1932

Abstract

As robots move beyond manufacturing applications to less predictable environments, they can increasingly benefit, as animals do, from integrating sensing and control with the passive properties provided by particular combinations and arrangements of materials and mechanisms. This realization is partly responsible for the recent proliferation of soft and bioinspired robots. Tuned materials and mechanisms can provide several kinds of benefits, including energy storage and recovery, increased physical robustness, and decreased response time to sudden events. In addition, they may offer passive open-loop behaviors and responses to external changes in loading or environmental conditions. Collectively, these properties can also increase the stability of a robot as it interacts with the environment and allow the closed-loop controller to reduce the apparent degrees of freedom subject to control. The design of appropriate materials and mechanisms remains a challenging problem; bioinspiration, genetic algorithms, and numerical shape and materials optimization are all applicable. New multimaterial fabrication processes are also steadily increasing the range and magnitude of passive properties available for intrinsically responsive robots.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-060117-104903
2018-05-28
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/control/1/1/annurev-control-060117-104903.html?itemId=/content/journals/10.1146/annurev-control-060117-104903&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Pfeifer R, Lungarella M, Iida F 2007. Self-organization, embodiment, and biologically inspired robotics. Science 318:1088–93
    [Google Scholar]
  2. 2.  Alexander RM 2003. Principles of Animal Locomotion Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  3. 3.  McMahon TA 1985. The role of compliance in mammalian running gaits. J. Exp. Biol. 115:263–82
    [Google Scholar]
  4. 4.  Dickinson MH, Farley CT, Full RJ, Koehl MA, Kram R, Lehman S 2000. How animals move: an integrative view. Science 288:100–6
    [Google Scholar]
  5. 5.  Kim S, Laschi C, Trimmer B 2013. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 31:287–94
    [Google Scholar]
  6. 6.  Rus D, Tolley MT 2015. Design, fabrication and control of soft robots. Nature 521:467–75
    [Google Scholar]
  7. 7.  Müller VC, Hoffmann M 2017. What is morphological computation? On how the body contributes to cognition and control. Artificial Life 23:1–24
    [Google Scholar]
  8. 8.  Calamia J 2011. Artifacts from the first 2000 years of computing. IEEE Spectrum 48:34–40
    [Google Scholar]
  9. 9.  Watson P 1978. Remote center compliance system US Patent No. 4098001
    [Google Scholar]
  10. 10.  Whitney DE 1982. Quasi-static assembly of compliantly supported rigid parts. J. Dyn. Syst. Meas. Control 104:65–77
    [Google Scholar]
  11. 11.  Hirose S, Umetani Y 1978. The development of soft gripper for the versatile robot hand. Mech. Mach. Theory 13:351–59
    [Google Scholar]
  12. 12.  Larson O, Davidson C 1983. Flexible arm, particularly a robot arm US Patent No. 4393728
    [Google Scholar]
  13. 13.  Whitney DE 1987. Historical perspective and state of the art in robot force control. Int. J. Robot. Res. 6:3–14
    [Google Scholar]
  14. 14.  Eppinger S, Seering W 1987. Introduction to dynamic models for robot force control. IEEE Control Syst. Mag. 7:48–52
    [Google Scholar]
  15. 15.  An CH, Hollerbach JM 1987. Dynamic stability issues in force control of manipulators. 1987 American Control Conference821–27 New York: IEEE
    [Google Scholar]
  16. 16.  Drake SH 1978. Using compliance in lieu of sensory feedback for automatic assembly PhD Thesis, Dep. Mech. Eng., Mass. Inst. Technol., Cambridge
    [Google Scholar]
  17. 17.  Hogan N 1985. Impedance control: an approach to manipulation. I. Theory. J. Dyn. Syst. Meas. Control 107:1–7
    [Google Scholar]
  18. 18.  Khatib O 1987. A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3:43–53
    [Google Scholar]
  19. 19.  Blickhan R 1989. The spring-mass model for running and hopping. J. Biomech. 22:1217–27
    [Google Scholar]
  20. 20.  Alexander RM 1984. Elastic energy stores in running vertebrates. Am. Zool. 24:85–94
    [Google Scholar]
  21. 21.  Dawson TJ, Taylor CR 1973. Energetic cost of locomotion in kangaroos. Nature 246:313–14
    [Google Scholar]
  22. 22.  Alexander RM 1991. Energy-saving mechanisms in walking and running. J. Exp. Biol. 160:55–69
    [Google Scholar]
  23. 23.  Alexander R 1990. Three uses for springs in legged locomotion. Int. J. Robot. Res. 9:53–61
    [Google Scholar]
  24. 24.  Dickinson MH, Tu MS 1997. The function of dipteran flight muscle. Comp. Biochem. Physiol. A 116:223–38
    [Google Scholar]
  25. 25.  Ma KY, Chirarattananon P, Fuller SB, Wood RJ 2013. Controlled flight of a biologically inspired, insect-scale robot. Science 340:603–7
    [Google Scholar]
  26. 26.  Fleagle J 1974. Dynamics of a brachiating siamang [Hylobates (Symphalangus) syndactylus]. Nature 248:259–60
    [Google Scholar]
  27. 27.  Raibert MH 1986. Legged Robots That Balance Cambridge, MA: MIT Press
    [Google Scholar]
  28. 28.  Brown B, Zeglin G 1998. The bow leg hopping robot. 1998 IEEE International Conference on Robotics and Automation 1781–86 New York: IEEE
    [Google Scholar]
  29. 29.  Pratt GA, Williamson MM 1995. Series elastic actuators. 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems: Human Robot Interaction and Cooperative Robots 1399–406 New York: IEEE
    [Google Scholar]
  30. 30.  Renjewski D, Spröwitz A, Peekema A, Jones M, Hurst J 2015. Exciting engineered passive dynamics in a bipedal robot. IEEE Trans. Robot. 31:1244–51
    [Google Scholar]
  31. 31.  Hutter M, Gehring C, Bloesch M, Hoepflinger MA, Remy CD, Siegwart R 2012. StarlETH: a compliant quadrupedal robot for fast, efficient, and versatile locomotion. Adaptive Mobile Robotics AKM Azad, NJ Cowan, MO Tokhi, GS Virk 483–90 Singapore: World Sci.
    [Google Scholar]
  32. 32.  Pratt JE, Pratt GA 1998. Exploiting natural dynamics in the control of a planar bipedal walking robot. Proceedings of the Thirty-Sixth Annual Allerton Conference on Communication, Control, and Computing739–48 Urbana: Univ. Ill.
    [Google Scholar]
  33. 33.  Takuma T, Ikeda M, Masuda T 2010. Facilitating multi-modal locomotion in a quadruped robot utilizing passive oscillation of the spine structure. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)4940–45 New York: IEEE
    [Google Scholar]
  34. 34.  Zhao Q, Nakajima K, Sumioka H, Yu X, Pfeifer R 2012. Embodiment enables the spinal engine in quadruped robot locomotion. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)2449–56 New York: IEEE
    [Google Scholar]
  35. 35.  Seok S, Wang A, Chuah MYM, Hyun DJ, Lee J et al. 2015. Design principles for energy-efficient legged locomotion and implementation on the MIT cheetah robot. IEEE/ASME Trans. Mechatron. 20:1117–29
    [Google Scholar]
  36. 36.  Wood RJ 2008. The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Robot. 24:341–47
    [Google Scholar]
  37. 37.  McGeer T 1990. Passive dynamic walking. Int. J. Robot. Res. 9:62–82
    [Google Scholar]
  38. 38.  Collins S, Ruina A, Tedrake R, Wisse M 2005. Efficient bipedal robots based on passive-dynamic walkers. Science 307:1082–85
    [Google Scholar]
  39. 39.  Nakanishi J, Fukuda T, Koditschek DE 2000. A brachiating robot controller. IEEE Trans. Robot. 16:109–23
    [Google Scholar]
  40. 40. Lao Tsu. 1972. Tao Te Ching Transl. G Feng, J English New York: Random House
    [Google Scholar]
  41. 41.  Odhner LU, Jentoft LP, Claffee MR, Corson N, Tenzer Y et al. 2014. A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res. 33:736–52
    [Google Scholar]
  42. 42.  Stuart H, Wang S, Khatib O, Cutkosky MR 2017. The ocean one hands: an adaptive design for robust marine manipulation. Int. J. Robot. Res. 36:150–66
    [Google Scholar]
  43. 43.  Dollar AM, Howe RD 2010. The highly adaptive SDM hand: design and performance evaluation. Int. J. Robot. Res. 29:585–97
    [Google Scholar]
  44. 44.  Deimel R, Brock O 2016. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 35:161–85
    [Google Scholar]
  45. 45.  Homberg BS, Katzschmann RK, Dogar MR, Rus D 2015. Haptic identification of objects using a modular soft robotic gripper. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)1698–705 New York: IEEE
    [Google Scholar]
  46. 46.  Zhao H, OBrien K, Li S, Shepherd RF 2016. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 1:eaai7529
    [Google Scholar]
  47. 47.  Marchese AD, Rus D 2016. Design, kinematics, and control of a soft spatial fluidic elastomer manipulator. Int. J. Robot. Res. 35:840–69
    [Google Scholar]
  48. 48.  Laschi C, Cianchetti M, Mazzolai B, Margheri L, Follador M, Dario P 2012. Soft robot arm inspired by the octopus. Adv. Robot. 26:709–27
    [Google Scholar]
  49. 49.  Seok S, Onal CD, Cho KJ, Wood RJ, Rus D, Kim S 2013. Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans. Mechatron. 18:1485–97
    [Google Scholar]
  50. 50.  Shepherd RF, Ilievski F, Choi W, Morin SA, Stokes AA et al. 2011. Multigait soft robot. PNAS 108:20400–3
    [Google Scholar]
  51. 51.  Tolley MT, Shepherd RF, Mosadegh B, Galloway KC, Wehner M et al. 2014. A resilient, untethered soft robot. Soft Robot 1:213–23
    [Google Scholar]
  52. 52.  Bartlett NW, Tolley MT, Overvelde JT, Weaver JC, Mosadegh B et al. 2015. A 3D-printed, functionally graded soft robot powered by combustion. Science 349:161–65
    [Google Scholar]
  53. 53.  Kosinski RJ 2008. A literature review on reaction time Rev. Pap., Clemson Univ Clemson, SC:
    [Google Scholar]
  54. 54.  Wensing PM, Wang A, Seok S, Otten D, Lang J, Kim S 2017. Proprioceptive actuator design in the mit cheetah: impact mitigation and high-bandwidth physical interaction for dynamic legged robots. IEEE Trans. Robot. 33:509–22
    [Google Scholar]
  55. 55.  Haddadin S, Albu-Schäffer A, Hirzinger G 2009. Requirements for safe robots: measurements, analysis and new insights. Int. J. Robot. Res. 28:1507–27
    [Google Scholar]
  56. 56.  Noel AC, Guo HY, Mandica M, Hu DL 2017. Frogs use a viscoelastic tongue and non-Newtonian saliva to catch prey. J. R. Soc. Interface 14:20160764
    [Google Scholar]
  57. 57.  Zinn M, Khatib O, Roth B, Salisbury JK 2004. Playing it safe. IEEE Robot. Autom. Mag. 11:12–21
    [Google Scholar]
  58. 58.  Park JJ, Kim HS, Song JB 2009. Safe robot arm with safe joint mechanism using nonlinear spring system for collision safety. 2009 IEEE International Conference on Robotics and Automation3371–76 New York: IEEE
    [Google Scholar]
  59. 59.  Park JJ, Haddadin S, Song JB, Albu-Schäffer A 2011. Designing optimally safe robot surface properties for minimizing the stress characteristics of human-robot collisions. 2011 IEEE International Conference on Robotics and Automation (ICRA)5413–20 New York: IEEE
    [Google Scholar]
  60. 60.  Jiang H, Hawkes EW, Fuller C, Estrada MA, Suresh SA et al. 2017. A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity. Sci. Robot. 2:eaan4545
    [Google Scholar]
  61. 61.  Thomas J, Pope M, Loianno G, Hawkes EW, Estrada MA et al. 2016. Aggressive flight with quadrotors for perching on inclined surfaces. J. Mech. Robot. 8:051007
    [Google Scholar]
  62. 62.  Edwards J, Whitaker D, Klionsky S, Laskowski MJ 2005. Botany: a record-breaking pollen catapult. Nature 435:164
    [Google Scholar]
  63. 63.  Burrows M, Sutton G 2013. Interacting gears synchronize propulsive leg movements in a jumping insect. Science 341:1254–56
    [Google Scholar]
  64. 64.  Haldane DW, Plecnik M, Yim JK, Fearing RS 2016. Robotic vertical jumping agility via series-elastic power modulation. Sci. Robot. 1:eaag2048
    [Google Scholar]
  65. 65.  Plecnik MM, Haldane DW, Yim JK, Fearing RS 2017. Design exploration and kinematic tuning of a power modulating jumping monopod. J. Mech. Robot. 9:011009
    [Google Scholar]
  66. 66.  Scarfogliero U, Stefanini C, Dario P 2009. The use of compliant joints and elastic energy storage in bio-inspired legged robots. Mech. Mach. Theory 44:580–90
    [Google Scholar]
  67. 67.  Kovač M, Schlegel M, Zufferey JC, Floreano D 2010. Steerable miniature jumping robot. Auton. Robots 28:295–306
    [Google Scholar]
  68. 68.  Ramezani A, Hurst JW, Hamed KA, Grizzle JW 2014. Performance analysis and feedback control of ATRIAS, a three-dimensional bipedal robot. J. Dyn. Syst. Meas. Control 136:021012
    [Google Scholar]
  69. 69.  Vogel S 2013. Comparative Biomechanics: Life's Physical World Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  70. 70.  Felton SM, Lee DY, Cho KJ, Wood RJ 2014. A passive, origami-inspired, continuously variable transmission. 2014 IEEE International Conference on Robotics and Automation (ICRA)2913–18 New York: IEEE
    [Google Scholar]
  71. 71.  Haynes GC, Khripin A, Lynch G, Amory J, Saunders A et al. 2009. Rapid pole climbing with a quadrupedal robot. 2009 IEEE International Conference on Robotics and Automation (ICRA)2767–72 New York: IEEE
    [Google Scholar]
  72. 72.  Brown I, Loeb G 2000. A reductionist approach to creating and using neuromusculoskeletal models. Biomechanics and Neural Control of Posture and Movement J Winters, P Crago 148–63 London: Springer
    [Google Scholar]
  73. 73.  Proctor J, Holmes P 2010. Reflexes and preflexes: on the role of sensory feedback on rhythmic patterns in insect locomotion. Biol. Cybernet. 102:513–31
    [Google Scholar]
  74. 74.  Full RJ, Koditschek DE 1999. Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J. Exp. Biol. 202:3325–32
    [Google Scholar]
  75. 75.  Bailey SA, Cham JG, Cutkosky MR, Full RJ 2000. Biomimetic robotic mechanisms via shape deposition manufacturing. Robotics Research JM Hollerbach, DE Koditschek 403–10 London: Springer
    [Google Scholar]
  76. 76.  Holmes P, Full RJ, Koditschek D, Guckenheimer J 2006. The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev 48:207–304
    [Google Scholar]
  77. 77.  Santello M, Flanders M, Soechting JF 1998. Postural hand synergies for tool use. J. Neurosci. 18:10105–15
    [Google Scholar]
  78. 78.  Mason CR, Gomez JE, Ebner TJ 2001. Hand synergies during reach-to-grasp. J. Neurophysiol. 86:2896–910
    [Google Scholar]
  79. 79.  Full RJ, Farley CT 2000. Musculoskeletal dynamics in rhythmic systems: a comparative approach to legged locomotion. Biomechanics and Neural Control of Posture and Movement JM Winters, PE Crago 192–205 New York: Springer
    [Google Scholar]
  80. 80.  Blickhan R, Full R 1993. Similarity in multilegged locomotion: bouncing like a monopode. J. Comp. Physiol. A 173:509–17
    [Google Scholar]
  81. 81.  Cham JG, Bailey SA, Clark JE, Full RJ, Cutkosky MR 2002. Fast and robust: hexapedal robots via shape deposition manufacturing. Int. J. Robot. Res. 21:869–82
    [Google Scholar]
  82. 82.  Saranli U, Buehler M, Koditschek DE 2001. RHex: a simple and highly mobile hexapod robot. Int. J. Robot. Res. 20:616–31
    [Google Scholar]
  83. 83.  Altendorfer R, Moore N, Komsuoglu H, Buehler M, Brown H et al. 2001. RHex: a biologically inspired hexapod runner. Auton. Robots 11:207–13
    [Google Scholar]
  84. 84.  Kim S, Clark JE, Cutkosky MR 2006. iSprawl: design and tuning for high-speed autonomous open-loop running. Int. J. Robot. Res. 25:903–12
    [Google Scholar]
  85. 85.  Kubow T, Full R 1999. The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners. Philos. Trans. R. Soc. Lond. B 354:849–61
    [Google Scholar]
  86. 86.  Schmitt J, Holmes P 2000. Mechanical models for insect locomotion: dynamics and stability in the horizontal plane I. Theory. Biol. Cybernet. 83:501–15
    [Google Scholar]
  87. 87.  Jindrich DL, Full RJ 2002. Dynamic stabilization of rapid hexapedal locomotion. J. Exp. Biol. 205:2803–23
    [Google Scholar]
  88. 88.  Raibert MH 1987. Running with symmetry. Int. J. Robot. Res. 5:3–19
    [Google Scholar]
  89. 89.  Koditschek DE, Full RJ, Buehler M 2004. Mechanical aspects of legged locomotion control. Arthropod Struct. Dev. 33:251–72
    [Google Scholar]
  90. 90.  Cham JG, Karpick J, Cutkosky MR 2004. Stride period adaptation for a biomimetic running hexapod. Int. J. Robot. Res. 23:141–53
    [Google Scholar]
  91. 91.  Cham JG, Cutkosky MR 2007. Dynamic stability of open-loop hopping. ASME J. Dyn. Syst. Meas. Control 129:275–84
    [Google Scholar]
  92. 92.  Xu X, Cheng W, Dudek D, Hatanaka M, Cutkosky MR, Full RJ 2000. Material modeling for shape deposition manufacturing of biomimetic components. Proceedings of DETC'00 Pap. DETC2000/DFM-14022 New York: ASME
    [Google Scholar]
  93. 93.  Sakagami Y, Watanabe R, Aoyama C, Matsunaga S, Higaki N, Fujimura K 2002. The intelligent ASIMO: system overview and integration. 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 32478–83 New York: IEEE
    [Google Scholar]
  94. 94.  Tajima R, Honda D, Suga K 2009. Fast running experiments involving a humanoid robot. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)1571–76 New York: IEEE
    [Google Scholar]
  95. 95.  Kaneko K, Kanehiro F, Morisawa M, Akachi K, Miyamori G et al. 2011. Humanoid robot HRP-4-humanoid robotics platform with lightweight and slim body. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)4400–7 New York: IEEE
    [Google Scholar]
  96. 96.  Iida F, Gómez G, Pfeifer R 2005. Exploiting body dynamics for controlling a running quadruped robot. 12th International Conference on Advanced Robotics (ICAR)229–35 New York: IEEE
    [Google Scholar]
  97. 97.  Bennett S 2001. The past of PID controllers. Annu. Rev. Control 25:43–53
    [Google Scholar]
  98. 98.  Bar-Cohen Y 2006. Biomimetics—using nature to inspire human innovation. Bioinspir. Biomim. 1:P1–12
    [Google Scholar]
  99. 99.  Mazzolai B, Beccai L, Mattoli V 2014. Plants as model in biomimetics and biorobotics: new perspectives. Front. Bioeng. Biotechnol. 2:2
    [Google Scholar]
  100. 100.  Hawkes EW, Blumenschein LH, Greer JD, Okamura AM 2017. A soft robot that navigates its environment through growth. Sci. Robot. 2:eaan3028
    [Google Scholar]
  101. 101.  Sanchez C, Arribart H, Guille MMG 2005. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 4:277–88
    [Google Scholar]
  102. 102.  Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP et al. 2000. Adhesive force of a single gecko foot-hair. Nature 405:681–85
    [Google Scholar]
  103. 103.  Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M 2006. Frictional adhesion: a new angle on gecko attachment. J. Exp. Biol. 209:3569–79
    [Google Scholar]
  104. 104.  Kim S, Spenko M, Trujillo S, Heyneman B, Santos D, Cutkosky MR 2008. Smooth vertical surface climbing with directional adhesion. IEEE Trans. Robot. 24:65–74
    [Google Scholar]
  105. 105.  Johansson R, Westling G 1984. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp. Brain Res. 56:550–64
    [Google Scholar]
  106. 106.  Johansson RS, Flanagan JR 2009. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10:345–59
    [Google Scholar]
  107. 107.  Wettels N, Santos VJ, Johansson RS, Loeb GE 2008. Biomimetic tactile sensor array. Adv. Robot. 22:829–49
    [Google Scholar]
  108. 108.  Vincent JF, Mann DL 2002. Systematic technology transfer from biology to engineering. Philos. Trans. R. Soc. Lond. A 360:159–73
    [Google Scholar]
  109. 109.  Cohen YH, Reich Y, Greenberg S 2014. Biomimetics: structure–function patterns approach. J. Mech. Des. 136:111108
    [Google Scholar]
  110. 110.  Murray KR 2013. Classification of biological phenomena to aid in search and retrieval for biomimicry MS Thesis, Dep. Mech. Eng., Clemson Univ Clemson, SC:
    [Google Scholar]
  111. 111.  Shu L, Cheong H 2014. A natural language approach to biomimetic design. Biologically Inspired Design A Goel, D McAdams, R Stone 29–61 London: Springer
    [Google Scholar]
  112. 112.  Lipson H, Pollack JB 2000. Automatic design and manufacture of robotic lifeforms. Nature 406:974–78
    [Google Scholar]
  113. 113.  Cheney N, MacCurdy R, Clune J, Lipson H 2013. Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding. Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation C Blum 167–74 New York: ACM
    [Google Scholar]
  114. 114.  Lipson H 2014. Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Robot 1:21–27
    [Google Scholar]
  115. 115.  Gaynor AT, Meisel NA, Williams CB, Guest JK 2014. Multiple-material topology optimization of compliant mechanisms created via polyjet three-dimensional printing. J. Manuf. Sci. Eng. 136:061015
    [Google Scholar]
  116. 116.  Sharma D, Deb K, Kishore NN 2014. Customized evolutionary optimization procedure for generating minimum weight compliant mechanisms. Eng. Optim. 46:39–60
    [Google Scholar]
  117. 117.  Zegard T, Paulino GH 2016. Bridging topology optimization and additive manufacturing. Struct. Multidiscip. Optim. 53:175–92
    [Google Scholar]
  118. 118.  Rieffel J, Knox D, Smith S, Trimmer B 2014. Growing and evolving soft robots. Artif. Life 20:143–62
    [Google Scholar]
  119. 119.  Munk DJ, Vio GA, Steven GP 2015. Topology and shape optimization methods using evolutionary algorithms: a review. Struct. Multidiscip. Optim. 52:613–31
    [Google Scholar]
  120. 120.  Feix T, Romero J, Schmiedmayer HB, Dollar AM, Kragic D 2016. The grasp taxonomy of human grasp types. IEEE Trans. Hum.-Mach. Syst. 46:66–77
    [Google Scholar]
  121. 121.  Ciocarlie M, Allen P 2011. A constrained optimization framework for compliant underactuated grasping. Mech. Sci. 2:17–26
    [Google Scholar]
  122. 122.  Hammond FL, Weisz J, Andrés A, Allen PK, Howe RD 2012. Towards a design optimization method for reducing the mechanical complexity of underactuated robotic hands. 2012 IEEE International Conference on Robotics and Automation (ICRA)2843–50 New York: IEEE
    [Google Scholar]
  123. 123.  Miller AT, Allen PK 2004. Graspit! A versatile simulator for robotic grasping. IEEE Robot. Autom. Mag. 11:110–22
    [Google Scholar]
  124. 124.  Catalano MG, Grioli G, Farnioli E, Serio A, Piazza C, Bicchi A 2014. Adaptive synergies for the design and control of the Pisa/IIT SoftHand. Int. J. Robot. Res. 33:768–82
    [Google Scholar]
  125. 125.  Ashby MF 2005. Materials Selection in Mechanical Design Oxford, UK: Butterworth-Heinemann, 3rd ed..
    [Google Scholar]
  126. 126.  Ashby MF, Johnson K 2013. Materials and Design: The Art and Science of Material Selection in Product Design Oxford, UK: Butterworth-Heinemann
    [Google Scholar]
  127. 127.  Qin Z, Dimas L, Adler D, Bratzel G, Buehler MJ 2014. Biological materials by design. J. Phys. Condens. Matter 26:073101
    [Google Scholar]
  128. 128.  Naleway SE, Porter MM, McKittrick J, Meyers MA 2015. Structural design elements in biological materials: application to bioinspiration. Adv. Mater. 27:5455–76
    [Google Scholar]
  129. 129.  Cranford SW, de Boer J, van Blitterswijk C, Buehler MJ 2013. Materiomics: an -omics approach to biomaterials research. Adv. Mater. 25:802–24
    [Google Scholar]
  130. 130.  Panetta J, Zhou Q, Malomo L, Pietroni N, Cignoni P, Zorin D 2015. Elastic textures for additive fabrication. ACM Trans. Graph. 34:135
    [Google Scholar]
  131. 131.  Raabe D, Sachs C, Romano P 2005. The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater 53:4281–92
    [Google Scholar]
  132. 132.  Snodgrass RE 1935. Principles of Insect Morphology London: McGraw-Hill
    [Google Scholar]
  133. 133.  Cho KJ, Koh JS, Kim S, Chu WS, Hong Y, Ahn SH 2009. Review of manufacturing processes for soft biomimetic robots. Int. J. Precis. Eng. Manuf. 10:171–81
    [Google Scholar]
  134. 134.  Dollar AM, Cho KJ, Fearing RS, Park YL 2015. Special issue: fabrication of fully integrated robotic mechanisms. J. Mech. Robot. 7:020201
    [Google Scholar]
  135. 135.  Merz R, Prinz F, Ramaswami K, Terk M, Weiss L 1994. Shape deposition manufacturing. Solid Freeform Fabrication Symposium Proceedings: September, 19941–8 Austin: Univ. Tex.
    [Google Scholar]
  136. 136.  Binnard M, Cutkosky M 2000. A design by composition approach for layered manufacturing. ASME Trans. J. Mech. Des. 122:91–101
    [Google Scholar]
  137. 137.  Dollar AM, Wagner CR, Howe RD 2006. Embedded sensors for biomimetic robotics via shape deposition manufacturing. The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics763–68 New York: IEEE
    [Google Scholar]
  138. 138.  Dollar AM, Howe RD 2006. A robust compliant grasper via shape deposition manufacturing. IEEE/ASME Trans. Mechatron. 11:154–161
    [Google Scholar]
  139. 139.  Xia Y, Whitesides GM 1998. Soft lithography. Annu. Rev. Mater. Sci. 28:153–84
    [Google Scholar]
  140. 140.  Galloway KC, Polygerinos P, Walsh CJ, Wood RJ 2013. Mechanically programmable bend radius for fiber-reinforced soft actuators. 16th International Conference on Advanced Robotics (ICAR) New York: IEEE https://doi.org/10.1109/ICAR.2013.6766586
    [Crossref] [Google Scholar]
  141. 141.  Connolly F, Polygerinos P, Walsh CJ, Bertoldi K 2015. Mechanical programming of soft actuators by varying fiber angle. Soft Robot 2:26–32
    [Google Scholar]
  142. 142.  Rogers JA, Someya T, Huang Y 2010. Materials and mechanics for stretchable electronics. Science 327:1603–7
    [Google Scholar]
  143. 143.  Park YL, Majidi C, Kramer R, Bérard P, Wood RJ 2010. Hyperelastic pressure sensing with a liquid-embedded elastomer. J. Micromech. Microeng. 20:125029
    [Google Scholar]
  144. 144.  Wood RJ, Avadhanula S, Sahai R, Steltz E, Fearing RS 2008. Microrobot design using fiber reinforced composites. J. Mech. Des. 130:052304
    [Google Scholar]
  145. 145.  Hoffman KL, Wood RJ 2013. Robustness of centipede-inspired millirobot locomotion to leg failures. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems1472–79 New York: IEEE
    [Google Scholar]
  146. 146.  Hawkes E, An B, Benbernou NM, Tanaka H, Kim S et al. 2010. Programmable matter by folding. PNAS 107:12441–45
    [Google Scholar]
  147. 147.  Haldane DW, Casarez CS, Karras JT, Lee J, Li C et al. 2015. Integrated manufacture of exoskeletons and sensing structures for folded millirobots. J. Mech. Robot. 7:021011
    [Google Scholar]
  148. 148.  Aukes DM, Goldberg B, Cutkosky MR, Wood RJ 2014. An analytic framework for developing inherently-manufacturable pop-up laminate devices. Smart Mater. Struct. 23:094013
    [Google Scholar]
  149. 149.  Felton S, Tolley M, Demaine E, Rus D, Wood R 2014. A method for building self-folding machines. Science 345:644–46
    [Google Scholar]
  150. 150.  Sreetharan PS, Whitney JP, Strauss MD, Wood RJ 2012. Monolithic fabrication of millimeter-scale machines. J. Micromech. Microeng. 22:055027
    [Google Scholar]
  151. 151.  Peraza-Hernandez EA, Hartl DJ, Malak RJ Jr., Lagoudas DC 2014. Origami-inspired active structures: a synthesis and review. Smart Mater. Struct. 23:094001
    [Google Scholar]
  152. 152.  Sussman DM, Cho Y, Castle T, Gong X, Jung E et al. 2015. Algorithmic lattice kirigami: a route to pluripotent materials. PNAS 112:7449–53
    [Google Scholar]
  153. 153.  Bhushan B, Caspers M 2017. An overview of additive manufacturing (3D printing) for microfabrication. Microsyst. Technol. 23:1117–24
    [Google Scholar]
  154. 154.  Compton BG, Lewis JA 2014. 3D-printing of lightweight cellular composites. Adv. Mater. 26:5930–35
    [Google Scholar]
  155. 155.  Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM et al. 2016. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536:451–55
    [Google Scholar]
  156. 156.  Lopes AJ, MacDonald E, Wicker RB 2012. Integrating stereolithography and direct print technologies for 3D structural electronics fabrication. Rapid Prototyp. J. 18:129–43
    [Google Scholar]
  157. 157.  Gross B, Erkal J, Lockwood S, Chen C, Spence D 2014. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86:3240–53
    [Google Scholar]
  158. 158.  Ma RR, Belter JT, Dollar AM 2015. Hybrid deposition manufacturing: design strategies for multimaterial mechanisms via three-dimensional printing and material deposition. J. Mech. Robot. 7:021002
    [Google Scholar]
  159. 159.  Cutkosky MR, Kim S 2009. Design and fabrication of multi-material structures for bioinspired robots. Philos. Trans. R. Soc. A 367:1799–813
    [Google Scholar]
  160. 160.  Park SJ, Gazzola M, Park KS, Park S, Di Santo V et al. 2016. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353:158–62
    [Google Scholar]
  161. 161.  Sato H, Maharbiz MM 2010. Recent developments in the remote radio control of insect flight. Front. Neurosci. 4:199
    [Google Scholar]
  162. 162.  Mai Y, Eisenberg A 2012. Self-assembly of block copolymers. Chem. Soc. Rev. 41:5969–85
    [Google Scholar]
  163. 163.  Zhang Y, Zhang F, Yan Z, Ma Q, Li X et al. 2017. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater. 2:17019
    [Google Scholar]
  164. 164.  Zykov V, Mytilinaios E, Adams B, Lipson H 2005. Robotics: self-reproducing machines. Nature 435:163–64
    [Google Scholar]
  165. 165.  Greenman J, Holland O, Kelly I, Kendall K, McFarland D, Melhuish C 2003. Towards robot autonomy in the natural world: a robot in predator's clothing. Mechatronics 13:195–228
    [Google Scholar]
  166. 166.  Ieropoulos I, Greenman J, Melhuish C, Horsfield I 2010. EcoBot-III: a robot with guts. Artificial Life X: Proceedings of the Twelfth International Conference on the Synthesis and Simulation of Living Systems LM Rocha 733–40 Cambridge, MA: MIT Press
    [Google Scholar]
  167. 167.  Morin SA, Shepherd RF, Kwok SW, Stokes AA, Nemiroski A, Whitesides GM 2012. Camouflage and display for soft machines. Science 337:828–32
    [Google Scholar]
  168. 168.  Majidi C 2014. Soft robotics: a perspective—current trends and prospects for the future. Soft Robot 1:5–11
    [Google Scholar]
/content/journals/10.1146/annurev-control-060117-104903
Loading
/content/journals/10.1146/annurev-control-060117-104903
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error