1932

Abstract

The past decade has witnessed the rise of an exciting new field of engineering: synthetic biology. Synthetic biology is the application of engineering principles to the fundamental components of biology with the aim of programming cells with novel functionalities for utilization in the health, environment, and energy industries. Since its beginnings in the early 2000s, control design principles have been used in synthetic biology to design dynamics, mitigate the effects of uncertainty, and aid modular and layered design. In this review, we provide a basic introduction to synthetic biology, its applications, and its foundations and then describe in more detail how control design approaches have permeated the field since its inception. We conclude with a discussion of pressing challenges in this field that will require new control theory, with the hope of attracting researchers in the control theory community to this exciting engineering area.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-060117-105052
2018-05-28
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/control/1/1/annurev-control-060117-105052.html?itemId=/content/journals/10.1146/annurev-control-060117-105052&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Cameron DE, Bashor CJ, Collins JJ 2014. A brief history of synthetic biology. Nat. Rev. Microbiol. 12:381–90
    [Google Scholar]
  2. 2.  Ruder WC, Lu T, Collins JJ 2011. Synthetic biology moving into the clinic. Science 333:1248–52
    [Google Scholar]
  3. 3.  Khalil AS, Collins JJ 2010. Synthetic biology: applications come of age. Nat. Rev. Genet. 11:367–79
    [Google Scholar]
  4. 4.  Arber W, Linn S 1969. DNA modification and restriction. Annu. Rev. Biochem. 38:467–500
    [Google Scholar]
  5. 5.  Jackson DA, Symons RH, Berg P 1972. Biochemical method for inserting new genetic information into DNA of simian virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. . PNAS 69:2904–9
    [Google Scholar]
  6. 6.  Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG et al. 1979. Expression in Escherichia coli of chemically synthesized genes for human insulin. PNAS 76:106–10
    [Google Scholar]
  7. 7.  Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H 1986. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51:263–73
    [Google Scholar]
  8. 8.  Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C et al. 1986. Fluorescence detection in automated DNA sequence analysis. Nature 321:674–79
    [Google Scholar]
  9. 9.  Elowitz MB, Leibler S 2000. A synthetic oscillatory network of transcriptional regulators. Nature 403:335–38
    [Google Scholar]
  10. 10.  Gardner TS, Cantor CR, Collins JJ 2000. Construction of a genetic toggle switch in Escherichia coli. . Nature 403:339–42
    [Google Scholar]
  11. 11.  Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U 2002. Network motifs: simple building blocks of complex networks. Science 298:824–27
    [Google Scholar]
  12. 12.  Purnick PEM, Weiss R 2009. The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 10:410–22
    [Google Scholar]
  13. 13.  Moon TS, Lou C, Tamsir A, Stanton BC, Voigt CA 2012. Genetic programs constructed from layered logic gates in single cells. Nature 491:249–53
    [Google Scholar]
  14. 14.  Jusiak B, Cleto S, Perez-Piñera P, Lu TK 2016. Engineering synthetic gene circuits in living cells with CRISPR technology. Trends. Biotechnol. 34:535–47
    [Google Scholar]
  15. 15.  Nielsen AA, Segall-Shapiro TH, Voigt CA 2013. Advances in genetic circuit design: novel biochemistries, deep part mining, and precision gene expression. Curr. Opin. Chem. Biol. 17:878–92
    [Google Scholar]
  16. 16.  Del Vecchio D 2015. Modularity, context-dependence, and insulation in engineered biological circuits. Trends Biotechnol 33:111–19
    [Google Scholar]
  17. 17.  Mishra D, Rivera PM, Lin A, Del Vecchio D, Weiss R 2014. A load driver device for engineering modularity in biological networks. Nat. Biotechnol. 32:1268–75
    [Google Scholar]
  18. 18.  Alberts B, Johnson A, Lewis J, Raff M, Roberts K 2007. Molecular Biology of the Cell New York: Garland Sci, 5th ed..
  19. 19.  Del Vecchio D, Murray RM 2014. Biomolecular Feedback Systems Princeton, NJ: Princeton Univ. Press
  20. 20.  Morris KV, Mattick JS 2014. The rise of regulatory RNA. Nat. Rev. Genet. 15:423–37
    [Google Scholar]
  21. 21.  Beisel CL, Storz G 2010. Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol. Rev. 34:866–82
    [Google Scholar]
  22. 22.  Levine E, Zhang Z, Kuhlman T, Hwa T 2007. Quantitative characteristics of gene regulation by small RNA. PLOS Biol 5:e229
    [Google Scholar]
  23. 23.  Xie Z, Wroblewska L, Prochazka L, Weiss R, Benenson Y 2011. Multi-input RNAi-based logic circuit. Science 333:1307–12
    [Google Scholar]
  24. 24.  Din MO, Danino T, Prindle A, Skalak M, Selimkhanov J et al. 2016. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536:81–85
    [Google Scholar]
  25. 25.  Chakravarti D, Wong WW 2015. Synthetic biology in cell-based cancer immunotherapy. Trends Biotechnol 33:449–61
    [Google Scholar]
  26. 26.  Wei P, Wong WW, Park JS, Corcoran EE, Peisajovich SG et al. 2012. Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells. Nature 488:384–88
    [Google Scholar]
  27. 27.  Saxena P, Heng BC, Bai P, Folcher M, Zulewski H, Fussenegger M 2016. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nat. Commun. 7:11247
    [Google Scholar]
  28. 28.  Prindle A, Samayoa P, Razinkov I, Danino T, Tsimring LS, Hasty J 2012. A sensing array of radically coupled genetic ‘biopixels.’. Nature 481:39–44
    [Google Scholar]
  29. 29.  Kotula JW, Kerns SJ, Shaket LA, Siraj L, Collins JJ, Way JC 2014. Programmable bacteria detect and record an environmental signal in the mammalian gut. PNAS 111:4838–43
    [Google Scholar]
  30. 30.  Danino T, Prindle A, Kwong GA, Skalak M, Li H et al. 2015. Programmable probiotics for detection of cancer in urine. Sci. Transl. Med. 7:289ra84
    [Google Scholar]
  31. 31.  Wu M, Su RQ, Li X, Ellisc T, Lai YC, Wang X 2013. Engineering of regulated stochastic cell fate determination. PNAS 110:10610–15
    [Google Scholar]
  32. 32.  Davies J 2017. Using synthetic biology to explore principles of development. Development 144:1146–58
    [Google Scholar]
  33. 33.  Sontag ED 2016. Some remarks on a model for immune signal detection and feedback. 2016 IEEE 55th Conference on Decision and Control (CDC)764–69 New York: IEEE
    [Google Scholar]
  34. 34.  Del Vecchio D, Abdallah H, Qian Y, Collins JJ 2017. A blueprint for a synthetic genetic feedback controller to reprogram cell fate. Cell Syst 4:109–20
    [Google Scholar]
  35. 35.  van der Meer JR, Belkin S 2010. Where microbiology meets microengineering: design and applications of reporter bacteria. Nat. Rev. Genet. 8:511–22
    [Google Scholar]
  36. 36.  Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP 2011. Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9
    [Google Scholar]
  37. 37.  Liu S, Zhang F, Chen J, Sun G 2011. Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J. Environ. Sci. 23:1544–50
    [Google Scholar]
  38. 38.  Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD 2012. Microbial engineering for the production of advanced biofuels. Nature 488:320–28
    [Google Scholar]
  39. 39.  Zhang F, Carothers JM, Keasling JD 2012. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30:354–59
    [Google Scholar]
  40. 40.  Dunlop MJ, Keasling JD, Mukhopadhyay A 2010. A model for improving microbial biofuel production using a synthetic feedback loop. Syst. Synth. Biol. 4:95–104
    [Google Scholar]
  41. 41.  Chan CTY, Lee JW, Cameron DE, Bashor CJ, Collins JJ 2015. ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment. Nat. Chem. Biol. 12:82–86
    [Google Scholar]
  42. 42.  Stein G 2003. Respect the unstable. IEEE Control Syst. Mag. 23:12–25
    [Google Scholar]
  43. 43.  Kline R 1993. Harold Black and the negative-feedback amplifier. IEEE Control Syst. Mag. 13:82–85
    [Google Scholar]
  44. 44.  Nilgiriwala KS, Jiménez JI, Rivera PM, Del Vecchio D 2015. Synthetic tunable amplifying buffer circuit in E. . coli. ACS Synth. Biol. 4:577–84
    [Google Scholar]
  45. 45.  Atkinson MR, Savageau MA, Myers JT, Ninfa AJ 2003. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. . Cell 113:597–607
    [Google Scholar]
  46. 46.  Wu F, Su RQ, Lai YC, Wang X 2017. Engineering of a synthetic quadrastable gene network to approach Waddington landscape and cell fate determination. eLife 6:e23702
    [Google Scholar]
  47. 47.  Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J 2008. A fast, robust and tunable synthetic gene oscillator. Nature 456:516–19
    [Google Scholar]
  48. 48.  Rosenfeld N, Elowitz MB, Alon U 2002. Negative autoregulation speeds the response times of transcription networks. J. Mol. Biol. 323:785–93
    [Google Scholar]
  49. 49.  Siuti P, Yazbek J, Lu TK 2014. Engineering genetic circuits that compute and remember. Nat. Protoc. 9:1292–300
    [Google Scholar]
  50. 50.  Lee JW, Gyorgy A, Cameron DE, Pyenson N, Choi KR et al. 2016. Creating single-copy genetic circuits. Mol. Cell 63:329–36
    [Google Scholar]
  51. 51.  Faucon PC, Pardee K, Kumar RM, Li H, Loh YH, Wang X 2014. Gene networks of fully connected triads with complete auto-activation enable multistability and stepwise stochastic transitions. PLOS ONE 9:e102873
    [Google Scholar]
  52. 52.  Ferrell JE 2012. Bistability, bifurcations, and Waddington's epigenetic landscape. Curr. Biol. 22:R458–66
    [Google Scholar]
  53. 53.  Waddington CH 1957. The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology London: Allen & Unwin
  54. 54.  Huang S, Guo YP, May G, Enver T 2007. Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev. Biol. 305:695–713
    [Google Scholar]
  55. 55.  Yagita K, Tamanini F, van der Horst GTJ, Okamura H 2001. Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292:278–81
    [Google Scholar]
  56. 56.  Goodwin BC 1965. Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul. 3:425–38
    [Google Scholar]
  57. 57.  Hasty J, Dolnik M, Rottschäfer V, Collins JJ 2002. Synthetic gene network for entraining and amplifying cellular oscillations. Phys. Rev. Lett. 88:148101
    [Google Scholar]
  58. 58.  Del Vecchio D 2007. Design and analysis of an activator-repressor clock in E. coli. 2007 American Control Conference1577–88 New York: IEEE
    [Google Scholar]
  59. 59.  Kumar NS, Del Vecchio D 2016. Loading as a design parameter for genetic circuits. 2016 American Control Conference7358–64 New York: IEEE
    [Google Scholar]
  60. 60.  Potvin-Trottier L, Lord ND, Vinnicombe G, Paulsson J 2016. Synchronous long-term oscillations in a synthetic gene circuit. Nature 538:514–17
    [Google Scholar]
  61. 61.  Sontag ED 2006. Passivity gains and the “secant condition” for stability. Syst. Control Lett. 55:177–83
    [Google Scholar]
  62. 62.  Danino T, Mondragon-Palómino O, Tsimring L, Hasty J 2010. A synchronized quorum of genetic clocks. Nature 463:326–30
    [Google Scholar]
  63. 63.  Alon U 2006. An Introduction to Systems Biology: Design Principles of Biological Circuits Boca Raton, FL: CRC
  64. 64.  Elowitz MB 2002. Stochastic gene expression in a single cell. Science 297:1183–86
    [Google Scholar]
  65. 65.  Chen YJ, Liu P, Nielsen AAK, Brophy JAN, Clancy K et al. 2013. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat. Methods 10:659–64
    [Google Scholar]
  66. 66.  Hooshangi S, Thiberge S, Weiss R 2005. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. PNAS 102:3584–86
    [Google Scholar]
  67. 67.  Siciliano V, Garzilli I, Fracassi C, Criscuolo S, Ventre S, di Bernardo D 2013. miRNAs confer phenotypic robustness to gene networks by suppressing biological noise. Nat. Commun. 4:2364
    [Google Scholar]
  68. 68.  Al-Radhawi MA, Del Vecchio D, Sontag ED 2017. Multi-modality in gene regulatory networks with slow gene binding. arXiv1705.02330
  69. 69.  Eldar A, Elowitz MB 2010. Functional roles for noise in genetic circuits. Nature 467:167–73
    [Google Scholar]
  70. 70.  Becskei A, Serrano L 2000. Engineering stability in gene networks by autoregulation. Nature 405:590–93
    [Google Scholar]
  71. 71.  Nevozhay D, Adams RM, Murphy KF, Josic K, Balazsi G 2009. Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression. PNAS 106:5123–28
    [Google Scholar]
  72. 72.  Shimoga V, White JT, Li Y, Sontag E, Bleris L 2014. Synthetic mammalian transgene negative autoregulation. Mol. Syst. Biol. 9:670
    [Google Scholar]
  73. 73.  Briat C, Gupta A, Khammash M 2016. Antithetic integral feedback ensures robust perfect adaptation in noisy biomolecular networks. Cell Syst 2:15–26
    [Google Scholar]
  74. 74.  Hsiao V, De Los Santos ELC, Whitaker WR, Dueber JE, Murray RM 2015. Design and implementation of a biomolecular concentration tracker. ACS Synth. Biol. 4:150–61
    [Google Scholar]
  75. 75.  Singh A 2011. Negative feedback through mRNA provides the best control of gene-expression noise. IEEE Trans. NanoBiosci. 10:194–200
    [Google Scholar]
  76. 76.  Colman-Lerner A, Gordon A, Serra E, Chin T, Resnekov O et al. 2005. Regulated cell-to-cell variation in a cell-fate decision system. Nature 437:699–706
    [Google Scholar]
  77. 77.  Hooshangi S, Weiss R 2006. The effect of negative feedback on noise propagation in transcriptional gene networks. Chaos 16:026108
    [Google Scholar]
  78. 78.  Meng XF, Baetica AA, Singhal V, Murray RM 2017. Recursively constructing analytic expressions for equilibrium distributions of stochastic biochemical reaction networks. J. R. Soc. Interface 14:20170157
    [Google Scholar]
  79. 79.  Herath N, Del Vecchio D 2016. Model order reduction for linear noise approximation using time-scale separation. 2016 IEEE 55th Conference on Decision and Control (CDC)5875–80 New York: IEEE
    [Google Scholar]
  80. 80.  Ăström KJ, Murray RM 2008. Feedback Systems: An Introduction for Scientists and Engineers Princeton, NJ: Princeton Univ. Press
  81. 81.  Yi TM, Huang Y, Simon MI, Doyle J 2000. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. PNAS 97:4649–53
    [Google Scholar]
  82. 82.  El-Samad H, Goff J, Khammash M 2002. Calcium homeostasis and parturient hypocalcemia: an integral feedback perspective. J. Theor. Biol. 214:17–29
    [Google Scholar]
  83. 83.  Muzzey D, Gómez-Uribe CA, Mettetal JT, van Oudenaarden A 2009. A systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 138:160–71
    [Google Scholar]
  84. 84.  Ang J, McMillen DR 2013. Physical constraints on biological integral control design for homeostasis and sensory adaptation. Biophys. J. 104:505–15
    [Google Scholar]
  85. 85.  Klavins E 2010. Proportional-integral control of stochastic gene regulatory networks. 2010 49th IEEE Conference on Decision and Control (CDC)2547–53 New York: IEEE
    [Google Scholar]
  86. 86.  Qian Y, Del Vecchio D 2017. Realizing “integral control” in living cells: how to overcome leaky integration due to dilution? bioRxiv 141051. https://doi.org/10.1101/141051
    [Crossref]
  87. 87.  Qian Y, Del Vecchio D 2016. Mitigation of ribosome competition through distributed sRNA feedback. 2016 IEEE 55th Conference on Decision and Control (CDC)758–63 New York: IEEE
    [Google Scholar]
  88. 88.  Lillacci G, Aoki S, Schweingruber D, Khammash M 2017. A synthetic integral feedback controller for robust tunable regulation in bacteria. bioRxiv 170951. https://doi.org/10.1101/170951
    [Crossref]
  89. 89.  Cosentino C, Ambrosino R, Ariola M, Bilotta M, Pironti A, Amato F 2016. On the realization of an embedded subtractor module for the control of chemical reaction networks. IEEE Trans. Autom. Control 61:3638–43
    [Google Scholar]
  90. 90.  Cardinale S, Arkin AP 2012. Contextualizing context for synthetic biology: identifying causes of failure of synthetic biological systems. Biotechnol. J. 7:856–66
    [Google Scholar]
  91. 91.  Del Vecchio D, Ninfa AJ, Sontag ED 2008. Modular cell biology: retroactivity and insulation. Mol. Syst. Biol. 4:161
    [Google Scholar]
  92. 92.  Jayanthi S, Del Vecchio D 2012. Tuning genetic clocks employing DNA binding sites. PLOS ONE 7:e41019
    [Google Scholar]
  93. 93.  Jayanthi S, Nilgiriwala KS, Del Vecchio D 2013. Retroactivity controls the temporal dynamics of gene transcription. ACS Synth. Biol. 2:431–41
    [Google Scholar]
  94. 94.  Jiang P, Ventura AC, Sontag ED, Merajver SD, Ninfa AJ, Del Vecchio D 2011. Load-induced modulation of signal transduction networks. Sci. Signal. 4:ra67
    [Google Scholar]
  95. 95.  Kim Y, Paroush Z, Nairz K, Hafen E, Jimenez G, Shvartsman SY 2011. Substrate-dependent control of MAPK phosphorylation in vivo. Mol. Syst. Biol. 7:467
    [Google Scholar]
  96. 96.  Young KK, Kokotović PV, Utkin VI 1977. A singular perturbation analysis of high-gain feedback systems. IEEE Trans. Autom. Control 22:931–38
    [Google Scholar]
  97. 97.  Shah R, Del Vecchio D 2017. Signaling architectures that transmit unidirectional information despite retroactivity. Biophys. J. 113:728–42
    [Google Scholar]
  98. 98.  Jayanthi S, Del Vecchio D 2011. Retroactivity attenuation in bio-molecular systems based on timescale separation. IEEE Trans. Autom. Control 56:748–61
    [Google Scholar]
  99. 99.  Bremer H, Dennis PP 1996. Modulation of chemical composition and other parameters of the cell by growth rate. Escherichia coli and Salmonella: Cellular and Molecular Biology FC Neidhardt 1553–69 Washington, DC: ASM Press
    [Google Scholar]
  100. 100.  Gyorgy A, Jiménez JI, Yazbek J, Huang HH, Chung H et al. 2015. Isocost lines describe the cellular economy of gene circuits. Biophys. J. 109:639–46
    [Google Scholar]
  101. 101.  Shopera T, He L, Oyetunde T, Tang YJ, Moon TS 2017. Decoupling resource-coupled gene expression in living cells. ACS Synth. Biol. 6:1596–604
    [Google Scholar]
  102. 102.  Qian Y, Huang HH, Jiménez JI, Del Vecchio D 2017. Resource competition shapes the response of genetic circuits. ACS Synth. Biol. 6:1263–72
    [Google Scholar]
  103. 103.  Hamadeh A, Del Vecchio D 2014. Mitigation of resource competition in synthetic genetic circuits through feedback regulation. 2014 IEEE 53rd Conference on Decision and Control (CDC)3829–34 New York: IEEE
    [Google Scholar]
  104. 104.  McBride C, Del Vecchio D 2017. Analyzing and exploiting the effects of protease sharing in genetic circuits. IFAC-PapersOnLine 50:11411–18
    [Google Scholar]
  105. 105.  Klumpp S, Zhang Z, Hwa T 2009. Growth-rate dependent global effect on gene expression in bacteria. Cell 139:1366–75
    [Google Scholar]
  106. 106.  Scott M, Mateescu EM, Zhang Z, Hwa T 2010. Interdependence of cell growth and gene expression: origins and consequences. Science 330:1099–102
    [Google Scholar]
  107. 107.  Ceroni F, Algar R, Stan GB, Ellis T 2015. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat. Methods 12:415–22
    [Google Scholar]
  108. 108.  Tan C, Marguet P, You L 2009. Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol. 5:842–48
    [Google Scholar]
  109. 109.  Kushwaha M, Salis HM 2015. A portable expression resource for engineering cross-species genetic circuits and pathways. Nat. Commun. 6:7832
    [Google Scholar]
  110. 110.  Darlington AP, Kim J, Jiménez JI, Bates DG 2017. Dynamic allocation of orthogonal ribosomes facilitates uncoupling of co-expressed genes. bioRxiv 138362. https://doi.org/10.1101/138362
    [Crossref]
  111. 111.  Georgiadis L, Neely MJ, Tassiulas L 2006. Resource Allocation and Cross-Layer Control in Wireless Networks Boston: Delft
  112. 112.  Tsang J, Zhu J, van Oudenaarden A 2007. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell 26:753–67
    [Google Scholar]
  113. 113.  Nesher R, Cerasi E 2002. Modeling phasic insulin release: immediate and time-dependent effects of glucose. Diabetes 51:Suppl. 1S53–59
    [Google Scholar]
  114. 114.  Sen S, Kim J, Murray RM 2014. Designing robustness to temperature in a feedforward loop circuit. 2014 IEEE 53rd Annual Conference on Decision and Control (CDC)4629–34 New York: IEEE
    [Google Scholar]
  115. 115.  Goentoro L, Shoval O, Kirschner M, Alon U 2009. The incoherent feedforward loop can provide fold-change detection in gene regulation. Mol. Cell 36:894–99
    [Google Scholar]
  116. 116.  Kim J, Khetarpal I, Sen S, Murray RM 2014. Synthetic circuit for exact adaptation and fold-change detection. Nucleic Acids. Res. 42:6078–89
    [Google Scholar]
  117. 117.  Mangan S, Alon U 2003. Structure and function of the feed-forward loop network motif. PNAS 100:11980–85
    [Google Scholar]
  118. 118.  Shoval O, Alon U, Sontag E 2011. Symmetry invariance for adapting biological systems. SIAM J. Appl. Dyn. Syst. 10:857–86
    [Google Scholar]
  119. 119.  Bleris L, Xie Z, Glass D, Adadey A, Sontag E, Benenson Y 2011. Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template. Mol. Syst. Biol. 7:519
    [Google Scholar]
  120. 120.  Miller MB, Bassler BL 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165–99
    [Google Scholar]
  121. 121.  Cao Y, Yu W, Ren W, Chen C 2013. An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans. Ind. Inform. 9:427–38
    [Google Scholar]
  122. 122.  You L, Cox RS, Weiss R, Arnold FH 2004. Programmed population control by cell-cell communication and regulated killing. Nature 428:868–71
    [Google Scholar]
  123. 123.  Scott SR, Din MO, Bittihn P, Xiong L, Tsimring LS, Hasty J 2017. A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis. Nat. Microbiol. 2:17083
    [Google Scholar]
  124. 124.  Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R 2005. A synthetic multicellular system for programmed pattern formation. Nature 434:1130–34
    [Google Scholar]
  125. 125.  Liu C, Fu X, Liu L, Ren X, Chau CK et al. 2011. Sequential establishment of stripe patterns in an expanding cell population. Science 334:238–41
    [Google Scholar]
  126. 126.  Vignoni A, Oyarz DA, Pico J, Stan GB 2013. Control of protein concentrations in heterogeneous cell populations. 2013 European Control Conference3633–39 New York: IEEE
    [Google Scholar]
  127. 127.  Brenner K, You L, Arnold FH 2008. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:483–89
    [Google Scholar]
  128. 128.  Regot S, Macia J, Conde N, Furukawa K, Kjellén J et al. 2011. Distributed biological computation with multicellular engineered networks. Nature 469:207–11
    [Google Scholar]
  129. 129.  Tamsir A, Tabor JJ, Voigt CA 2011. Robust multicellular computing using genetically encoded nor gates and chemical ‘wires.’. Nature 469:212–15
    [Google Scholar]
  130. 130.  Balagaddé FK, Song H, Ozaki J, Collins CH, Barnet M et al. 2008. A synthetic Escherichia coli predator-prey ecosystem. Mol. Syst. Biol. 4:187
    [Google Scholar]
  131. 131.  Ren X, Baetica AA, Swaminathan A, Murray RM 2017. Population regulation in microbial consortia using dual feedback control. bioRxiv 120253 https://doi.org/10.1101/120253
    [Crossref]
  132. 132.  Armstrong RA, McGehee R 1976. Coexistence of species competing for shared resources. Theor. Popul. Biol. 9:317–28
    [Google Scholar]
  133. 133.  Foster KR, Bell T 2012. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22:1845–50
    [Google Scholar]
  134. 134.  Payne S, You L 2013. Engineered cell–cell communication and its applications. Productive Biofilms K Muffler, R Ulber 97–121 Cham, Switz.: Springer
    [Google Scholar]
  135. 135.  Koseska A, Zaikin A, Kurths J, García-Ojalvo J 2009. Timing cellular decision making under noise via cell-cell communication. PLOS ONE 4:e4872
    [Google Scholar]
  136. 136.  Bernstein HC, Paulson SD, Carlson RP 2012. Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J. Biotechnol. 157:159–66
    [Google Scholar]
  137. 137.  Li B, You L 2011. Synthetic biology: division of logic labour. Nature 469:171–72
    [Google Scholar]
  138. 138.  Scott SR, Hasty J 2016. Quorum sensing communication modules for microbial consortia. ACS Synth. Biol. 5:969–77
    [Google Scholar]
  139. 139.  Bacchus W, Lang M, El-Baba MD, Weber W, Stelling J, Fussenegger M 2012. Synthetic two-way communication between mammalian cells. Nat. Biotechnol. 30:991–96
    [Google Scholar]
  140. 140.  Khakhar A, Bolten NJ, Nemhauser J, Klavins E 2016. Cell-cell communication in yeast using auxin biosynthesis and auxin responsive CRISPR transcription factors. ACS Synth. Biol. 5:279–86
    [Google Scholar]
/content/journals/10.1146/annurev-control-060117-105052
Loading
/content/journals/10.1146/annurev-control-060117-105052
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error