1932

Abstract

Endovascular techniques have revolutionized the treatment of cerebrovascular disease in the human brain. In this review, we examine the current state of this technology, which consists of multiple concentric catheters that are manually navigated from the lumen of peripheral arterial access within the patient's arm or leg up into the brain using fluoroscopic image guidance. There is tremendous potential for the fields of robotics, materials science, and computer science to redefine the current techniques and ultimately improve the safety and efficacy of treatments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-060523-010720
2024-07-10
2025-04-29
Loading full text...

Full text loading...

/deliver/fulltext/control/7/1/annurev-control-060523-010720.html?itemId=/content/journals/10.1146/annurev-control-060523-010720&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Larkin DQ, Cooper TG, Mohr CJ, Rosa DJ. 2015.. Minimally invasive surgical system. US Patent 9,060,678
    [Google Scholar]
  2. 2.
    George EI, Brand TC, LaPorta A, Marescaux J, Satava RM. 2018.. Origins of robotic surgery: from skepticism to standard of care. . JSLS 22::e2018.00039
    [Crossref] [Google Scholar]
  3. 3.
    Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D. 2018.. Review of emerging surgical robotic technology. . Surg. Endosc. 32::163655
    [Crossref] [Google Scholar]
  4. 4.
    Kinross JM, Mason SE, Mylonas G, Darzi A. 2020.. Next-generation robotics in gastrointestinal surgery. . Nat. Rev. Gastroenterol. Hepatol. 17::43040
    [Crossref] [Google Scholar]
  5. 5.
    Manda Y, Baradhi K. 2023.. Cardiac catheterization risks and complications. . In StatPearls. Treasure Island, FL:: StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK531461
    [Google Scholar]
  6. 6.
    Cooper M, Hicks C, Ratchford EV, Salameh MJ, Malas M. 2016.. Diagnosis and treatment of uncomplicated type B aortic dissection. . Vasc. Med. 21::54752
    [Crossref] [Google Scholar]
  7. 7.
    Shamaki GR, Soji-Ayoade D, Adedokun SD, Kesiena O, Favour M, et al. 2023.. Endovascular venous interventions—a state-of-the-art review. . Curr. Probl. Cardiol. 48::101534
    [Crossref] [Google Scholar]
  8. 8.
    Burgner-Kahrs J, Rucker DC, Choset H. 2015.. Continuum robots for medical applications: a survey. . IEEE Trans. Robot. 31::126180
    [Crossref] [Google Scholar]
  9. 9.
    Ali A, Plettenburg DH, Breedveld P. 2016.. Steerable catheters in cardiology: classifying steerability and assessing future challenges. . IEEE Trans. Biomed. Eng. 63::67993
    [Google Scholar]
  10. 10.
    Ayad M, Eskioglu E, Mericle RA. 2006.. Onyx®: a unique neuroembolic agent. . Expert Rev. Med. Devices 3::70515
    [Crossref] [Google Scholar]
  11. 11.
    Szajner M, Roman T, Markowicz J, Szczerbo-Trojanowska M. 2013.. Onyx® in endovascular treatment of cerebral arteriovenous malformations—a review. . Pol. J. Radiol. 78::3541
    [Crossref] [Google Scholar]
  12. 12.
    Brisman JL, Song JK, Newell DW. 2006.. Cerebral aneurysms. . N. Engl. J. Med. 355::92839
    [Crossref] [Google Scholar]
  13. 13.
    Bonita R, Thomson S. 1985.. Subarachnoid hemorrhage: epidemiology, diagnosis, management, and outcome. . Stroke 16::59194
    [Crossref] [Google Scholar]
  14. 14.
    Hop JW, Rinkel GJ, Algra A, van Gijn J. 1997.. Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review. . Stroke 28::66064
    [Crossref] [Google Scholar]
  15. 15.
    Qureshi AI, Janardhan V, Hanel RA, Lanzino G. 2007.. Comparison of endovascular and surgical treatments for intracranial aneurysms: an evidence-based review. . Lancet Neurol. 6::81625
    [Crossref] [Google Scholar]
  16. 16.
    Vlak MH, Algra A, Brandenburg R, Rinkel GJ. 2011.. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. . Lancet Neurol. 10::62636
    [Crossref] [Google Scholar]
  17. 17.
    Singer RJ, Ogilvy CS, Rordorf G. 2023.. Aneurysmal subarachnoid hemorrhage: epidemiology, risk factors, and pathogenesis. . UpToDate, last updated July 10. https://www.uptodate.com/contents/aneurysmal-subarachnoid-hemorrhage-epidemiology-risk-factors-and-pathogenesis
    [Google Scholar]
  18. [Google Scholar]
  19. 19.
    Carras C, St. Martin E. 2023.. Tom Sizemore, `Saving Private Ryan' actor, dies after brain aneurysm. . Los Angeles Times, Mar. 3. https://www.latimes.com/entertainment-arts/story/2023-03-03/tom-sizemore-death-brain-aneurysm-hospitalized-saving-private-ryan
    [Google Scholar]
  20. 20.
    Maurice-Williams RS, Lafuente J. 2003.. Intracranial aneurysm surgery and its future. . J. R. Soc. Med. 96::54043
    [Crossref] [Google Scholar]
  21. 21.
    Guglielmi G, Viñuela F, Dion J, Duckwiler G. 1991.. Electrothrombosis of saccular aneurysms via endovascular approach: part 2: preliminary clinical experience. . J. Neurosurg. 75::814
    [Crossref] [Google Scholar]
  22. 22.
    Derdeyn CP, Barr JD, Berenstein A, Connors JJ, Dion JE, et al. 2003.. The International Subarachnoid Aneurysm Trial (ISAT): a position statement from the Executive Committee of the American Society of Interventional and Therapeutic Neuroradiology and the American Society of Neuroradiology. . Am. J. Neuroradiol. 24::14048
    [Google Scholar]
  23. 23.
    Thompson BG, Brown RD, Amin-Hanjani S, Broderick JP, Cockroft KM, et al. 2015.. Guidelines for the management of patients with unruptured intracranial aneurysms. . Stroke 46::2368400
    [Crossref] [Google Scholar]
  24. 24.
    Molyneux AJ, Birks J, Clarke A, Sneade M, Kerr RS. 2015.. The durability of endovascular coiling versus neurosurgical clipping of ruptured cerebral aneurysms: 18 year follow-up of the UK cohort of the International Subarachnoid Aneurysm Trial (ISAT). . Lancet 385::69197
    [Crossref] [Google Scholar]
  25. 25.
    Brain Aneurysm Found. 2023.. Statistics and facts. . Brain Aneurysm Foundation. https://www.bafound.org/statistics-and-facts
    [Google Scholar]
  26. 26.
    Wiebers DO, Torner JC, Meissner I. 1992.. Impact of unruptured intracranial aneurysms on public health in the United States. . Stroke 23::141619
    [Crossref] [Google Scholar]
  27. 27.
    Juvela S, Poussa K, Lehto H, Porras M. 2013.. Natural history of unruptured intracranial aneurysms: a long-term follow-up study. . Stroke 44::241421
    [Crossref] [Google Scholar]
  28. 28.
    Keedy A. 2006.. An overview of intracranial aneurysms. . McGill J. Med. 9::14146
    [Google Scholar]
  29. 29.
    Peeling L, Fiorella D. 2014.. Balloon-assisted guide catheter positioning to overcome extreme cervical carotid tortuosity: technique and case experience. . J. NeuroInterv. Surg. 6::12933
    [Crossref] [Google Scholar]
  30. 30.
    Blanc R, Piotin M, Mounayer C, Spelle L, Moret J. 2006.. Direct cervical arterial access for intracranial endovascular treatment. . Neuroradiology 48::92529
    [Crossref] [Google Scholar]
  31. 31.
    Muller DW, Spina R. 2010.. Guiding catheters and wires. . In Cardiovascular Catheterization and Intervention: A Textbook of Coronary, Peripheral, and Structural Heart Disease, ed. D Mukherjee, ER Bates, M Roffi, RA Lange, DJ Moliterno , pp. 48399. Boca Raton, FL:: CRC
    [Google Scholar]
  32. 32.
    Bloss P, Rothe W, Wünsche P, Werner C, Rothe A, et al. 2003.. Investigations of the pushability behavior of cardiovascular angiographic catheters. . Bio-Med. Mater. Eng. 13::32743
    [Google Scholar]
  33. 33.
    Guglielmi G, Viñuela F, Duckwiler G, Dion J, Lylyk P, et al. 1992.. Endovascular treatment of posterior circulation aneurysms by electrothrombosis using electrically detachable coils. . J. Neurosurg. 77::51524
    [Crossref] [Google Scholar]
  34. 34.
    Orbach D, Stamoulis C, Strauss K, Manchester J, Smith E, et al. 2014.. Neurointerventions in children: radiation exposure and its import. . Am. J. Neuroradiol. 35::65056
    [Crossref] [Google Scholar]
  35. 35.
    Kahn EN, Gemmete JJ, Chaudhary N, Thompson BG, Chen K, et al. 2016.. Radiation dose reduction during neurointerventional procedures by modification of default settings on biplane angiography equipment. . J. NeuroInterv. Surg. 8::81923
    [Crossref] [Google Scholar]
  36. 36.
    Pearl MS, Torok C, Wang J, Wyse E, Mahesh M, Gailloud P. 2015.. Practical techniques for reducing radiation exposure during cerebral angiography procedures. . J. NeuroInterv. Surg. 7::14145
    [Crossref] [Google Scholar]
  37. 37.
    Kirkwood ML, Arbique GM, Guild JB, Zeng K, Xi Y, et al. 2018.. Radiation brain dose to vascular surgeons during fluoroscopically guided interventions is not effectively reduced by wearing lead equivalent surgical caps. . J. Vasc. Surg. 68::56771
    [Crossref] [Google Scholar]
  38. 38.
    Zhang M, Yang L, Yang H, Su L, Zhang L. 2022.. A Doppler and B-mode hybrid ultrasound tracking method for microcatheter navigation in noisy environments. . In 2022 International Conference on Manipulation, Automation and Robotics at Small Scales. Piscataway, NJ:: IEEE. https://doi.org/10.1109/MARSS55884.2022.9870456
    [Crossref] [Google Scholar]
  39. 39.
    Mendes Pereira V, Cancelliere NM, Nicholson P, Radovanovic I, Drake KE, et al. 2020.. First-in-human, robotic-assisted neuroendovascular intervention. . J. NeuroInterv. Surg. 12::33840
    [Crossref] [Google Scholar]
  40. 40.
    Gopesh T, Wen JH, Santiago-Dieppa D, Yan B, Pannell JS, et al. 2021.. Soft robotic steerable microcatheter for the endovascular treatment of cerebral disorders. . Sci. Robot. 6::eabf0601
    [Crossref] [Google Scholar]
  41. 41.
    Killer-Oberpfalzer M, Chapot R, Orion D, Barr JD, Cabiri O, Berenstein A. 2022.. Clinical experience with the Bendit steerable microcatheter: a new paradigm for endovascular treatment. . J. NeuroInterv. Surg. 15::77175
    [Crossref] [Google Scholar]
  42. 42.
    Dobashi Y, Ku JC, Ramjist J, Pasarikovski C, Walus K, et al. 2023.. Photomodulated extrusion as a localized endovascular hydrogel deposition method. . Adv. Healthc. Mater. 12::2202632
    [Crossref] [Google Scholar]
  43. 43.
    Johnson JN, Elhammady M, Post J, Pasol J, Ebersole K, Aziz-Sultan MA. 2014.. Optic pathway infarct after Onyx HD 500 aneurysm embolization: visual pathway ischemia from superior hypophyseal artery occlusion. . J. NeuroInterv. Surg. 6::bcr2013010968
    [Google Scholar]
  44. 44.
    Molyneux AJ, Cekirge S, Saatci I, Gál G. 2004.. Cerebral Aneurysm Multicenter European Onyx (CAMEO) trial: results of a prospective observational study in 20 European centers. . Am. J. Neuroradiol. 25::3951
    [Google Scholar]
  45. 45.
    Cekirge HS, Saatci I, Geyik S, Yavuz K, Öztürk H, Pamuk G. 2006.. Intrasaccular combination of metallic coils and Onyx liquid embolic agent for the endovascular treatment of cerebral aneurysms. . J. Neurosurg. 105::70612
    [Crossref] [Google Scholar]
  46. 46.
    Diaz O, Rangel-Castilla L. 2016.. Endovascular treatment of intracranial aneurysms. . In Handbook of Clinical Neurology, Vol. 136, ed. JC Masdeu, R Gilberton González , pp. 13039. Amsterdam:: Elsevier
    [Google Scholar]
  47. 47.
    Med. Advis. Secr. 2006.. Coil embolization for intracranial aneurysms: an evidence-based analysis. . Ont. Health Technol. Assess. Ser. 6::1114
    [Google Scholar]
  48. 48.
    Ali A, Sakes A, Arkenbout EA, Henselmans P, van Starkenburg R, et al. 2019.. Catheter steering in interventional cardiology: mechanical analysis and novel solution. . Proc. Inst. Mech. Eng. H 233::120718
    [Crossref] [Google Scholar]
  49. 49.
    Namba K, Higaki A, Kaneko N, Nemoto S, Kawai K. 2019.. Precision microcatheter shaping in vertebrobasilar aneurysm coiling. . Interv. Neuroradiol. 25::42329
    [Crossref] [Google Scholar]
  50. 50.
    Pierot L, Barbe C, Nguyen HA, Herbreteau D, Gauvrit JY, et al. 2020.. Intraoperative complications of endovascular treatment of intracranial aneurysms with coiling or balloon-assisted coiling in a prospective multicenter cohort of 1088 participants: analysis of recanalization after endovascular treatment of intracranial aneurysm (ARETA) study. . Radiology 295::38189
    [Crossref] [Google Scholar]
  51. 51.
    Fatania K, Patankar DT. 2022.. Comprehensive review of the recent advances in devices for endovascular treatment of complex brain aneurysms. . Br. J. Radiol. 95::20210538
    [Crossref] [Google Scholar]
  52. 52.
    Piotin M, Blanc R, Spelle L, Mounayer C, Piantino R, et al. 2010.. Stent-assisted coiling of intracranial aneurysms: clinical and angiographic results in 216 consecutive aneurysms. . Stroke 41::11015
    [Crossref] [Google Scholar]
  53. 53.
    Khatri R, Chaudhry SA, Rodriguez GJ, Suri MFK, Cordina SM, Qureshi AI. 2013.. Frequency and factors associated with unsuccessful lead (first) coil placement in patients undergoing coil embolization of intracranial aneurysms. . Neurosurgery 72::45258
    [Crossref] [Google Scholar]
  54. 54.
    Pierot L, Wakhloo AK. 2013.. Endovascular treatment of intracranial aneurysms: current status. . Stroke 44::204654
    [Crossref] [Google Scholar]
  55. 55.
    Chalouhi N, Tjoumakaris S, Starke RM, Gonzalez LF, Randazzo C, et al. 2013.. Comparison of flow diversion and coiling in large unruptured intracranial saccular aneurysms. . Stroke 44::215054
    [Crossref] [Google Scholar]
  56. 56.
    Campos JK, Cheaney B II, Lien BV, Zarrin DA, Vo CD, et al. 2020.. Advances in endovascular aneurysm management: flow modulation techniques with braided mesh devices. . Stroke Vasc. Neurol. 5::113
    [Crossref] [Google Scholar]
  57. 57.
    Wang C, Luo B, Li T, Maimaitili A, Mao G, et al. 2022.. Comparison of the Pipeline embolisation device alone or combined with coiling for treatment of different sizes of intracranial aneurysms. . Stroke Vasc. Neurol. 7::34551
    [Crossref] [Google Scholar]
  58. 58.
    Kocur D, Przybyłko N, Bażowski P, Baron J. 2018.. Rupture during coiling of intracranial aneurysms: predictors and clinical outcome. . Clin. Neurol. Neurosurg. 165::8187
    [Crossref] [Google Scholar]
  59. 59.
    Lussi J, Mattmann M, Sevim S, Grigis F, de Marco C, et al. 2021.. A submillimeter continuous variable stiffness catheter for compliance control. . Adv. Sci. 8::bcr2013010968
    [Google Scholar]
  60. 60.
    Geyer F, D'Acunzi M, Yang CY, Müller M, Baumli P, et al. 2019.. How to coat the inside of narrow and long tubes with a super-liquid-repellent layer—a promising candidate for antibacterial catheters. . Adv. Mater. 31::1801324
    [Crossref] [Google Scholar]
  61. 61.
    Tobis JM, Abudayyeh I. 2015.. New devices and technology in interventional cardiology. . J. Cardiol. 65::516
    [Crossref] [Google Scholar]
  62. 62.
    Maisano F, Vanermen H, Seeburger J, Mack M, Falk V, et al. 2012.. Direct access transcatheter mitral annuloplasty with a sutureless and adjustable device: preclinical experience. . Eur. J. Cardio-Thorac. Surg. 42::52429
    [Crossref] [Google Scholar]
  63. 63.
    Nounou M, Harrison A, Kern M. 2008.. A novel technique using a steerable guide catheter to successfully deliver an amplatzer septal occluder to close an atrial septal defect. . Catheter. Cardiovasc. Interv. 72::99497
    [Crossref] [Google Scholar]
  64. 64.
    Tiroch K, Vorpahl M, Seyfarth M. 2014.. Novel mitral clipping technique overcoming extreme atrial dilatation. . Catheter. Cardiovasc. Interv. 84::6069
    [Crossref] [Google Scholar]
  65. 65.
    Joseph J, Wong KCK, Ginks MR, Bashir Y, Betts TR, Rajappan K. 2013.. Steerable sheath technology in the ablation of atrial fibrillation. . Recent Pat. Cardiovasc. Drug Discov. 8::17177
    [Crossref] [Google Scholar]
  66. 66.
    Rafii-Tari H, Payne CJ, Yang GZ. 2014.. Current and emerging robot-assisted endovascular catheterization technologies: a review. . Ann. Biomed. Eng. 42::697715
    [Crossref] [Google Scholar]
  67. 67.
    Madou MJ. 2018.. Fundamentals of Microfabrication and Nanotechnology. Boca Raton, FL:: CRC. , 3rd ed..
    [Google Scholar]
  68. 68.
    Manz A, Graber N, Widmer HM. 1990.. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. . Sens. Actuators B 1::24448
    [Crossref] [Google Scholar]
  69. 69.
    Xia Y, Whitesides GM. 1998.. Soft lithography. . Annu. Rev. Mater. Sci. 28::15384
    [Crossref] [Google Scholar]
  70. 70.
    Friend J, Yeo L. 2010.. Fabrication of microfluidics devices using polydimethylsiloxane (PDMS). . Biomicrofluidics 4::026502
    [Crossref] [Google Scholar]
  71. 71.
    Chen X, Jiang S, Li Y, Jiang Y, Wang W, Bayanheshig. 2022.. Fabrication of ultra-high aspect ratio silicon grating using an alignment method based on a scanning beam interference lithography system. . Opt. Express 30::4084253
    [Crossref] [Google Scholar]
  72. 72.
    Fan R, Wang B, Li Y, Lai L. 2022.. Process improvement of high aspect ratio nano-gratings based on synchrotron x-ray. . Nanotechnology 33::305303
    [Crossref] [Google Scholar]
  73. 73.
    Lima F, Khazi I, Mescheder U, Tungal AC, Muthiah U. 2019.. Fabrication of 3D microstructures using grayscale lithography. . Adv. Opt. Technol. 8::18193
    [Crossref] [Google Scholar]
  74. 74.
    Monney B, Kilchoer C, Weder C. 2022.. Photolithographic fabrication of mechanically adaptive devices. . ACS Polym. Au 2::5058
    [Crossref] [Google Scholar]
  75. 75.
    Rivkin B, Becker C, Singh B, Aziz A, Akbar F, et al. 2021.. Electronically integrated microcatheters based on self-assembling polymer films. . Sci. Adv. 7::eabl5408
    [Crossref] [Google Scholar]
  76. 76.
    Davydov AD, Volgin VM, Lyubimov VV. 2004.. Electrochemical machining of metals: fundamentals of electrochemical shaping. . Russ. J. Electrochem. 40::123065
    [Crossref] [Google Scholar]
  77. 77.
    Singh SK, Mali HS. 2019.. Microfeatures and microfabrication: current role of micro-electric discharge machining. . J. Micromech. Microeng. 29::043002
    [Crossref] [Google Scholar]
  78. 78.
    Friend J, Yeo L, Hogg M. 2008.. Piezoelectric ultrasonic bidirectional linear actuator for micropositioning fulfilling Feynman's criteria. . Appl. Phys. Lett. 92::014107
    [Crossref] [Google Scholar]
  79. 79.
    Saleh T, Ali MSM, Takahata K. 2021.. Micro Electro-Fabrication. Amsterdam:: Elsevier
    [Google Scholar]
  80. 80.
    Whitesides GM. 2018.. Soft robotics. . Angew. Chem. Int. Ed. 57::425873
    [Crossref] [Google Scholar]
  81. 81.
    Cianchetti M, Laschi C, Menciassi A, Dario P. 2018.. Biomedical applications of soft robotics. . Nat. Rev. Mater. 3::14353
    [Crossref] [Google Scholar]
  82. 82.
    Dogangil G, Davies B, Rodriguez y Baena F. 2010.. A review of medical robotics for minimally invasive soft tissue surgery. . Proc. Inst. Mech. Eng. H 224::65379
    [Crossref] [Google Scholar]
  83. 83.
    Vitiello V, Lee SL, Cundy TP, Yang GZ. 2013.. Emerging robotic platforms for minimally invasive surgery. . IEEE Rev. Biomed. Eng. 6::11126
    [Crossref] [Google Scholar]
  84. 84.
    Cianchetti M, Ranzani T, Gerboni G, Nanayakkara T, Althoefer K, et al. 2014.. Soft robotics technologies to address shortcomings in today's minimally invasive surgery: the stiff-flop approach. . Soft Robot. 1::12231
    [Crossref] [Google Scholar]
  85. 85.
    Bergeles C, Yang GZ. 2014.. From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots. . IEEE Trans. Biomed. Eng. 61::156576
    [Crossref] [Google Scholar]
  86. 86.
    Fusco S, Sakar MS, Kennedy S, Peters C, Bottani R, et al. 2014.. An integrated microrobotic platform for on-demand, targeted therapeutic interventions. . Adv. Mater. 26::95257
    [Crossref] [Google Scholar]
  87. 87.
    Suzumori K, Iikura S, Tanaka H. 1991.. Flexible microactuator for miniature robots. . In 1991 IEEE Micro Electro Mechanical Systems, pp. 2049. Piscataway, NJ:: IEEE
    [Google Scholar]
  88. 88.
    Suzumori K, Iikura S, Tanaka H. 1992.. Applying a flexible microactuator to robotic mechanisms. . IEEE Control Syst. 12::2127
    [Crossref] [Google Scholar]
  89. 89.
    Suzumori K, Koga A, Riyoko H. 1994.. Microfabrication of integrated FMAs using stereo lithography. . In IEEE Micro Electro Mechanical Systems: An Investigation of Micro Structures, Sensors, Actuators, Machines and Robotic Systems, pp. 13641. Piscataway, NJ:: IEEE
    [Google Scholar]
  90. 90.
    Ikuta K, Ichikawa H, Suzuki K. 2002.. Safety-active catheter with multiple-segments driven by micro-hydraulic actuators. . In International Conference on Medical Image Computing and Computer-Assisted Intervention: MICCAI 2002, ed. T Dohi, R Kikinis , pp. 18291. Heidelberg, Ger.:: Springer
    [Google Scholar]
  91. 91.
    Haga Y, Muyari Y, Mineta T, Matsunaga T, Akahori H, Esashi M. 2005.. Small diameter hydraulic active bending catheter using laser processed super elastic alloy and silicone rubber tube. . In 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology, pp. 24548. Piscataway, NJ:: IEEE
    [Google Scholar]
  92. 92.
    Galel Z. 1995.. Catheter steerable by directional jets with remotely controlled closures. US Patent 5,476,100
    [Google Scholar]
  93. 93.
    Fan D, Liao Y, Wu W, Zhang P, Yang X, et al. 2023.. Flow casting soft shells with geometrical complexity and multifunctionality. . Adv. Mater. Technol. 8::2201640
    [Crossref] [Google Scholar]
  94. 94.
    Gopesh T, Friend J. 2020.. Facile analytical extraction of the hyperelastic constants for the two-parameter Mooney–Rivlin model from experiments on soft polymers. . Soft Robot. 8::36570
    [Crossref] [Google Scholar]
  95. 95.
    Iqbal J, Gunn J, Serruys PW. 2013.. Coronary stents: historical development, current status and future directions. . Br. Med. Bull. 106::193211
    [Crossref] [Google Scholar]
  96. 96.
    Malina M, Resch T, Sonesson B. 2008.. EVAR and complex anatomy: an update on fenestrated and branched stent grafts. . Scand. J. Surg. 97::195204
    [Crossref] [Google Scholar]
  97. 97.
    Pfau PR, Pleskow DK, Banerjee S, Barth BA, Bhat YM, et al. 2013.. Pancreatic and biliary stents. . Gastrointest. Endosc. 77::31927
    [Crossref] [Google Scholar]
  98. 98.
    Hoeh H, Vold SD, Ahmed IK, Anton A, Rau M, et al. 2016.. Initial clinical experience with the CyPass micro-stent: safety and surgical outcomes of a novel supraciliary microstent. . J. Glaucoma 25::10612
    [Crossref] [Google Scholar]
  99. 99.
    Meyers PM, Schumacher HC, Tanji K, Higashida RT, Caplan LR. 2007.. Use of stents to treat intracranial cerebrovascular disease. . Annu. Rev. Med. 58::10722
    [Crossref] [Google Scholar]
  100. 100.
    Henkes H, Bose A, Felber S, Miloslavski E, Berg-Dammer E, Kühne D. 2002.. Endovascular coil occlusion of intracranial aneurysms assisted by a novel self-expandable nitinol microstent (Neuroform). . Interv. Neuroradiol. 8::10719
    [Crossref] [Google Scholar]
  101. 101.
    Ahmmed KMT, Grambow C, Kietzig AM. 2014.. Fabrication of micro/nano structures on metals by femtosecond laser micromachining. . Micromachines 5::121953
    [Crossref] [Google Scholar]
  102. 102.
    Ravi-Kumar S, Lies B, Lyu H, Qin H. 2019.. Laser ablation of polymers: a review. . Procedia Manuf. 34::31627
    [Crossref] [Google Scholar]
  103. 103.
    Korei N, Solouk A, Haghbin Nazarpak M, Nouri A. 2022.. A review on design characteristics and fabrication methods of metallic cardiovascular stents. . Mater. Today Commun. 31::103467
    [Crossref] [Google Scholar]
  104. 104.
    Xia N, Jin D, Iacovacci V, Zhang L. 2022.. 3D printing of functional polymers for miniature machines. . Multifunct. Mater. 5::012001
    [Crossref] [Google Scholar]
  105. 105.
    Garg A, Yerneni SS, Campbell P, LeDuc PR, Ozdoganlar OB. 2022.. Freeform 3D ice printing (3D-ICE) at the micro scale. . Adv. Sci. 9::2201566
    [Crossref] [Google Scholar]
  106. 106.
    Liu Y, Zheng M, O'Connor B, Dong J, Zhu Y. 2022.. Curvilinear soft electronics by micromolding of metal nanowires in capillaries. . Sci. Adv. 8::eadd6996
    [Crossref] [Google Scholar]
  107. 107.
    Cho S, Lee E, Jo S, Kim GM, Kim W. 2020.. Extrusion characteristics of thin walled tubes for catheters using thermoplastic elastomer. . Polymers 12::1628
    [Crossref] [Google Scholar]
  108. 108.
    Al-Muslimawi A, Tamaddon-Jahromi H, Webster M. 2013.. Simulation of viscoelastic and viscoelastoplastic die-swell flows. . J. Non-Newton. Fluid Mech. 191::4556
    [Crossref] [Google Scholar]
  109. 109.
    Endo M, Koyama S, Matsuda Y, Hayashi T, Kim YA. 2005.. Thrombogenicity and blood coagulation of a microcatheter prepared from carbon nanotube–nylon-based composite. . Nano Lett. 5::1015
    [Crossref] [Google Scholar]
  110. 110.
    Kucklick T. 2012.. The Medical Device R&D Handbook. Boca Raton, FL:: CRC. , 2nd ed..
    [Google Scholar]
  111. 111.
    Feng W, Chi C, Wang H, Wang K, Guo S, et al. 2006.. Highly precise catheter driving mechanism for intravascular neurosurgery. . In 2006 International Conference on Mechatronics and Automation, Luoyang, China, pp. 99095. Piscataway, NJ:: IEEE
    [Google Scholar]
  112. 112.
    Yun CH, Yeo LY, Friend J, Yan B. 2012.. Multi-degree-of-freedom ultrasonic micromotor for guidewire and catheter navigation: the NeuroGlide actuator. . Appl. Phys. Lett. 100::164101
    [Crossref] [Google Scholar]
  113. 113.
    Paek J, Cho I, Kim J. 2015.. Microrobotic tentacles with spiral bending capability based on shape-engineered elastomeric microtubes. . Sci. Rep. 5::10768
    [Crossref] [Google Scholar]
  114. 114.
    Huang HW, Sakar MS, Petruska AJ, Pané S, Nelson BJ. 2016.. Soft micromachines with programmable motility and morphology. . Nat. Commun. 7::12263
    [Crossref] [Google Scholar]
  115. 115.
    Hu W, Lum GZ, Mastrangeli M, Sitti M. 2018.. Small-scale soft-bodied robot with multimodal locomotion. . Nature 554::8185
    [Crossref] [Google Scholar]
  116. 116.
    Kim Y, Parada G, Liu S, Zhao X. 2019.. Ferromagnetic soft continuum robots. . Sci. Robot. 4::eaax7329
    [Crossref] [Google Scholar]
  117. 117.
    Jeon S, Hoshiar AK, Kim K, Lee S, Kim E, et al. 2019.. A magnetically controlled soft microrobot steering a guidewire in a three-dimensional phantom vascular network. . Soft Robot. 6::5468
    [Crossref] [Google Scholar]
  118. 118.
    Sitti M, Wiersma DS. 2020.. Pros and cons: magnetic versus optical microrobots. . Adv. Mater. 32::1906766
    [Crossref] [Google Scholar]
  119. 119.
    Pancaldi L, Noseda L, Dolev A, Fanelli A, Ghezzi D, et al. 2022.. Locomotion of sensor-integrated soft robotic devices inside sub-millimeter arteries with impaired flow conditions. . Adv. Intell. Syst. 4::2100247
    [Crossref] [Google Scholar]
  120. 120.
    Karstensen L, Ritter J, Hatzl J, Ernst F, Langejürgen J, et al. 2023.. Recurrent neural networks for generalization towards the vessel geometry in autonomous endovascular guidewire navigation in the aortic arch. . Int. J. Comput. Assist. Radiol. Surg. 18::173544
    [Crossref] [Google Scholar]
  121. 121.
    Azizi A, Tremblay CC, Gagné K, Martel S. 2019.. Using the fringe field of a clinical MRI scanner enables robotic navigation of tethered instruments in deeper vascular regions. . Sci. Robot. 4::eaax7342
    [Crossref] [Google Scholar]
  122. 122.
    Behr T, Pusch T, Siegfarth M, Hüsener D, Mörschel T, Karstensen L. 2019.. Deep reinforcement learning for the navigation of neurovascular catheters. . Curr. Dir. Biomed. Eng. 5::58
    [Crossref] [Google Scholar]
  123. 123.
    Chautems C, Tonazzini A, Boehler Q, Jeong SH, Floreano D, Nelson BJ. 2020.. Magnetic continuum device with variable stiffness for minimally invasive surgery. . Adv. Intell. Syst. 2::1900086
    [Crossref] [Google Scholar]
  124. 124.
    Zhou C, Yang Y, Wang J, Wu Q, Gu Z, et al. 2021.. Ferromagnetic soft catheter robots for minimally invasive bioprinting. . Nat. Commun. 12::5072
    [Crossref] [Google Scholar]
  125. 125.
    Ravigopal SR, Brumfiel TA, Desai JP. 2021.. Automated motion control of the COAST robotic guidewire under fluoroscopic guidance. . In 2021 International Symposium on Medical Robotics. Piscataway, NJ:: IEEE. https://doi.org/10.1109/ISMR48346.2021.9661508
    [Crossref] [Google Scholar]
  126. 126.
    Karstensen L, Ritter J, Hatzl J, Pätz T, Langejürgen J, et al. 2022.. Learning-based autonomous vascular guidewire navigation without human demonstration in the venous system of a porcine liver. . Int. J. Comput. Assist. Radiol. Surg. 17::203340
    [Crossref] [Google Scholar]
  127. 127.
    Schegg P, Dequidt J, Coevoet E, Leurent E, Sabatier R, et al. 2022.. Automated planning for robotic guidewire navigation in the coronary arteries. . In 2022 IEEE 5th International Conference on Soft Robotics, pp. 23946. Piscataway, NJ:: IEEE
    [Google Scholar]
  128. 128.
    Dreyfus R, Boehler Q, Nelson BJ. 2022.. A simulation framework for magnetic continuum robots. . IEEE Robot. Autom. Lett. 7::837076
    [Crossref] [Google Scholar]
  129. 129.
    Zhou JJ, Quadri A, Sewani A, Alawneh Y, Gilliland-Rocque R, et al. 2022.. The CathPilot: a novel approach for accurate interventional device steering and tracking. . IEEE/ASME Trans. Mechatron. 27::581223
    [Crossref] [Google Scholar]
  130. 130.
    Ghosh R, Wong K, Zhang YJ, Britz G, Wong STC. 2023.. Automated catheter segmentation and tip detection in cerebral angiography with topology-aware geometric deep learning. . J. NeuroInterv. Surg. https://doi.org/10.1136/jnis-2023-020300
    [Crossref] [Google Scholar]
  131. 131.
    Watson B, Friend J, Yeo L. 2009.. Piezoelectric ultrasonic micro/milli-scale actuators. . Sens. Actuators A 152::21933
    [Crossref] [Google Scholar]
  132. 132.
    Guo X, Tegg TT, Stehr RE. 2011.. Deflectable catheter with distal deflectable segment. US Patent 7,985,215
    [Google Scholar]
  133. 133.
    Pappone C, Vicedomini G, Manguso F, Gugliotta F, Mazzone P, et al. 2006.. Robotic magnetic navigation for atrial fibrillation ablation. . J. Am. Coll. Cardiol. 47::1390400
    [Crossref] [Google Scholar]
  134. 134.
    Atmakuri SR, Lev EI, Alviar C, Ibarra E, Raizner AE, et al. 2006.. Initial experience with a magnetic navigation system for percutaneous coronary intervention in complex coronary artery lesions. . J. Am. Coll. Cardiol. 47::51521
    [Crossref] [Google Scholar]
  135. 135.
    Inaba Y, Arai Y, Sone M, Aramaki T, Osuga K, et al. 2017.. Experiments for the development of a steerable microcatheter. . CardioVasc. Interv. Radiol. 40::192126
    [Crossref] [Google Scholar]
  136. 136.
    Hoffmann JC, Minkin J, Primiano N, Yun J, Eweka A. 2019.. Use of a steerable microcatheter during superselective angiography: impact on radiation exposure and procedural efficiency. . CVIR Endovasc. 2::35
    [Crossref] [Google Scholar]
  137. 137.
    Tillander H. 1951.. Magnetic guidance of a catheter with articulated steel tip. . Acta Radiol. 35::6264
    [Crossref] [Google Scholar]
  138. 138.
    Spearing S. 2001.. Micro devices and micro systems, materials for. . In Encyclopedia of Materials: Science and Technology, ed. KJ Buschow, RW Cahn, MC Flemings, B Ilschner, EJ Kramer, et al. , pp. 558087. Oxford:: Elsevier
    [Google Scholar]
  139. 139.
    Frija G, Blazić I, Frush DP, Hierath M, Kawooya M, et al. 2021.. How to improve access to medical imaging in low- and middle-income countries?. eClinicalMedicine 38::101034
    [Crossref] [Google Scholar]
  140. 140.
    Hwang J, Kim J, Choi H. 2020.. A review of magnetic actuation systems and magnetically actuated guidewire- and catheter-based microrobots for vascular interventions. . Intell. Serv. Robot. 13::114
    [Crossref] [Google Scholar]
  141. 141.
    Arya A, Hindricks G, Sommer P, Huo Y, Bollmann A, et al. 2009.. Long-term results and the predictors of outcome of catheter ablation of atrial fibrillation using steerable sheath catheter navigation after single procedure in 674 patients. . EP Europace 12::17380
    [Crossref] [Google Scholar]
  142. 142.
    Filgueiras-Rama D, Estrada A, Shachar J, Castrejón S, Doiny D, et al. 2013.. Remote magnetic navigation for accurate, real-time catheter positioning and ablation in cardiac electrophysiology procedures. . J. Vis. Exp. 74::e3658
    [Google Scholar]
  143. 143.
    Kim Y, Genevriere E, Harker P, Choe J, Balicki M, et al. 2022.. Telerobotic neurovascular interventions with magnetic manipulation. . Sci. Robot. 7:(65):eabg9907
    [Crossref] [Google Scholar]
  144. 144.
    Muller WF. 1969.. Spring guide manipulator. US Patent 3,452,740
    [Google Scholar]
  145. 145.
    Hammerslag JG, Hammerslag GR. 1990.. Steerable angioplasty device. US Patent 4,921,482
    [Google Scholar]
  146. 146.
    Avitall B. 1995.. Catheter deflection control. US Patent 5,441,483
    [Google Scholar]
  147. 147.
    Stevens-Wright D, Russo M, Nielsen P, Bertram P. 1995.. Actuator for use with steerable catheter. US Patent 5,462,527
    [Google Scholar]
  148. 148.
    Watson JR. 2013.. Asymmetric dual directional steerable catheter sheath. US Patent 8,500,733
    [Google Scholar]
  149. 149.
    Kelly IM, Boyd CS. 1999.. Buckling of the tethering catheter causes migration of a temporary caval filter to the right atrium. . Clin. Radiol. 54::398401
    [Crossref] [Google Scholar]
  150. 150.
    Konings M, Van Leeuwen T, Mali WTM, Viergever M. 1998.. Torsion measurement of catheters using polarized light in a single glass fibre. . Phys. Med. Biol. 43::104957
    [Crossref] [Google Scholar]
  151. 151.
    Bismuth J, Kashef E, Cheshire N, Lumsden AB. 2011.. Feasibility and safety of remote endovascular catheter navigation in a porcine model. . J. Endovasc. Ther. 18::24349
    [Crossref] [Google Scholar]
  152. 152.
    Généreux P, Webb JG, Svensson LG, Kodali SK, Satler LF, et al. 2012.. Vascular complications after transcatheter aortic valve replacement: insights from the partner (placement of aortic transcatheter valve) trial. . J. Am. Coll. Cardiol. 60::104352
    [Crossref] [Google Scholar]
  153. 153.
    Friend J, Gouda Y, Nakamura K, Ueha S. 2006.. A simple bidirectional linear microactuator for nanopositioning – the ``Baltan'' microactuator. . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53::116067
    [Crossref] [Google Scholar]
  154. 154.
    Friend J, Nakamura K, Ueha S. 2004.. A piezoelectric micromotor using in-plane shearing of PZT elements. . IEEE/ASME Trans. Mechatron. 9::46773
    [Crossref] [Google Scholar]
  155. 155.
    Watson B, Friend J, Yeo L. 2010.. Modelling and testing of a piezoelectric ultrasonic micro-motor suitable for in vivo micro-robotic applications. . J. Micromach. Microeng. 20::115018
    [Crossref] [Google Scholar]
  156. 156.
    Chen XZ, Liu JH, Dong M, Müller L, Chatzipirpiridis G, et al. 2019.. Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation. . Mater. Horiz. 6::151216
    [Crossref] [Google Scholar]
  157. 157.
    Souday V, Radermacher P, Asfar P. 2013.. Cerebral arterial gas embolism—a race against time! Crit. . Care Med. 41::181719
    [Crossref] [Google Scholar]
  158. 158.
    Kim DH, Lu N, Ghaffari R, Kim YS, Lee SP, et al. 2011.. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. . Nat. Mater. 10::31623
    [Crossref] [Google Scholar]
  159. 159.
    Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM, et al. 2016.. An integrated design and fabrication strategy for entirely soft, autonomous robots. . Nature 536::45155
    [Crossref] [Google Scholar]
  160. 160.
    Brady M. 1985.. Artificial intelligence and robotics. . Artif. Intell. 26::79121
    [Crossref] [Google Scholar]
  161. 161.
    Attanasio A, Scaglioni B, Momi E, Fiorini P, Valdastri P. 2021.. Autonomy in surgical robotics. . Annu. Rev. Control Robot. Auton. Syst. 4::65179
    [Crossref] [Google Scholar]
  162. 162.
    Ravigopal SR, Brumfiel T, Sarma A, Desai J. 2022.. Fluoroscopic image-based 3-D environment reconstruction and automated path planning for a robotically steerable guidewire. . IEEE Robot. Autom. Lett. 7::1191825
    [Crossref] [Google Scholar]
  163. 163.
    Tang X. 2020.. The role of artificial intelligence in medical imaging research. . BJR Open 2::20190031
    [Google Scholar]
  164. 164.
    Mazaheri S, Loya M, Newsome J, Lungren M, Gichoya J. 2021.. Challenges of implementing artificial intelligence in interventional radiology. . Semin. Intervent. Radiol. 38::55459
    [Crossref] [Google Scholar]
  165. 165.
    Jamjoom AAB, Jamjoom AMA, Marcus HJ. 2020.. Exploring public opinion about liability and responsibility in surgical robotics. . Nat. Mach. Intell. 2::19496
    [Crossref] [Google Scholar]
  166. 166.
    Wu SS. 2020.. Autonomous vehicles, trolley problems, and the law. . Ethics Inform. Technol. 22::113
    [Crossref] [Google Scholar]
  167. 167.
    Cambias J, Cleary K, Daimler E, Drake JM, Dupont P, et al. 2017.. Medical robotics—regulatory, ethical, and legal considerations for increasing levels of autonomy. . Sci. Robot. 2::eaam8638
    [Crossref] [Google Scholar]
  168. 168.
    Int. Org. Stand. 2014.. Intravascular catheters—sterile and single-use catheters. Stand. 10555-1:2013 , Int. Org. Standard., Geneva:
    [Google Scholar]
  169. 169.
    Hudson PL, Gantt D, Brown J. 2018.. Vascular and neurovascular embolization devices—class II special controls guidance document for industry and FDA staff. Guid. Doc., US Food Drug Adm., Washington, DC:
    [Google Scholar]
/content/journals/10.1146/annurev-control-060523-010720
Loading
/content/journals/10.1146/annurev-control-060523-010720
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error