1932

Abstract

The Kalman filter—or, more precisely, the extended Kalman filter (EKF)—is a fundamental engineering tool that is pervasively used in control and robotics and for various estimation tasks in autonomous systems. The recently developed field of invariant extended Kalman filtering uses the geometric structure of the state space and the dynamics to improve the EKF, notably in terms of mathematical guarantees. The methodology essentially applies in the fields of localization, navigation, and simultaneous localization and mapping (SLAM). Although it was created only recently, its remarkable robustness properties have already motivated a real industrial implementation in the aerospace field. This review aims to provide an accessible introduction to the methodology of invariant Kalman filtering and to allow readers to gain insight into the relevance of the method as well as its important differences with the conventional EKF. This should be of interest to readers intrigued by the practical application of mathematical theories and those interested in finding robust, simple-to-implement filters for localization, navigation, and SLAM, notably for autonomous vehicle guidance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-060117-105010
2018-05-28
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/control/1/1/annurev-control-060117-105010.html?itemId=/content/journals/10.1146/annurev-control-060117-105010&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Stengel RF 1986. Optimal Control and Estimation New York: Courier
    [Google Scholar]
  2. 2.  Bonnabel S 2007. Left-invariant extended Kalman filter and attitude estimation. 2007 46th IEEE Conference on Decision and Control1027–32 New York: IEEE
    [Google Scholar]
  3. 3.  Bonnabel S, Martin P, Salaün E 2009. Invariant extended Kalman filter: theory and application to a velocity-aided attitude estimation problem. Proceedings of the 48th IEEE Conference on Decision and Control1297–304 New York: IEEE
    [Google Scholar]
  4. 4.  Martin P, Salaün E 2010. Generalized multiplicative extended Kalman filter for aided attitude and heading reference system. AIAA Guidance, Navigation, and Control Conference chap. 2010-8301 Reston, VA: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  5. 5.  Barczyk M, Lynch AF 2013. Invariant observer design for a helicopter UAV aided inertial navigation system. IEEE Trans. Control Syst. Technol. 21:791–806
    [Google Scholar]
  6. 6.  Bourmaud G, Mégret R, Arnaudon M, Giremus A 2015. Continuous-discrete extended Kalman filter on matrix Lie groups using concentrated Gaussian distributions. J. Math. Imaging Vis. 51:209–28
    [Google Scholar]
  7. 7.  Barrau A, Bonnabel S 2017. The invariant extended Kalman filter as a stable observer. IEEE Trans. Autom. Control 62:1797–812
    [Google Scholar]
  8. 8.  Brockett RW 1973. Lie algebras and Lie groups in control theory. Geometric Methods in System Theory DQ Mayne, RW Brockett 43–82 Dordrecht, Neth.: D. Reidel
    [Google Scholar]
  9. 9.  Willsky AS, Marcus SI 1975. Estimation for bilinear stochastic systems. Variable Structure Systems with Application to Economics and Biology RR Mohler, A Ruberti 116–37 Berlin: Springer
    [Google Scholar]
  10. 10.  Duncan TE 1977. Some filtering results in Riemann manifolds. Inform. Control 35:182–95
    [Google Scholar]
  11. 11.  Mahony R, Hamel T, Pflimlin JM 2008. Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control 53:1203–18
    [Google Scholar]
  12. 12.  Tayebi A, McGilvray S, Roberts A, Moallem M 2007. Attitude estimation and stabilization of a rigid body using low-cost sensors. 2007 46th IEEE Conference on Decision and Control6424–29 New York: IEEE
    [Google Scholar]
  13. 13.  Bohn J, Sanyal AK 2012. Unscented state estimation for rigid body motion on SE(3. 2012 IEEE 51st Annual Conference on Decision and Control (CDC)7498–503 New York: IEEE
    [Google Scholar]
  14. 14.  Batista P, Silvestre C, Oliveira P 2012. A GES attitude observer with single vector observations. Automatica 48:388–95
    [Google Scholar]
  15. 15.  Khosravian A, Trumpf J, Mahony R, Lageman C 2015. Observers for invariant systems on Lie groups with biased input measurements and homogeneous outputs. Automatica 55:19–26
    [Google Scholar]
  16. 16.  Lee T 2016. Global unscented attitude estimation via the matrix Fisher distributions on SO(3). 2016 American Control Conference (ACC)4942–47 New York: IEEE
    [Google Scholar]
  17. 17.  Chirikjian GS 2009. Stochastic Models, Information Theory, and Lie Groups 1 Classical Results and Geometric Methods Boston: Birkhäuser
    [Google Scholar]
  18. 18.  Barfoot TD, Furgale PT 2014. Associating uncertainty with three-dimensional poses for use in estimation problems. IEEE Trans. Robot. 30:679–93
    [Google Scholar]
  19. 19.  Chirikjian GS, Kobilarov M 2014. Gaussian approximation of non-linear measurement models on Lie groups. 2014 IEEE 53rd Annual Conference on Decision and Control (CDC)6401–6 New York: IEEE
    [Google Scholar]
  20. 20.  Chirikjian GS 2011. Stochastic Models, Information Theory, and Lie Groups 2 Analytic Methods and Modern Applications Boston: Birkhäuser
    [Google Scholar]
  21. 21.  Wolfe K, Mashner M, Chirikjian GS 2011. Bayesian Fusion on Lie groups. J. Algebraic Stat. 2:75–97
    [Google Scholar]
  22. 22.  Loianno G, Watterson M, Kumar V 2016. Visual inertial odometry for quadrotors on SE(3).. 2016 IEEE International Conference on Robotics and Automation (ICRA)1544–51 New York: IEEE
    [Google Scholar]
  23. 23.  Barrau A, Bonnabel S 2015. An EKF-SLAM algorithm with consistency properties. arXiv1510.06263
  24. 24.  Barp A, Briol FX, Kennedy AD, Girolami M2018 Geometry and dynamics for Markov chain Monte Carlo.. Annu. Rev. Stat. 5:451–71
    [Google Scholar]
  25. 25.  Brossard M, Bonnabel S, Condomines J 2017. Unscented Kalman filtering on Lie groups. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) New York: IEEE. In press
    [Google Scholar]
  26. 26.  Itô K 1950. Stochastic differential equations in a differentiable manifold. Nagoya Math. J. 1:35–47
    [Google Scholar]
  27. 27.  Ng S, Caines P 1985. Nonlinear filtering in Riemannian manifolds. IMA J. Math. Control Inform. 2:25–36
    [Google Scholar]
  28. 28.  Pontier M, Szpirglas J 1987. Filtering on manifolds. Stochastic Modelling and Filtering E Germani 147–60 Berlin: Springer
    [Google Scholar]
  29. 29.  Said S, Manton JH 2013. On filtering with observation in a manifold: reduction to a classical filtering problem. SIAM J. Control Optim. 51:767–83
    [Google Scholar]
  30. 30.  Willsky A 1973. Dynamical systems defined on groups: structural properties and estimation PhD Thesis, Dep. Aeronaut. Astronaut., Mass. Inst. Technol Cambridge:
    [Google Scholar]
  31. 31.  Park W, Liu Y, Zhou Y, Moses M, Chirikjian GS et al. 2008. Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map. Robotica 26:419–34
    [Google Scholar]
  32. 32.  Willsky AS 1973. Some estimation problems on Lie groups. Geometric Methods in System Theory DQ Mayne, RW Brockett 305–14 Dordrecht, Neth.: D. Reidel
    [Google Scholar]
  33. 33.  Duncan T 1988. An estimation problem in compact Lie groups. Syst. Control Lett. 10:257–63
    [Google Scholar]
  34. 34.  Han Y, Park F 2001. Least squares tracking on the Euclidean group. IEEE Trans. Autom. Control 46:1127–32
    [Google Scholar]
  35. 35.  Zamani M, Trumpf J, Mahony R 2013. Minimum-energy filtering for attitude estimation. IEEE Trans. Autom. Control 58:2917–21
    [Google Scholar]
  36. 36.  Bonnabel S, Martin P, Rouchon P 2008. Symmetry-preserving observers. IEEE Trans. Autom. Control 53:2514–26
    [Google Scholar]
  37. 37.  Bonnabel S, Martin P, Rouchon P 2009. Non-linear symmetry-preserving observers on Lie groups. IEEE Trans. Autom. Control 54:1709–13
    [Google Scholar]
  38. 38.  Ayala V, Tirao J 1999. Linear control systems on Lie groups and controllability. Differential Geometry and Control G Ferreyra, R Gardner, H Hermes, H Sussmann 47–64 Proc. Symp. Pure Math . Vol. 64 Providence, RI: Am. Math. Soc.
    [Google Scholar]
  39. 39.  Julier SJ, Uhlmann JK 1997. New extension of the Kalman filter to nonlinear systems. Signal Processing, Sensor Fusion, and Target Recognition VI I Kadar. Proc. SPIE Vol. 3068 Bellingham, WA: SPIE https://doi.org/10.1117/12.280797
    [Crossref] [Google Scholar]
  40. 40.  Condomines JP, Seren C, Hattenberger G 2013. Nonlinear state estimation using an invariant unscented Kalman filter. AIAA Guidance Navigation and Control Conference chap. 2013-4869 Reston, VA: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  41. 41.  Condomines JP, Seren C, Hattenberger G 2014. Pi-invariant unscented Kalman filter for sensor fusion. 2014 IEEE 53rd Annual Conference on Decision and Control (CDC)1035–40 New York: IEEE
    [Google Scholar]
  42. 42.  Forbes J, Zotnik DE 2017. Sigma point Kalman filtering on matrix Lie groups applied to the SLAM problem. Geometric Science of Information: Third International Conference, GSI 2017 F Nielsen, F Barbaresco 318–28 Cham, Switz.: Springer
    [Google Scholar]
  43. 43.  Boutayeb M, Rafaralahy H, Darouach M 1997. Convergence analysis of the extended Kalman filter used as an observer for nonlinear deterministic discrete-time systems. IEEE Trans. Autom. Control 42:581–86
    [Google Scholar]
  44. 44.  Song Y, Grizzle JW 1992. The extended Kalman filter as a local asymptotic observer for nonlinear discrete-time systems. 1992 American Control Conference3365–69 New York: IEEE
    [Google Scholar]
  45. 45.  Aghannan N, Rouchon P 2002. On invariant asymptotic observers. Proceedings of the 41st IEEE Conference on Decision and Control, 2002 21479–84 New York: IEEE
    [Google Scholar]
  46. 46.  Scandaroli GG, Morin P, Silveira G 2011. A nonlinear observer approach for concurrent estimation of pose, IMU bias and camera-to-IMU rotation. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)3335–41 New York: IEEE
    [Google Scholar]
  47. 47.  McGee LA, Schmidt SF 1985. Discovery of the Kalman filter as a practical tool for aerospace and industry Tech. Memo. 86847, NASA Washington, DC:
    [Google Scholar]
  48. 48.  Dissanayake G, Newman P, Durrant-Whyte H, Clark S, Csobra M 2001. A solution to the simultaneous localisation and mapping (SLAM) problem. IEEE Trans. Robot. Automat. 17:229–41
    [Google Scholar]
  49. 49.  Durrant-Whyte H, Bailey T 2006. Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13:99–110
    [Google Scholar]
  50. 50.  Bonnabel S 2012. Symmetries in observer design: review of some recent results and applications to EKF-based SLAM. Robot Motion and Control 2011 K Kozłowski 3–15 London: Springer
    [Google Scholar]
  51. 51.  Zhang T, Wu K, Su D, Huang S, Dissanayake G 2017. An invariant-EKF VINS algorithm for improving consistency. arXiv1702.07920
  52. 52.  Zhang T, Wu K, Song J, Huang S, Dissanayake G 2017. Convergence and consistency analysis for a 3-D invariant-EKF SLAM. IEEE Robot. Autom. Lett. 2:733–40
    [Google Scholar]
  53. 53.  Julier SJ, Uhlmann JK 2001. A counter example to the theory of simultaneous localization and map building. Proceedings 2001 ICRA: IEEE International Conference on Robotics and Automation 44238–43 New York: IEEE
    [Google Scholar]
  54. 54.  Castellanos JA, Neira J, Tardós JD 2004. Limits to the consistency of EKF-based SLAM. IFAC Proc. Vol. 37:716–21
    [Google Scholar]
  55. 55.  Huang S, Dissanayake G 2007. Convergence and consistency analysis for extended Kalman filter based SLAM. IEEE Trans. Robot. 23:1036–49
    [Google Scholar]
  56. 56.  Huang GP, Mourikis AI, Roumeliotis SI 2008. Analysis and improvement of the consistency of extended Kalman filter based SLAM. 2008 IEEE International Conference on Robotics and Automation473–79 New York: IEEE
    [Google Scholar]
  57. 57.  Huang GP, Mourikis AI, Roumeliotis SI 2010. Observability-based rules for designing consistent EKF SLAM estimators. Int. J. Robot. Res. 29:502–28
    [Google Scholar]
  58. 58.  Kaess M, Ranganathan A, Dellaert F 2008. iSAM: incremental smoothing and mapping. IEEE Trans. Robot. 24:1365–78
    [Google Scholar]
  59. 59.  Thrun S, Montemerlo M 2006. The graph SLAM algorithm with applications to large-scale mapping of urban structures. Int. J. Robot. Res. 25:403–29
    [Google Scholar]
  60. 60.  Guivant J, Nebot E, Durrant-Whyte H 2000. Simultaneous localization and map building using natural features in outdoor environments. Intell. Auton. Syst. 6:581–86
    [Google Scholar]
/content/journals/10.1146/annurev-control-060117-105010
Loading
/content/journals/10.1146/annurev-control-060117-105010
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error