prehensility, and opposability of the primate hand: the contributions of Frederic Wood Jones and John Russell Napier. The Evolution of the Primate Hand: Anatomical, Developmental, Functional, and Paleontological Evidence TL Kivell, P Lemelin, BG Richmond, D Schmitt 5–13 New York: Springer
    [Google Scholar]
  145. 145.  Chen IM, Yim M 2016. Modular robotics. See Ref. 35 531–42
  146. 146.  Moravec H 1988. Mind Children: The Future of Robot and Human Intelligence Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  147. 147.  Reif J 1979. Complexity of the mover's problem and generalizations (extended abstract). 20th Annual IEEE Conference on Foundations of Computer Science421–27 New York: IEEE
    [Google Scholar]
  148. 148.  Johnson DS 1973. Near-optimal bin packing algorithms PhD Thesis, Dep. Math., Mass. Inst. Technol Cambridge, MA:
    [Google Scholar]
  149. 149.  Hawking S 2001. The Universe in a Nutshell New York: Bantam
    [Google Scholar]
  150. 150.  Pinto L, Gupta A 2017. Learning to push by grasping: using multiple tasks for effective learning. 2017 IEEE International Conference on Robotics and Automation (ICRA)2161–68 New York: IEEE
    [Google Scholar]
  151. 151.  Goldberg DE, Holland JH 1988. Genetic algorithms and machine learning. Mach. Learn. 3:95–99
    [Google Scholar]
  152. 152.  Fitts PM 1954. The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47:381–91
    [Google Scholar]
  153. 153.  Mortimer J, Rooks B 1987. The International Robot Industry Report Berlin: Springer
    [Google Scholar]
  154. 154. Omron Adept Technol 2017. Adept Quattro s650HS Data Sheet, Omron Adept Technol., San Ramon, CA. https://www.adept.com/downloads/doc_details/341-datasheet-adept-quattro-s650hs-robot
    [Google Scholar]
  155. 155.  Blickhan R, Seyfarth A, Geyer H, Grimmer S, Wagner H, Günther M 2007. Intelligence by mechanics. Philos. Trans. R. Soc. Lond. A 365:199–220
    [Google Scholar]
  156. 156.  Byrne RW, Corp N, Byrne JME 2001. Estimating the complexity of animal behaviour: how mountain gorillas eat thistles. Behaviour 138:525–57
    [Google Scholar]
  157. 157.  Lee K, Moses M, Chirikjian GS 2008. Robotic self-replication in structured environments: physical demonstrations and complexity measures. Int. J. Robot. Res. 27:387–401
    [Google Scholar]
  158. 158.  Sanderson A 1984. Parts entropy methods for robotic assembly system design. 1984 IEEE International Conference on Robotics and Automation600–8 New York: IEEE
    [Google Scholar]
/content/journals/10.1146/annurev-control-060117-104848
Loading
/content/journals/10.1146/annurev-control-060117-104848
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error