1932

Abstract

The areas of mechanics and control theory have a rich and productive history of interaction with the broad mathematical subject of differential geometry. This article provides an overview of these sorts of interplay in the areas of Riemannian and affine differential geometry and the geometry of vector distributions. It emphasizes areas where differential geometric methods have played a crucial role in solving problems whose solutions are difficult to achieve without access to these methods. It also emphasizes a concise and elegant presentation of the approach, rather than a detailed and concrete presentation. The results overviewed, while forming a coherent and elegant body of work, are limited in scope. The review closes with a discussion of why the approach is limited and a brief consideration of issues that must be resolved before the results of the type presented here can be extended.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-060117-105033
2018-05-28
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/control/1/1/annurev-control-060117-105033.html?itemId=/content/journals/10.1146/annurev-control-060117-105033&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abraham R, Marsden JE 1978. Foundations of Mechanics Reading, MA: Addison-Wesley, 2nd ed..
    [Google Scholar]
  2. 2.  Arnold VI 1978. Mathematical Methods of Classical Mechanics Grad. Texts Math. No. 60 New York: Springer-Verlag, 2nd ed..
    [Google Scholar]
  3. 3.  Godbillon C 1969. Géométrie différentielle et méchanique analytique Collect. Méthodes Math Paris: Hermann
    [Google Scholar]
  4. 4.  Libermann P, Marle CM 1987. Symplectic Geometry and Analytical Mechanics Math. Appl. No. 35 Dordrecht, Neth.: D. Reidel
    [Google Scholar]
  5. 5.  Spivak M 2010. Physics for Mathematicians: Mechanics I Houston, TX: Publ. Perish
    [Google Scholar]
  6. 6.  Hermann R 1963. On the accessibility problem in control theory. International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics JP LaSalle, S Lefschetz 325–32 New York: Academic
    [Google Scholar]
  7. 7.  Brockett RW 2014. The early days of geometric nonlinear control theory. Automatica 50:2203–24
    [Google Scholar]
  8. 8.  Isidori A 1995. Nonlinear Control Systems Commun. Control Eng. Ser New York: Springer-Verlag, 3rd ed..
    [Google Scholar]
  9. 9.  Nijmeijer H, van der Schaft AJ 1990. Nonlinear Dynamical Control Systems New York: Springer-Verlag
    [Google Scholar]
  10. 10.  Agrachev AA, Sachkov Y 2004. Control Theory from the Geometric Viewpoint Encycl. Math. Sci. No. 87 New York: Springer-Verlag
    [Google Scholar]
  11. 11.  Jurdjevic V 1997. Geometric Control Theory Cambridge Stud. Adv. Math. No. 51 New York: Cambridge Univ. Press
    [Google Scholar]
  12. 12.  Sastry S 1999. Nonlinear Systems: Analysis, Stability, and Control Interdiscip. Appl. Math . Vol. 10 New York: Springer-Verlag
    [Google Scholar]
  13. 13.  Brockett RW 1977. Control theory and analytical mechanics. Geometric Control Theory C Martin, R Hermann 1–48 Brookline, MA: Math. Sci. Press
    [Google Scholar]
  14. 14.  van der Schaft AJ 1981. Hamiltonian dynamics with external forces and observations. Math. Syst. Theory 15:145–68
    [Google Scholar]
  15. 15.  van der Schaft AJ 1982. Controllability and observability of affine nonlinear Hamiltonian systems. IEEE Trans. Automat. Control 27:490–92
    [Google Scholar]
  16. 16.  van der Schaft AJ 1986. Stabilization of Hamiltonian systems. Nonlinear Anal 10:1021–35
    [Google Scholar]
  17. 17.  Leonard NE 1998. Mechanics and nonlinear control: making underwater vehicles ride and glide. IFAC Proc. Vol. 31:1–6
    [Google Scholar]
  18. 18.  Murray RM 1997. Nonlinear control of mechanical systems: a Lagrangian perspective. Annu. Rev. Control 21:31–42
    [Google Scholar]
  19. 19.  Bloch AM 2003. Nonholonomic Mechanics and Control Interdiscip. Appl. Math . Vol. 24 New York: Springer-Verlag
    [Google Scholar]
  20. 20.  Bullo F, Lewis AD 2004. Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Systems Texts Appl. Math. No. 49 New York: Springer-Verlag
    [Google Scholar]
  21. 21.  Levi-Civita T 1927. The Absolute Differential Calculus (Calculus of Tensors) Transl. M Long Glasgow, Scotl.: Blackie & Sons
    [Google Scholar]
  22. 22.  Tzafestas SG 2014. Introduction to Mobile Robot Control Elsevier Insights Amsterdam: Elsevier
    [Google Scholar]
  23. 23.  Lewis AD, Ostrowski JP, Murray RM, Burdick JW 1994. Nonholonomic mechanics and locomotion: the snakeboard example. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation2391–400 New York: IEEE Comput. Soc. Press
    [Google Scholar]
  24. 24.  Bullo F, Lewis AD 2003. Kinematic controllability and motion planning for the snakeboard. IEEE Trans. Robot. Autom. 19:494–98
    [Google Scholar]
  25. 25.  Shammas E, de Olíveira M 2012. Motion planning for the snakeboard. Int. J. Robot. Res. 31:872–85
    [Google Scholar]
  26. 26.  Raibert MH 1986. Legged Robots That Balance Cambridge, MA: MIT Press
    [Google Scholar]
  27. 27.  Li Z, Montgomery R 1990. Dynamics and control of a legged robot in flight phase. Proceedings of the 1990 IEEE International Conference on Robotics and Automation1816–21 New York: IEEE Comput. Soc. Press
    [Google Scholar]
  28. 28.  Montgomery R 1993. Gauge theory of the falling cat. Dynamics and Control of Mechanical Systems: The Falling Cat and Related Problems MJ Enos 193–218 Fields Inst. Commun . Vol. 1 Providence, RI: Am. Math. Soc.
    [Google Scholar]
  29. 29.  Lewis AD, Murray RM 1997. Controllability of simple mechanical control systems. SIAM J. Control Optim. 35:766–90
    [Google Scholar]
  30. 30.  Bullo F, Lewis AD 2005. Low-order controllability and kinematic reductions for affine connection control systems. SIAM J. Control Optim. 44:885–908
    [Google Scholar]
  31. 31.  Lewis AD 2007. Is it worth learning differential geometric methods for modelling and control of mechanical systems?. Robotica 26:765–77
    [Google Scholar]
  32. 32.  Lewis AD 2011. Generalised subbundles, distributions, and families of vector fields: a comprehensive review Lect. Notes, ICMAT Summer Sch Madrid: http://www.mast.queensu.ca/∼andrew/notes/pdf/2011a.pdf
    [Google Scholar]
  33. 33.  Frobenius G 1877. Über das Pfaffsche Problem. J. Reine Angew. Math. 82:230–315
    [Google Scholar]
  34. 34.  Hermann R 1960. On the differential geometry of foliations. Ann. Math. 72:445–57
    [Google Scholar]
  35. 35.  Nagano T 1966. Linear differential systems with singularities and an application to transitive Lie algebras. J. Math. Soc. Jpn. 18:398–404
    [Google Scholar]
  36. 36.  Sussmann HJ 1973. Orbits of families of vector fields and integrability of distributions. Trans. Am. Math. Soc. 180:171–88
    [Google Scholar]
  37. 37.  Hörmander L 1967. Hypoelliptic second order differential equations. Acta Math 119:147–71
    [Google Scholar]
  38. 38.  Rashevsky PK 1938. Any two points of a totally nonholonomic space may be connected by an admissible line. Uchenye Zap. Pedagog. Inst. Im. Libknechta 2:83–94
    [Google Scholar]
  39. 39.  Chow WL 1939. Über Systemen von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117:98–105
    [Google Scholar]
  40. 40.  Sussmann HJ, Jurdjevic V 1972. Controllability of nonlinear systems. J. Differ. Equ. 12:95–116
    [Google Scholar]
  41. 41.  Hermann R, Krener AJ 1977. Nonlinear controllability and observability. IEEE Trans. Automat. Control 22:728–40
    [Google Scholar]
  42. 42.  Sussmann HJ 1987. A general theorem on local controllability. SIAM J. Control Optim. 25:158–94
    [Google Scholar]
  43. 43.  JI, Fufaev NA 1972. Dynamics of Nonholonomic Systems Transl. Math. Monogr. No. 33 Providence, RI: Am. Math. Soc.
    [Google Scholar]
  44. 44.  Lewis AD 2017. The physical foundations of geometric mechanics. J. Geom. Mech. 9:487–574
    [Google Scholar]
  45. 45.  Briggs J 2016. Degeneracy of velocity constraints in rigid body systems MS Thesis, Dep. Math. Stat., Queen's Univ Kingston, ON, Can.:
    [Google Scholar]
  46. 46.  Laumond JP 1993. Controllability of a multibody mobile robot. IEEE Trans. Robot. Autom. 9:755–63
    [Google Scholar]
  47. 47.  Kobayashi S, Nomizu K 1963. Foundations of Differential Geometry Intersci. Tracts Pure Appl. Math. No. 15 New York: Interscience
    [Google Scholar]
  48. 48.  Crouch PE 1981. Geometric structures in systems theory. IEE Proc. D 128:242–52
    [Google Scholar]
  49. 49.  Lewis AD 1998. Affine connections and distributions with applications to nonholonomic mechanics. Rep. Math. Phys. 42:135–64
    [Google Scholar]
  50. 50.  Barbero-Liñán M, Lewis AD 2012. Geometric interpretations of the symmetric product in affine differential geometry. Int. J. Geom. Methods Mod. Phys. 9:1250073
    [Google Scholar]
  51. 51.  Goldstein H 1951. Classical Mechanics Reading, MA: Addison-Wesley
    [Google Scholar]
  52. 52.  Lewis AD 2000. Simple mechanical control systems with constraints. IEEE Trans. Automat. Control 45:1420–36
    [Google Scholar]
  53. 53.  Lewis AD 2012. Fundamental problems of geometric control theory. Proceedings of the 51st IEEE Conference on Decision and Control7511–16 New York: IEEE
    [Google Scholar]
  54. 54.  Lewis AD 2014. Tautological Control Systems Springer Briefs Electr. Comput. Eng. Control Autom. Robot New York: Springer-Verlag
    [Google Scholar]
/content/journals/10.1146/annurev-control-060117-105033
Loading
/content/journals/10.1146/annurev-control-060117-105033
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error