1932

Abstract

Soft robotic systems are human friendly and can mimic the complex motions of animals, which introduces promising potential in various applications, ranging from novel actuation and wearable electronics to bioinspired robots operating in unstructured environments. Due to the use of soft materials, the traditional fabrication and manufacturing methods for rigid materials are unavailable for soft robots. 3D printing is a promising fabrication method for the multifunctional and multimaterial demands of soft robots, as it enables the personalization and customization of the materials and structures. This review provides perspectives on the manufacturing methods for various types of soft robotic systems and discusses the challenges and prospects of future research, including in-depth discussion of pneumatic, electrically activated, magnetically driven, and 4D-printed soft actuators and integrated soft actuators and sensors. Finally, the challenges of realizing multimaterial, multiscale, and multifunctional 3D-printed soft robots are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-061022-012035
2023-05-03
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/control/6/1/annurev-control-061022-012035.html?itemId=/content/journals/10.1146/annurev-control-061022-012035&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Rus D, Tolley MT. 2015. Design, fabrication and control of soft robots. Nature 521:467–75
    [Google Scholar]
  2. 2.
    Whitesides GM. 2018. Soft robotics. Angew. Chem. Int. Ed. 57:4258–73
    [Google Scholar]
  3. 3.
    Wallin T, Pikul J, Shepherd R. 2018. 3D printing of soft robotic systems. Nat. Rev. Mater. 3:84–100
    [Google Scholar]
  4. 4.
    Majidi C. 2019. Soft-matter engineering for soft robotics. Adv. Mater. Technol. 4:1800477
    [Google Scholar]
  5. 5.
    Truby RL, Lewis JA. 2016. Printing soft matter in three dimensions. Nature 540:371–78
    [Google Scholar]
  6. 6.
    Bikas H, Stavropoulos P, Chryssolouris G. 2016. Additive manufacturing methods and modelling approaches: a critical review. Int. J. Adv. Manuf. Technol. 83:389–405
    [Google Scholar]
  7. 7.
    Duda T, Raghavan LV. 2016. 3D metal printing technology. IFAC-PapersOnLine 49:29103–10
    [Google Scholar]
  8. 8.
    Rus D, Tolley MT. 2018. Design, fabrication and control of origami robots. Nat. Rev. Mater. 3:101–12
    [Google Scholar]
  9. 9.
    Rich SI, Wood RJ, Majidi C. 2018. Untethered soft robotics. Nat. Electron. 1:102–12
    [Google Scholar]
  10. 10.
    Manti M, Cacucciolo V, Cianchetti M. 2016. Stiffening in soft robotics: a review of the state of the art. IEEE Robot. Autom. Mag. 23:393–106
    [Google Scholar]
  11. 11.
    Wu S, Hu W, Ze Q, Sitti M, Zhao R. 2020. Multifunctional magnetic soft composites: a review. Multifunct. Mater. 3:042003
    [Google Scholar]
  12. 12.
    Ebrahimi N, Bi C, Cappelleri DJ, Ciuti G, Conn AT et al. 2021. Magnetic actuation methods in bio/soft robotics. Adv. Funct. Mater. 31:2005137
    [Google Scholar]
  13. 13.
    Zolfagharian A, Kaynak A, Kouzani A. 2020. Closed-loop 4D-printed soft robots. Mater. Des. 188:108411
    [Google Scholar]
  14. 14.
    Gul JZ, Sajid M, Rehman MM, Siddiqui GU, Shah I et al. 2018. 3D printing for soft robotics—a review. Sci. Technol. Adv. Mater. 19:243–62
    [Google Scholar]
  15. 15.
    Momeni F, Hassani SMM, Liu X, Ni J. 2017. A review of 4D printing. Mater. Des. 122:42–79
    [Google Scholar]
  16. 16.
    Khoo ZX, Teoh JEM, Liu Y, Chua CK, Yang S et al. 2015. 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys. Prototyp. 10:103–22
    [Google Scholar]
  17. 17.
    Bourell DL. 2016. Perspectives on additive manufacturing. Annu. Rev. Mater. Res. 46:1–18
    [Google Scholar]
  18. 18.
    Shepherd RF, Ilievski F, Choi W, Morin SA, Stokes AA et al. 2011. Multigait soft robot. PNAS 108:20400–3
    [Google Scholar]
  19. 19.
    Kwok SW, Morin SA, Mosadegh B, So JH, Shepherd RF et al. 2014. Magnetic assembly of soft robots with hard components. Adv. Funct. Mater. 24:2180–87
    [Google Scholar]
  20. 20.
    Shepherd RF, Stokes AA, Nunes R, Whitesides GM. 2013. Soft machines that are resistant to puncture and that self seal. Adv. Mater. 25:6709–13
    [Google Scholar]
  21. 21.
    Morin SA, Shevchenko Y, Lessing J, Kwok SW, Shepherd RF et al. 2014. Using “click-e-bricks” to make 3D elastomeric structures. Adv. Mater. 26:5991–99
    [Google Scholar]
  22. 22.
    Yap HK, Ng HY, Yeow C-H. 2016. High-force soft printable pneumatics for soft robotic applications. Soft Robot 3:144–58
    [Google Scholar]
  23. 23.
    Xie D, Liu J, Kang R, Zuo S. 2020. Fully 3D-printed modular pipe-climbing robot. IEEE Robot. Autom. Lett. 6:462–69
    [Google Scholar]
  24. 24.
    Tang Y, Chi Y, Sun J, Huang T-H, Maghsoudi OH et al. 2020. Leveraging elastic instabilities for amplified performance: spine-inspired high-speed and high-force soft robots. Sci. Adv. 6:eaaz6912
    [Google Scholar]
  25. 25.
    Tawk C, in het Panhuis M, Spinks GM, Alici G. 2018. Bioinspired 3D printable soft vacuum actuators for locomotion robots, grippers and artificial muscles. Soft Robot. 5:685–94
    [Google Scholar]
  26. 26.
    Ang BW, Yeow C-H. 2020. Design and modeling of a high force soft actuator for assisted elbow flexion. IEEE Robot. Autom. Lett. 5:3731–36
    [Google Scholar]
  27. 27.
    Morrow J, Hemleben S, Menguc Y. 2016. Directly fabricating soft robotic actuators with an open-source 3-D printer. IEEE Robot. Autom. Lett. 2:277–81
    [Google Scholar]
  28. 28.
    Plott J, Shih A. 2017. The extrusion-based additive manufacturing of moisture-cured silicone elastomer with minimal void for pneumatic actuators. Addit. Manuf. 17:1–14
    [Google Scholar]
  29. 29.
    Schaffner M, Faber JA, Pianegonda L, Rühs PA, Coulter F, Studart AR. 2018. 3D printing of robotic soft actuators with programmable bioinspired architectures. Nat. Commun. 9:878
    [Google Scholar]
  30. 30.
    Yirmibesoglu OD, Morrow J, Walker S, Gosrich W, Cañizares R et al. 2018. Direct 3D printing of silicone elastomer soft robots and their performance comparison with molded counterparts. 2018 IEEE International Conference on Soft Robotics295–302. Piscataway, NJ: IEEE
    [Google Scholar]
  31. 31.
    Cafferty BJ, Campbell VE, Rothemund P, Preston DJ, Ainla A et al. 2019. Fabricating 3D structures by combining 2D printing and relaxation of strain. Adv. Mater. Technol. 4:1800299
    [Google Scholar]
  32. 32.
    Zhou L-Y, Gao Q, Fu J-Z, Chen Q-Y, Zhu J-P et al. 2019. Multimaterial 3D printing of highly stretchable silicone elastomers. ACS Appl. Mater. Interfaces 11:23573–83
    [Google Scholar]
  33. 33.
    Miriyev A, Xia B, Joseph JC, Lipson H. 2019. Additive manufacturing of silicone composites for soft actuation. 3D Print. . Addit. Manuf. 6:309–18
    [Google Scholar]
  34. 34.
    Kalisky T, Wang Y, Shih B, Drotman D, Jadhav S et al. 2017. Differential pressure control of 3D printed soft fluidic actuators. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems6207–13. Piscataway, NJ: IEEE
    [Google Scholar]
  35. 35.
    Du Pasquier C, Chen T, Tibbits S, Shea K 2019. Design and computational modeling of a 3D printed pneumatic toolkit for soft robotics. Soft Robot 6:657–63
    [Google Scholar]
  36. 36.
    Drotman D, Jadhav S, Karimi M, de Zonia P, Tolley MT. 2017. 3D printed soft actuators for a legged robot capable of navigating unstructured terrain. 2017 IEEE International Conference on Robotics and Automation5532–38. Piscataway, NJ: IEEE
    [Google Scholar]
  37. 37.
    Zhang N, Ge L, Xu H, Zhu X, Gu G. 2020. 3D printed, modularized rigid-flexible integrated soft finger actuators for anthropomorphic hands. Sens. Actuators A 312:112090
    [Google Scholar]
  38. 38.
    MacCurdy R, Katzschmann R, Kim Y, Rus D. 2016. Printable hydraulics: a method for fabricating robots by 3D co-printing solids and liquids. 2016 IEEE International Conference on Robotics and Automation3878–85. Piscataway, NJ: IEEE
    [Google Scholar]
  39. 39.
    Sheng X, Xu H, Zhang N, Ding N, Zhu X, Gu G. 2020. Multi-material 3D printing of caterpillar-inspired soft crawling robots with the pneumatically bellow-type body and anisotropic friction feet. Sens. Actuators A 316:112398
    [Google Scholar]
  40. 40.
    Zhang YF, Zhang N, Hingorani H, Ding N, Wang D et al. 2019. Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Adv. Funct. Mater. 29:1806698
    [Google Scholar]
  41. 41.
    Peele BN, Wallin TJ, Zhao H, Shepherd RF. 2015. 3D printing antagonistic systems of artificial muscle using projection stereolithography. Bioinspir. Biomim. 10:055003
    [Google Scholar]
  42. 42.
    Patel DK, Sakhaei AH, Layani M, Zhang B, Ge Q, Magdassi S. 2017. Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Adv. Mater. 29:1606000
    [Google Scholar]
  43. 43.
    Kang H-W, Lee IH, Cho D-W. 2006. Development of a micro-bellows actuator using micro-stereolithography technology. Microelectron. Eng. 83:1201–4
    [Google Scholar]
  44. 44.
    Ge L, Dong L, Wang D, Ge Q, Gu G. 2018. A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators. Sens. Actuators A 273:285–92
    [Google Scholar]
  45. 45.
    Zhang YF, Ng CJX, Chen Z, Zhang W, Panjwani S et al. 2019. Miniature pneumatic actuators for soft robots by high-resolution multimaterial 3D printing. Adv. Mater. Technol. 4:1900427
    [Google Scholar]
  46. 46.
    Wallin TJ, Simonsen L-E, Pan W, Wang K, Giannelis E et al. 2020. 3D printable tough silicone double networks. Nat. Commun. 11:4000
    [Google Scholar]
  47. 47.
    Zhang Q, Weng S, Zhao Z, Qi H, Fang D. 2021. Soft pneumatic actuators by digital light processing combined with injection-assisted post-curing. Appl. Math. Mech. 42:159–72
    [Google Scholar]
  48. 48.
    Hubbard JD, Acevedo R, Edwards KM, Alsharhan AT, Wen Z et al. 2021. Fully 3D-printed soft robots with integrated fluidic circuitry. Sci. Adv. 7:eabe5257
    [Google Scholar]
  49. 49.
    Zhang B, Li H, Cheng J, Ye H, Sakhaei AH et al. 2021. Mechanically robust and UV-curable shape-memory polymers for digital light processing based 4D printing. Adv. Mater. 33:2101298
    [Google Scholar]
  50. 50.
    Ge Q, Chen Z, Cheng J, Zhang B, Zhang Y-F et al. 2021. 3D printing of highly stretchable hydrogel with diverse UV curable polymers. Sci. Adv. 7:eaba4261
    [Google Scholar]
  51. 51.
    Shahinpoor M, Kim KJ. 2001. Ionic polymer–metal composites: I. Fundamentals. Smart Mater. Struct. 10:819
    [Google Scholar]
  52. 52.
    Kim KJ, Shahinpoor M. 2003. Ionic polymer–metal composites: II. Manufacturing techniques. Smart Mater. Struct. 12:65
    [Google Scholar]
  53. 53.
    Yang L, Wang H, Zhang X. 2021. Recent progress in preparation process of ionic polymer-metal composites. Results Phys 29:104800
    [Google Scholar]
  54. 54.
    Carrico JD, Traeden NW, Aureli M, Leang KK. 2015. Fused filament 3D printing of ionic polymer-metal composites (IPMCs). Smart Mater. Struct. 24:125021
    [Google Scholar]
  55. 55.
    Miriyev A, Stack K, Lipson H. 2017. Soft material for soft actuators. Nat. Commun. 8:596
    [Google Scholar]
  56. 56.
    Carrico JD, Hermans T, Kim KJ, Leang KK. 2019. 3D-printing and machine learning control of soft ionic polymer-metal composite actuators. Sci. Rep. 9:17482
    [Google Scholar]
  57. 57.
    Pelrine R, Kornbluh R, Pei QB, Joseph J 2000. High-speed electrically actuated elastomers with strain greater than 100%. Science 287:836–39
    [Google Scholar]
  58. 58.
    Gu G-Y, Zhu J, Zhu L-M, Zhu X. 2017. A survey on dielectric elastomer actuators for soft robots. Bioinspir. Biomim. 12:011003
    [Google Scholar]
  59. 59.
    Chen Y, Zhao H, Mao J, Chirarattananon P, Helbling EF et al. 2019. Controlled flight of a microrobot powered by soft artificial muscles. Nature 575:324–29
    [Google Scholar]
  60. 60.
    Ji X, Liu X, Cacucciolo V, Imboden M, Civet Y et al. 2019. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 4:eaaz6451
    [Google Scholar]
  61. 61.
    Gu G, Zou J, Zhao R, Zhao X, Zhu X. 2018. Soft wall-climbing robots. Sci. Robot. 3:eaat2874
    [Google Scholar]
  62. 62.
    Poulin A, Rosset S, Shea HR. 2015. Printing low-voltage dielectric elastomer actuators. Appl. Phys. Lett. 107:244104
    [Google Scholar]
  63. 63.
    Zhao H, Hussain AM, Duduta M, Vogt DM, Wood RJ, Clarke DR. 2018. Compact dielectric elastomer linear actuators. Adv. Funct. Mater. 28:1804328
    [Google Scholar]
  64. 64.
    Carpi F, Salaris C, De Rossi D. 2007. Folded dielectric elastomer actuators. Smart Mater. Struct. 16:S300–S05
    [Google Scholar]
  65. 65.
    Rossiter J, Walters P, Stoimenov B. 2009. Printing 3D dielectric elastomer actuators for soft robotics. Electroactive Polymer Actuators and Devices (EAPAD) 2009 Y Bar-Cohen, T Wallmersperger, pap. 72870H. Proc. SPIE 7287 Bellingham, WA: SPIE
    [Google Scholar]
  66. 66.
    McCoul D, Rosset S, Schlatter S, Shea H. 2017. Inkjet 3D printing of UV and thermal cure silicone elastomers for dielectric elastomer actuators. Smart Mater. Struct. 26:125022
    [Google Scholar]
  67. 67.
    Gonzalez D, Garcia J, Newell B. 2019. Electromechanical characterization of a 3D printed dielectric material for dielectric electroactive polymer actuators. Sens. Actuators A 297:111565
    [Google Scholar]
  68. 68.
    Chortos A, Hajiesmaili E, Morales J, Clarke DR, Lewis JA. 2020. 3D printing of interdigitated dielectric elastomer actuators. Adv. Funct. Mater. 30:1907375
    [Google Scholar]
  69. 69.
    Zhou F, Zhang M, Cao X, Zhang Z, Chen X et al. 2019. Fabrication and modeling of dielectric elastomer soft actuator with 3D printed thermoplastic frame. Sens. Actuators A 292:112–20
    [Google Scholar]
  70. 70.
    Creegan A, Anderson I 2014. 3D printing for dielectric elastomers. Electroactive Polymer Actuators and Devices (EAPAD) 2014 Y Bar-Cohen, pap. 905629. Proc. SPIE 9056 Bellingham, WA: SPIE
    [Google Scholar]
  71. 71.
    Reitelshöfer S, Göttler M, Schmidt P, Treffer P, Landgraf M, Franke J 2016. Aerosol-Jet-Printing silicone layers and electrodes for stacked dielectric elastomer actuators in one processing device. Electroactive Polymer Actuators and Devices (EAPAD) 2016 Y Bar-Cohen, F Vidal, pap. 97981Y. Proc. SPIE 9798 Bellingham, WA: SPIE
    [Google Scholar]
  72. 72.
    Kuhnel D, Rossiter J, Faul C. 2018. 3D printing with light: towards additive manufacturing of soft, electroactive structures. Electroactive Polymer Actuators and Devices (EAPAD) XX Y Bar-Cohen, pap. 1059411. Proc. SPIE 10594 Bellingham, WA: SPIE
    [Google Scholar]
  73. 73.
    Haghiashtiani G, Habtour E, Park S-H, Gardea F, McAlpine MC. 2018. 3D printed electrically-driven soft actuators. Extreme Mech. Lett. 21:1–8
    [Google Scholar]
  74. 74.
    Chortos A, Mao J, Mueller J, Hajiesmaili E, Lewis JA, Clarke DR. 2021. Printing reconfigurable bundles of dielectric elastomer fibers. Adv. Funct. Mater. 31:2010643
    [Google Scholar]
  75. 75.
    Poulin A, Rosset S, Shea H 2016. Fully printed 3 microns thick dielectric elastomer actuator. Electroactive Polymer Actuators and Devices (EAPAD) 2016 Y Bar-Cohen, F Vidal, pap. 97980L. Proc. SPIE 9798 Bellingham, WA: SPIE
    [Google Scholar]
  76. 76.
    Lin H-T, Leisk GG, Trimmer B. 2011. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir. Biomim. 6:026007
    [Google Scholar]
  77. 77.
    Gul JZ, Yang YJ, Su KY, Choi KH. 2017. Omni directional multimaterial soft cylindrical actuator and its application as a steerable catheter. Soft Robot 4:224–40
    [Google Scholar]
  78. 78.
    Akbari S, Sakhaei AH, Panjwani S, Kowsari K, Serjourei A, Ge Q. 2019. Multimaterial 3D printed soft actuators powered by shape memory alloy wires. Sens. Actuators A 290:177–89
    [Google Scholar]
  79. 79.
    Akbari S, Sakhaei AH, Panjwani S, Kowsari K, Ge Q. 2021. Shape memory alloy based 3D printed composite actuators with variable stiffness and large reversible deformation. Sens. Actuators A 321:112598
    [Google Scholar]
  80. 80.
    Bodkhe S, Vigo L, Zhu S, Testoni O, Aegerter N, Ermanni P. 2020. 3D printing to integrate actuators into composites. Addit. Manuf. 35:101290
    [Google Scholar]
  81. 81.
    Gul JZ, Yang B-S, Yang YJ, Chang DE, Choi KH. 2016. In situ UV curable 3D printing of multi-material tri-legged soft bot with spider mimicked multi-step forward dynamic gait. Smart Mater. Struct. 25:115009
    [Google Scholar]
  82. 82.
    Umedachi T, Vikas V, Trimmer BA. 2013. Highly deformable 3-D printed soft robot generating inching and crawling locomotions with variable friction legs. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems4590–95. Piscataway, NJ: IEEE
    [Google Scholar]
  83. 83.
    Umedachi T, Vikas V, Trimmer BA. 2016. Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots. Bioinspir. Biomim. 11:025001
    [Google Scholar]
  84. 84.
    Zatopa A, Walker S, Menguc Y. 2018. Fully soft 3D-printed electroactive fluidic valve for soft hydraulic robots. Soft Robot 5:258–71
    [Google Scholar]
  85. 85.
    Phamduy P, Vazquez MA, Kim C, Mwaffo V, Rizzo A, Porfiri M. 2017. Design and characterization of a miniature free-swimming robotic fish based on multi-material 3D printing. Int. J. Intell. Robot. Appl. 1:209–23
    [Google Scholar]
  86. 86.
    Kim Y, Zhao X. 2022. Magnetic soft materials and robots. Chem. Rev. 122:5317–64
    [Google Scholar]
  87. 87.
    Bayaniahangar R, Ahangar SB, Zhang Z, Lee BP, Pearce JM. 2021. 3-D printed soft magnetic helical coil actuators of iron oxide embedded polydimethylsiloxane. Sens. Actuators B 326:128781
    [Google Scholar]
  88. 88.
    Podstawczyk D, Nizioł M, Szymczyk P, Wiśniewski P, Guiseppi-Elie A. 2020. 3D printed stimuli-responsive magnetic nanoparticle embedded alginate-methylcellulose hydrogel actuators. Addit. Manuf. 34:101275
    [Google Scholar]
  89. 89.
    Mea HJ, Delgadillo L, Wan J 2020. On-demand modulation of 3D-printed elastomers using programmable droplet inclusions. PNAS 117:14790–97
    [Google Scholar]
  90. 90.
    Kim Y, Yuk H, Zhao R, Chester SA, Zhao X. 2018. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558:274–79
    [Google Scholar]
  91. 91.
    Kim Y, Parada GA, Liu S, Zhao X. 2019. Ferromagnetic soft continuum robots. Sci. Robot. 4:eaax7329
    [Google Scholar]
  92. 92.
    Joyee EB, Pan Y. 2019. A fully three-dimensional printed inchworm-inspired soft robot with magnetic actuation. Soft Robot 6:333–45
    [Google Scholar]
  93. 93.
    Wu S, Ze Q, Zhang R, Hu N, Cheng Y et al. 2019. Symmetry-breaking actuation mechanism for soft robotics and active metamaterials. ACS Appl. Mater. Interfaces 11:41649–58
    [Google Scholar]
  94. 94.
    Ma C, Wu S, Ze Q, Kuang X, Zhang R et al. 2020. Magnetic multimaterial printing for multimodal shape transformation with tunable properties and shiftable mechanical behaviors. ACS Appl. Mater. Interfaces 13:12639–48
    [Google Scholar]
  95. 95.
    Ze Q, Kuang X, Wu S, Wong J, Montgomery SM et al. 2020. Magnetic shape memory polymers with integrated multifunctional shape manipulation. Adv. Mater. 32:1906657
    [Google Scholar]
  96. 96.
    Zhao R, Kim Y, Chester SA, Sharma P, Zhao X. 2019. Mechanics of hard-magnetic soft materials. J. Mech. Phys. Solids 124:244–63
    [Google Scholar]
  97. 97.
    Chen W, Yan Z, Wang L 2020. Complex transformations of hard-magnetic soft beams by designing residual magnetic flux density. Soft Matter 16:6379–88
    [Google Scholar]
  98. 98.
    Chen W, Yan Z, Wang L 2020. On mechanics of functionally graded hard-magnetic soft beams. Int. J. Eng. Sci. 157:103391
    [Google Scholar]
  99. 99.
    Wu S, Hamel CM, Ze Q, Yang F, Qi HJ, Zhao R. 2020. Evolutionary algorithm-guided voxel-encoding printing of functional hard-magnetic soft active materials. Adv. Intell. Syst. 2:2000060
    [Google Scholar]
  100. 100.
    Joyee EB, Pan Y. 2019. Multi-material additive manufacturing of functional soft robot. Procedia Manuf 34:566–73
    [Google Scholar]
  101. 101.
    Joyee EB, Szmelter A, Eddington D, Pan Y. 2020. 3D printed biomimetic soft robot with multimodal locomotion and multifunctionality. Soft Robot 9:4
    [Google Scholar]
  102. 102.
    Lantean S, Barrera G, Pirri CF, Tiberto P, Sangermano M et al. 2019. 3D printing of magnetoresponsive polymeric materials with tunable mechanical and magnetic properties by digital light processing. Adv. Mater. Technol. 4:1900505
    [Google Scholar]
  103. 103.
    Lu L, Guo P, Pan Y. 2017. Magnetic-field-assisted projection stereolithography for three-dimensional printing of smart structures. J. Manuf. Sci. Eng. 139:071008
    [Google Scholar]
  104. 104.
    Joyee EB, Pan Y. 2020. Additive manufacturing of multi-material soft robot for on-demand drug delivery applications. J. Manuf. Process. 56:1178–84
    [Google Scholar]
  105. 105.
    Roh S, Okello LB, Golbasi N, Hankwitz JP, Liu JAC et al. 2019. 3D-printed silicone soft architectures with programmed magneto-capillary reconfiguration. Adv. Mater. Technol. 4:1800528
    [Google Scholar]
  106. 106.
    Shao G, Ware HOT, Huang J, Hai R, Li L, Sun C 2021. 3D printed magnetically-actuating micro-gripper operates in air and water. Addit. Manuf. 38:101834
    [Google Scholar]
  107. 107.
    Tognato R, Armiento AR, Bonfrate V, Levato R, Malda J et al. 2019. A stimuli-responsive nanocomposite for 3D anisotropic cell-guidance and magnetic soft robotics. Adv. Funct. Mater. 29:1804647
    [Google Scholar]
  108. 108.
    Qi S, Guo H, Fu J, Xie Y, Zhu M, Yu M 2020. 3D printed shape-programmable magneto-active soft matter for biomimetic applications. Compos. Sci. Technol. 188:107973
    [Google Scholar]
  109. 109.
    Pei EJ. 2014. 4D printing: dawn of an emerging technology cycle. Assem. Autom. 34:310–14
    [Google Scholar]
  110. 110.
    Tibbits S. 2014. 4D printing: multi-material shape change. Archit. Des. 84:116–21
    [Google Scholar]
  111. 111.
    Tibbits S, McKnelly C, Olguin C, Dikovsky D, Hirsch S 2014. 4D printing and universal transformation. ACADIA 14: Design Agency D Gerber, A Huang, J Sanchez 539–48. Cambridge, Can.: Riverside Archit. Press
    [Google Scholar]
  112. 112.
    Ge Q, Qi HJ, Dunn ML. 2013. Active materials by four-dimension printing. Appl. Phys. Lett. 103:131901
    [Google Scholar]
  113. 113.
    Zhao Z, Wu J, Mu X, Chen H, Qi HJ, Fang D. 2017. Desolvation induced origami of photocurable polymers by digit light processing. Macromol. Rapid Commun. 38:1600625
    [Google Scholar]
  114. 114.
    Bodaghi M, Damanpack A, Liao W. 2018. Triple shape memory polymers by 4D printing. Smart Mater. Struct. 27:065010
    [Google Scholar]
  115. 115.
    López-Valdeolivas M, Liu D, Broer DJ, Sánchez-Somolinos C. 2018. 4D printed actuators with soft-robotic functions. Macromol. Rapid Commun. 39:1700710
    [Google Scholar]
  116. 116.
    Su J-W, Gao W, Trinh K, Kenderes SM, Tekin Pulatsu E et al. 2019. 4D printing of polyurethane paint-based composites. Int. J. Smart Nano Mater. 10:237–48
    [Google Scholar]
  117. 117.
    Bodaghi M, Noroozi R, Zolfagharian A, Fotouhi M, Norouzi S. 2019. 4D printing self-morphing structures. Materials 12:1353
    [Google Scholar]
  118. 118.
    Odent J, Vanderstappen S, Toncheva A, Pichon E, Wallin TJ et al. 2019. Hierarchical chemomechanical encoding of multi-responsive hydrogel actuators via 3D printing. J. Mater. Chem. A 7:15395–403
    [Google Scholar]
  119. 119.
    Shiblee MNI, Ahmed K, Kawakami M, Furukawa H. 2019. 4D printing of shape-memory hydrogels for soft-robotic functions. Adv. Mater. Technol. 4:1900071
    [Google Scholar]
  120. 120.
    Yuan C, Wang F, Qi B, Ding Z, Rosen DW, Ge Q. 2020. 3D printing of multi-material composites with tunable shape memory behavior. Mater. Des. 193:108785
    [Google Scholar]
  121. 121.
    Guo J, Zhang R, Zhang L, Cao X. 2018. 4D printing of robust hydrogels consisted of agarose nanofibers and polyacrylamide. ACS Macro Lett 7:442–46
    [Google Scholar]
  122. 122.
    Shiblee MNI, Ahmed K, Khosla A, Kawakami M, Furukawa H. 2018. 3D printing of shape memory hydrogels with tunable mechanical properties. Soft Matter 14:7809–17
    [Google Scholar]
  123. 123.
    Kotikian A, Truby RL, Boley JW, White TJ, Lewis JA. 2018. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv. Mater. 30:1706164
    [Google Scholar]
  124. 124.
    Nojoomi A, Arslan H, Lee K, Yum K. 2018. Bioinspired 3D structures with programmable morphologies and motions. Nat. Commun. 9:3705
    [Google Scholar]
  125. 125.
    Zolfagharian A, Kaynak A, Khoo SY, Kouzani AZ. 2018. Polyelectrolyte soft actuators: 3D printed chitosan and cast gelatin. 3D Print. . Addit. Manuf. 5:138–50
    [Google Scholar]
  126. 126.
    Bastola AK, Rodriguez N, Behl M, Soffiatti P, Rowe NP, Lendlein A. 2021. Cactus-inspired design principles for soft robotics based on 3D printed hydrogel-elastomer systems. Mater. Des. 202:109515
    [Google Scholar]
  127. 127.
    Mao Y, Ding Z, Yuan C, Ai S, Isakov M et al. 2016. 3D printed reversible shape changing components with stimuli responsive materials. Sci. Rep. 6:24761
    [Google Scholar]
  128. 128.
    Tibbits S. 2013. The emergence of “4D printing. .” TED https://www.ted.com/talks/skylar_tibbits_the_emergence_of_4d_printing
    [Google Scholar]
  129. 129.
    Yuan C, Wang T, Dunn ML, Qi HJ. 2017. 3D printed active origami with complicated folding patterns. Int. J. Precis. Eng. Manuf. Green Technol. 4:281–89
    [Google Scholar]
  130. 130.
    Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S. 2016. 3D printing of shape memory polymers for flexible electronic devices. Adv. Mater. 28:4449–54
    [Google Scholar]
  131. 131.
    Ge Q, Dunn CK, Qi HJ, Dunn ML. 2014. Active origami by 4D printing. Smart Mater. Struct. 23:094007
    [Google Scholar]
  132. 132.
    Yu K, Dunn ML, Qi HJ. 2015. Digital manufacture of shape changing components. Extreme Mech. Lett. 4:9–17
    [Google Scholar]
  133. 133.
    Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML. 2016. Multimaterial 4D printing with tailorable shape memory polymers. Sci. Rep. 6:31110
    [Google Scholar]
  134. 134.
    Wu J, Yuan C, Ding Z, Isakov M, Mao Y et al. 2016. Multi-shape active composites by 3D printing of digital shape memory polymers. Sci. Rep. 6:24224
    [Google Scholar]
  135. 135.
    Mao Y, Yu K, Isakov MS, Wu J, Dunn ML, Qi HJ. 2015. Sequential self-folding structures by 3D printed digital shape memory polymers. Sci. Rep. 5:13616
    [Google Scholar]
  136. 136.
    Davidson EC, Kotikian A, Li S, Aizenberg J, Lewis JA. 2020. 3D printable and reconfigurable liquid crystal elastomers with light-induced shape memory via dynamic bond exchange. Adv. Mater. 32:1905682
    [Google Scholar]
  137. 137.
    Zhang Q, Kuang X, Weng S, Yue L, Roach DJ et al. 2021. Shape-memory balloon structures by pneumatic multi-material 4D printing. Adv. Funct. Mater. 31:2010872
    [Google Scholar]
  138. 138.
    Ding Z, Weeger O, Qi HJ, Dunn ML. 2018. 4D rods: 3D structures via programmable 1D composite rods. Mater. Des. 137:256–65
    [Google Scholar]
  139. 139.
    Ding Z, Yuan C, Peng X, Wang T, Qi HJ, Dunn ML. 2017. Direct 4D printing via active composite materials. Sci. Adv. 3:e1602890
    [Google Scholar]
  140. 140.
    Zhao Z, Wu J, Mu X, Chen H, Qi HJ, Fang D. 2017. Origami by frontal photopolymerization. Sci. Adv. 3:e1602326
    [Google Scholar]
  141. 141.
    Kuang X, Wu J, Chen K, Zhao Z, Ding Z et al. 2019. Grayscale digital light processing 3D printing for highly functionally graded materials. Sci. Adv. 5:eaav5790
    [Google Scholar]
  142. 142.
    Cui C, An L, Zhang Z, Ji M, Chen K et al. 2022. Reconfigurable 4D printing of reprocessable and mechanically strong polythiourethane covalent adaptable networks. Adv. Funct. Mater. 32:2203720
    [Google Scholar]
  143. 143.
    Wang J, Dai N, Jiang C, Mu X, Zhang B et al. 2021. Programmable shape-shifting 3D structures via frontal photopolymerization. Mater. Des. 198:109381
    [Google Scholar]
  144. 144.
    Peng X, Kuang X, Roach DJ, Wang Y, Hamel CM et al. 2021. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Addit. Manuf. 40:101911
    [Google Scholar]
  145. 145.
    Hu G, Zhang B, Kelly SM, Cui J, Zhang K et al. 2022. Photopolymerisable liquid crystals for additive manufacturing. Addit. Manuf. 55:102861
    [Google Scholar]
  146. 146.
    Saed MO, Ambulo CP, Kim H, De R, Raval V et al. 2019. Molecularly-engineered, 4D-printed liquid crystal elastomer actuators. Adv. Funct. Mater. 29:1806412
    [Google Scholar]
  147. 147.
    Yuan C, Roach DJ, Dunn CK, Mu Q, Kuang X et al. 2017. 3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers. Soft Matter 13:5558–68
    [Google Scholar]
  148. 148.
    Kotikian A, Morales JM, Lu A, Mueller J, Davidson ZS et al. 2021. Innervated, self-sensing liquid crystal elastomer actuators with closed loop control. Adv. Mater. 33:2101814
    [Google Scholar]
  149. 149.
    Kotikian A, McMahan C, Davidson EC, Muhammad JM, Weeks RD et al. 2019. Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci. Robot. 4:eaax7044
    [Google Scholar]
  150. 150.
    Ambulo CP, Ford MJ, Searles K, Majidi C, Ware TH. 2020. 4D-printable liquid metal–liquid crystal elastomer composites. ACS Appl. Mater. Interfaces 13:12805–13
    [Google Scholar]
  151. 151.
    Li S, Bai H, Liu Z, Zhang X, Huang C et al. 2021. Digital light processing of liquid crystal elastomers for self-sensing artificial muscles. Sci. Adv. 7:eabg3677
    [Google Scholar]
  152. 152.
    Traugutt NA, Mistry D, Luo C, Yu K, Ge Q, Yakacki CM. 2020. Liquid-crystal-elastomer-based dissipative structures by digital light processing 3D printing. Adv. Mater. 32:2000797
    [Google Scholar]
  153. 153.
    Luo C, Chung C, Traugutt NA, Yakacki CM, Long KN, Yu K 2020. 3D printing of liquid crystal elastomer foams for enhanced energy dissipation under mechanical insult. ACS Appl. Mater. Interfaces 13:12698–708
    [Google Scholar]
  154. 154.
    Fang M, Liu T, Xu Y, Jin B, Zheng N et al. 2021. Ultrafast digital fabrication of designable architectured liquid crystalline elastomer. Adv. Mater. 33:2105597
    [Google Scholar]
  155. 155.
    Chen Y, Yang J, Zhang X, Feng Y, Zeng H et al. 2021. Light-driven bimorph soft actuators: design, fabrication, and properties. Mater. Horiz. 8:728–57
    [Google Scholar]
  156. 156.
    Li M, Pal A, Aghakhani A, Pena-Francesch A, Sitti M. 2022. Soft actuators for real-world applications. Nat. Rev. Mater. 7:235–49
    [Google Scholar]
  157. 157.
    Han B, Zhang YL, Zhu L, Li Y, Ma ZC et al. 2019. Plasmonic-assisted graphene oxide artificial muscles. Adv. Mater. 31:1806386
    [Google Scholar]
  158. 158.
    Hagaman DE, Leist S, Zhou J, Ji H-F. 2018. Photoactivated polymeric bilayer actuators fabricated via 3D printing. ACS Appl. Mater. Interfaces 10:27308–15
    [Google Scholar]
  159. 159.
    Nishiguchi A, Zhang H, Schweizerhof S, Schulte MF, Mourran A, Möller M. 2020. 4D printing of a light-driven soft actuator with programmed printing density. ACS Appl. Mater. Interfaces 12:12176–85
    [Google Scholar]
  160. 160.
    Yang H, Leow WR, Wang T, Wang J, Yu J et al. 2017. 3D printed photoresponsive devices based on shape memory composites. Adv. Mater. 29:1701627
    [Google Scholar]
  161. 161.
    Mestre R, Patiño T, Barceló X, Anand S, Pérez-Jiménez A, Sánchez S 2019. Force modulation and adaptability of 3D-bioprinted biological actuators based on skeletal muscle tissue. Adv. Mater. Technol. 4:1800631
    [Google Scholar]
  162. 162.
    Chan V, Park K, Collens MB, Kong H, Saif TA, Bashir R. 2012. Development of miniaturized walking biological machines. Sci. Rep. 2:857
    [Google Scholar]
  163. 163.
    Chan V, Jeong JH, Bajaj P, Collens M, Saif T et al. 2012. Multi-material bio-fabrication of hydrogel cantilevers and actuators with stereolithography. Lab Chip 12:88–98
    [Google Scholar]
  164. 164.
    Raman R, Cvetkovic C, Bashir R. 2017. A modular approach to the design, fabrication, and characterization of muscle-powered biological machines. Nat. Protoc. 12:519–33
    [Google Scholar]
  165. 165.
    Bartlett NW, Tolley MT, Overvelde JT, Weaver JC, Mosadegh B et al. 2015. A 3D-printed, functionally graded soft robot powered by combustion. Science 349:161–65
    [Google Scholar]
  166. 166.
    Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM et al. 2016. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536:451–55
    [Google Scholar]
  167. 167.
    Truby RL, Wehner M, Grosskopf AK, Vogt DM, Uzel SG et al. 2018. Soft somatosensitive actuators via embedded 3D printing. Adv. Mater. 30:1706383
    [Google Scholar]
  168. 168.
    Scharff RB, Doubrovski EL, Poelman WA, Jonker PP, Wang CC, Geraedts JM 2017. Towards behavior design of a 3D-printed soft robotic hand. Soft Robotics: Trends, Applications and Challenges C Laschi, J Rossitor, F Iida, M Cianchetti, L Margheri 23–29. Cham, Switz.: Springer
    [Google Scholar]
  169. 169.
    Ntagios M, Nassar H, Pullanchiyodan A, Navaraj WT, Dahiya R. 2019. Robotic hands with intrinsic tactile sensing via 3D printed soft pressure sensors. Adv. Intell. Syst. 2:1900080
    [Google Scholar]
  170. 170.
    Hainsworth T, Smith L, Alexander S, MacCurdy R 2020. A fabrication free, 3D printed, multi-material, self-sensing soft actuator. IEEE Robot. Autom. Lett. 5:4118–25
    [Google Scholar]
  171. 171.
    Dilibal S, Sahin H, Danquah JO, Emon MOF, Choi J-W. 2021. Additively manufactured custom soft gripper with embedded soft force sensors for an industrial robot. Int. J. Precis. Eng. Manuf. 22:709–18
    [Google Scholar]
  172. 172.
    Hohimer CJ, Petrossian G, Ameli A, Mo C, Pötschke P. 2020. 3D printed conductive thermoplastic polyurethane/carbon nanotube composites for capacitive and piezoresistive sensing in soft pneumatic actuators. Addit. Manuf. 34:101281
    [Google Scholar]
  173. 173.
    Sadeghi A, Tonazzini A, Popova L, Mazzolai B. 2014. A novel growing device inspired by plant root soil penetration behaviors. PLOS ONE 9:e90139
    [Google Scholar]
  174. 174.
    Sadeghi A, Mondini A, Mazzolai B. 2017. Toward self-growing soft robots inspired by plant roots and based on additive manufacturing technologies. J. Soft Robot. 4:211–23
    [Google Scholar]
  175. 175.
    Zhu W, Li J, Leong YJ, Rozen I, Qu X et al. 2015. 3D-printed artificial microfish. Adv. Mater. 27:4411–17
    [Google Scholar]
  176. 176.
    Shen Z, Zhang Z, Zhang N, Li J, Zhou P et al. 2022. High-stretchability, ultralow-hysteresis conducting polymer hydrogel strain sensors for soft machines. Adv. Mater. 34:2203650
    [Google Scholar]
  177. 177.
    Zhu M, Xie M, Lu X, Okada S, Kawamura S. 2020. A soft robotic finger with self-powered triboelectric curvature sensor based on multi-material 3D printing. Nano Energy 73:104772
    [Google Scholar]
  178. 178.
    Ma Z-C, Zhang Y-L, Han B, Hu X-Y, Li C-H et al. 2020. Femtosecond laser programmed artificial musculoskeletal systems. Nat. Commun. 11:4536
    [Google Scholar]
  179. 179.
    Zeng H, Wasylczyk P, Parmeggiani C, Martella D, Burresi M, Wiersma DS. 2015. Light-fueled microscopic walkers. Adv. Mater. 27:3883–87
    [Google Scholar]
  180. 180.
    Kunwar P, Xiong Z, Zhu Y, Li H, Filip A, Soman P 2019. Hybrid laser printing of 3D, multiscale, multimaterial hydrogel structures. Adv. Opt. Mater. 7:1900656
    [Google Scholar]
  181. 181.
    Wang Y, Wang Y, Mei D. 2020. Scalable printing of bionic multiscale channel networks through digital light processing-based three-dimensional printing process. 3D Print. . Addit. Manuf. 7:115–25
    [Google Scholar]
  182. 182.
    Kim K, Zhu W, Qu X, Aaronson C, McCall WR et al. 2014. 3D optical printing of piezoelectric nanoparticle–polymer composite materials. ACS Nano 8:9799–806
    [Google Scholar]
  183. 183.
    Li Y, Mao H, Hu P, Hermes M, Lim H et al. 2019. Bioinspired functional surfaces enabled by multiscale stereolithography. Adv. Mater. Technol. 4:1800638
    [Google Scholar]
  184. 184.
    Bader C, Kolb D, Weaver JC, Sharma S, Hosny A et al. 2018. Making data matter: voxel printing for the digital fabrication of data across scales and domains. Sci. Adv. 4:eaas8652
    [Google Scholar]
  185. 185.
    Skylar-Scott MA, Mueller J, Visser CW, Lewis JA 2019. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 575:330–35
    [Google Scholar]
  186. 186.
    Sossou G, Demoly F, Belkebir H, Qi HJ, Gomes S et al. 2019. Design for 4D printing: a voxel-based modeling and simulation of smart materials. Mater. Des. 175:107798
    [Google Scholar]
  187. 187.
    Boddeti N, Rosen DW, Maute K, Dunn MLJCS. 2019. Multiscale optimal design and fabrication of laminated composites. Compos. Struct. 228:111366
    [Google Scholar]
  188. 188.
    Grigolato L, Rosso S, Meneghello R, Concheri G, Savio G. 2019. Heterogeneous objects representation for additive manufacturing: a review. Instant J. Mech. Eng. 1:14–23
    [Google Scholar]
  189. 189.
    Boddeti N, Ding Z, Kaijima S, Maute K, Dunn ML. 2018. Simultaneous digital design and additive manufacture of structures and materials. Sci. Rep. 8:15560
    [Google Scholar]
  190. 190.
    Shusteff M, Browar AE, Kelly BE, Henriksson J, Weisgraber TH et al. 2017. One-step volumetric additive manufacturing of complex polymer structures. Sci. Adv. 3:eaao5496
    [Google Scholar]
  191. 191.
    Wu L, Dong Z, Du H, Li C, Fang N, Song Y. 2018. Bioinspired ultra-low adhesive energy interface for continuous 3D printing: reducing curing induced adhesion. Research 2018:4795604
    [Google Scholar]
  192. 192.
    Roach DJ, Hamel CM, Dunn CK, Johnson MV, Kuang X, Qi HJ. 2019. The m4 3D printer: a multi-material multi-method additive manufacturing platform for future 3D printed structures. Addit. Manuf. 29:100819
    [Google Scholar]
  193. 193.
    Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzl P. 2005. Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309:275–78
    [Google Scholar]
  194. 194.
    Jiang C, Wang D, Zhao B, Liao Z, Gu G. 2021. Modeling and inverse design of bio-inspired multi-segment pneu-net soft manipulators for 3D trajectory motion. Appl. Phys. Rev. 8:041416
    [Google Scholar]
  195. 195.
    Huang X, Zou J, Gu G. 2021. Kinematic modeling and control of variable curvature soft continuum robots. IEEE/ASME Trans. Mechatron. 26:3175–85
    [Google Scholar]
  196. 196.
    Wang D, Li L, Serjouei A, Dong L, Weeger O et al. 2018. Controllable helical deformations on printed anisotropic composite soft actuators. Appl. Phys. Lett. 112:181905
    [Google Scholar]
  197. 197.
    Lee S, Franklin S, Hassani FA, Yokota T, Nayeem MOG et al. 2020. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370:966–70
    [Google Scholar]
  198. 198.
    Wang D, Xu H, Wang J, Jiang C, Zhu X et al. 2020. Design of 3D printed programmable horseshoe lattice structures based on a phase-evolution model. ACS Appl. Mater. Interfaces 12:22146–56
    [Google Scholar]
  199. 199.
    Wang F, Yuan C, Wang D, Rosen DW, Ge Q. 2020. A phase evolution based constitutive model for shape memory polymer and its application in 4D printing. Smart Mater. Struct. 29:055016
    [Google Scholar]
  200. 200.
    Dong L, Jiang C, Wang J, Wang D 2021. Design of shape reconfigurable, highly stretchable honeycomb lattice with tunable Poisson's ratio. Front. Mater. 191:660325
    [Google Scholar]
  201. 201.
    Dong L, Wang D, Wang J, Jiang C, Wang H et al. 2022. Modeling and design of periodic polygonal lattices constructed from microstructures with varying curvatures. Phys. Rev. Appl. 17:044032
    [Google Scholar]
  202. 202.
    Gu G, Zhang N, Xu H, Lin S, Yu Y et al. 2021. A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-021-00767-0
    [Google Scholar]
  203. 203.
    Guix M, Mestre R, Patiño T, De Corato M, Fuentes J et al. 2021. Biohybrid soft robots with self-stimulating skeletons. Sci. Robot. 6:eabe7577
    [Google Scholar]
  204. 204.
    Wang Z, Wang Y, Wang Z, He Q, Li C, Cai S. 2021. 3D printing of electrically responsive PVC gel actuators. ACS Appl. Mater. Interfaces 13:24164–72
    [Google Scholar]
  205. 205.
    Magdassi S. 2009. The Chemistry of Inkjet Inks Singapore: World Sci.
  206. 206.
    Park SH, Yang DY, Lee KS. 2009. Two-photon stereolithography for realizing ultraprecise three-dimensional nano/microdevices. Laser Photon. Rev. 3:1–11
    [Google Scholar]
  207. 207.
    Beluze L, Bertsch A, Renaud P 1999. Microstereolithography: a new process to build complex 3D objects. Design, Test, and Microfabrication of MEMS and MOEMS B Courtois, SB Crary, W Ehrfeld, H Fujita, JM Karam, et al. Proc. SPIE 3680 Bellingham, WA: SPIE https://doi.org/10.1117/12.341277
    [Google Scholar]
  208. 208.
    Wallin T, Pikul J, Bodkhe S, Peele B, Mac Murray B et al. 2017. Click chemistry stereolithography for soft robots that self-heal. J. Mater. Chem. B 5:6249–55
    [Google Scholar]
/content/journals/10.1146/annurev-control-061022-012035
Loading
/content/journals/10.1146/annurev-control-061022-012035
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error