1932

Abstract

Within the field of human rehabilitation, robotic machines are used both to rehabilitate the body and to perform functional tasks. Robotics autonomy that would enable perception of the external world and reasoning about high-level control decisions, however, is seldom present in these machines. For functional tasks in particular, autonomy could help to decrease the operational burden on the human and perhaps even increase access, and this potential only grows as human motor impairments become more severe. There are, however, serious and often subtle considerations for incorporating clinically feasible robotics autonomy into rehabilitation robots and machines. Today, the fields of robotics autonomy and rehabilitation robotics are largely separate, and the topic of this article is at the intersection of these fields: the incorporation of clinically feasible autonomy solutions into rehabilitation robots and the opportunities for autonomy within the rehabilitation domain.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-061417-041727
2018-05-28
2024-09-08
Loading full text...

Full text loading...

/deliver/fulltext/control/1/1/annurev-control-061417-041727.html?itemId=/content/journals/10.1146/annurev-control-061417-041727&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Simpson R 2005. Smart wheelchairs: a literature review. J. Rehabil. Res. Dev. 42:423–38
    [Google Scholar]
  2. 2.  Hillman M 2006. Rehabilitation robotics from past to present – a historical perspective. Advances in Rehabilitation Robotics ZZ Bien, D Stefanov 25–44 Berlin: Springer
    [Google Scholar]
  3. 3.  Chen TL, Ciocarlie M, Cousins S, Grice PM, Hawkins K et al. 2013. Robots for humanity: using assistive robotics to empower people with disabilities. Robot. Autom. Mag. 20:30–39
    [Google Scholar]
  4. 4.  Vos T, Barber R, Ryan M, Bell B, Bertozzi-Villa A et al. 2015. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 386:743–800
    [Google Scholar]
  5. 5.  Nakayama H, Jørgensen H, Raaschou H, Olsen T 1994. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch. Phys. Med. Rehabil. 75:394–98
    [Google Scholar]
  6. 6.  Miller EL, Murray L, Richards L, Zorowitz RD, Bakas T et al. 2010. Comprehensive overview of nursing and interdisciplinary rehabilitation care of the stroke patient: a scientific statement from the American Heart Association. Stroke 41:2402–48
    [Google Scholar]
  7. 7.  Harwin WS, Patton JL, Edgerton VR 2006. Challenges and opportunities for robot-mediated neurorehabilitation. Proc. IEEE 94:1717–26
    [Google Scholar]
  8. 8.  Peckham PH, Knutson JS 2005. Functional electrical stimulation for neuromuscular applications. Annu. Rev. Biomed. Eng. 7:327–60
    [Google Scholar]
  9. 9.  Jackson A, Zimmermann JB 2012. Neural interfaces for the brain and spinal cord—restoring motor function. Nat. Rev. Neurol. 8:690–99
    [Google Scholar]
  10. 10.  Feil-Seifer D, Matarić MJ 2011. Socially assistive robotics. IEEE Robot. Autom. Mag. 18:24–31
    [Google Scholar]
  11. 11.  Reinkensmeyer DJ, Dietz V 2016. Neurorehabilitation Technology Cham, Switz.: Springer
    [Google Scholar]
  12. 12.  Pennycott A, Wyss D, Vallery H, Klamroth-Marganska V, Riener R 2012. Towards more effective robotic gait training for stroke rehabilitation: a review. J. NeuroEng. Rehabil. 9:65
    [Google Scholar]
  13. 13.  Young AJ, Ferris DP 2016. State-of-the-art and future directions for lower limb robotic exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 25:171–82
    [Google Scholar]
  14. 14.  Esquenazi A, Talaty M, Jayaraman A 2017. Powered exoskeletons for walking assistance in persons with central nervous system injuries: a narrative review. Am. Acad. Phys. Med. Rehabil. 9:46–62
    [Google Scholar]
  15. 15.  Finlayson M, van Denend T 2003. Experiencing the loss of mobility: perspectives of older adults with MS. Disabil. Rehabil. 25:1168–80
    [Google Scholar]
  16. 16.  Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R 2008. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 89:422–29
    [Google Scholar]
  17. 17.  Raichle KA, Hanley MA, Molton I, Kadel NJ, Campbell K et al. 2008. Prosthesis use in persons with lower- and upper-limb amputation. J. Rehabil. Res. Dev. 45:961–72
    [Google Scholar]
  18. 18.  Biddiss EA, Chau TT 2007. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet. Orthot. Int. 31:236–57
    [Google Scholar]
  19. 19.  Micera S, Carpaneto J, Raspopovic S 2010. Control of hand prostheses using peripheral information. IEEE Rev. Biomed. Eng. 3:48–68
    [Google Scholar]
  20. 20.  Atkins D, Heard D, Donovan W 1996. Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. J. Prosthet. Orthot. 8:2–11
    [Google Scholar]
  21. 21.  Weir RF, Sensinger JW 2009. The design of artificial arms and hands for prosthetic applications. Standard Handbook of Biomedical Engineering and Design M Kutz, chap. 32 New York: McGraw-Hill
    [Google Scholar]
  22. 22.  Scheme E, Englehart K 2011. Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J. Rehabil. Res. Dev. 48:643–60
    [Google Scholar]
  23. 23.  Reiser U, Connette C, Fischer J, Kubacki J, Bubeck A et al. 2009. Care-O-bot® 3—creating a product vision for service robot applications by integrating design and technology. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 1992–98 New York: IEEE
    [Google Scholar]
  24. 24.  Leeb R, Tonin L, Rohm M, Desideri L, Carlson T, Millán JDR 2015. Towards independence: a BCI telepresence robot for people with severe motor disabilities. Proc. IEEE 103:969–82
    [Google Scholar]
  25. 25.  Edwards K, McCluskey A 2010. A survey of adult power wheelchair and scooter users. Disabil. Rehabil. 5:411–19
    [Google Scholar]
  26. 26.  Simpson R, LoPresti E, Cooper R 2008. How many people would benefit from a smart wheelchair?. J. Rehabil. Res. Dev. 45:53–72
    [Google Scholar]
  27. 27.  Churchward R 1985. The development of a standing wheelchair. Appl. Ergon. 16:55–62
    [Google Scholar]
  28. 28.  Arva J, Paleg G, Lange M, Lieberman J, Schmeler M et al. 2009. RESNA position on the application of wheelchair standing devices. Assist. Technol. 21:161–68
    [Google Scholar]
  29. 29.  Dune C, Leroux C, Marchand E 2007. Intuitive human interaction with an arm robot for severely handicapped people—a one click approach. IEEE 10th International Conference on Rehabilitation Robotics (ICORR)582–89 New York: IEEE
    [Google Scholar]
  30. 30.  Kuiken TA, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield KA 2004. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet. Orthot. Int. 28:245–53
    [Google Scholar]
  31. 31.  Kuiken TA, Gi L, Lock BA, Lipschutz RD, Miller LA et al. 2009. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. J. Am. Med. Assoc. 301:619–28
    [Google Scholar]
  32. 32.  Parker P, Englehart K, Hudgins B 2006. Myoelectric signal processing for control of powered limb prostheses. J. Electromyogr. Kinesiol. 16:541–48
    [Google Scholar]
  33. 33.  Tenore FVG, Ramos A, Fahmy A, Acharya S, Etienne-Cummings R, Thakor NV 2009. Decoding of individuated finger movements using surface electromyography. IEEE Trans. Biomed. Eng. 56:1427–34
    [Google Scholar]
  34. 34.  Young AJ, Smith LH, Rouse EJ, Hargrove LJ 2013. Classification of simultaneous movements using surface EMG pattern recognition. IEEE Trans. Biomed. Eng. 60:1250–58
    [Google Scholar]
  35. 35.  Sup F, Bohara A, Goldfarb M 2008. Design and control of a powered transfemoral prosthesis. Int. J. Robot. Res. 27:263–73
    [Google Scholar]
  36. 36.  Rouse EJ, Mooney LM, Herr HM 2014. Clutchable series-elastic actuator: implications for prosthetic knee design. Int. J. Robot. Res. 33:1611–25
    [Google Scholar]
  37. 37.  Huang H, Kuiken T, Lipschutz R 2009. A strategy for identifying locomotion modes using surface electromyography. IEEE Trans. Biomed. Eng. 56:65–73
    [Google Scholar]
  38. 38.  Spanias JA, Perreault EJ, Hargrove LJ 2016. Detection of and compensation for EMG disturbances for powered lower limb prosthesis control. IEEE Trans. Neural Syst. Rehabil. Eng. 24:226–34
    [Google Scholar]
  39. 39.  Varol HA, Sup F, Goldfarb M 2010. Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans. Biomed. Eng. 57:542–51
    [Google Scholar]
  40. 40.  Chu JU, Moon I, Mun MS 2006. A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand. IEEE Trans. Biomed. Eng. 53:2232–39
    [Google Scholar]
  41. 41.  Huang Y, Englehart KB, Hudgins B, Chan ADC 2005. A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses. IEEE Trans. Biomed. Eng. 52:1801–11
    [Google Scholar]
  42. 42.  León M, Gutiérrez J, Leija L, Muñoz R, de la Cruz J, Santos M 2011. Multiclass motion identification using myoelectric signals and support vector machines. 2011 Third World Congress on Nature and Biologically Inspired Computing (NaBIC)189–94 New York: IEEE
    [Google Scholar]
  43. 43.  Englehart K, Hudgins B 2003. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 50:848–54
    [Google Scholar]
  44. 44.  Tenore F, Armiger RS, Vogelstein RJ, Wenstrand DS, Harshbarger SD, Englehart K 2008. An embedded controller for a 7-degree of freedom prosthetic arm. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)185–88 New York: IEEE
    [Google Scholar]
  45. 45.  Ajiboye AB, Weir RF 2005. A heuristic fuzzy logic approach to EMG pattern recognition for multifunctional prosthesis control. IEEE Trans. Neural Syst. Rehabil. Eng. 13:280–91
    [Google Scholar]
  46. 46.  Simon AM, Hargrove LJ, Lock BA, Kuiken TA 2011. Target achievement control test: evaluating real-time myoelectric pattern-recognition control of multifunctional upper-limb prostheses. J. Rehabil. Res. Dev. 48:619–28
    [Google Scholar]
  47. 47.  Lebedev MA, Nicolelis MA 2006. Brain-machine interfaces: past, present and future. Trends Neurosci 29:536–46
    [Google Scholar]
  48. 48.  Chaudhary U, Birbaumer N, Ramos-Murguialday A 2016. Brain-computer interfaces for communication and rehabilitation. Nat. Rev. Neurol. 12:513–25
    [Google Scholar]
  49. 49.  Huang H, Zhang F, Hargrove LJ, Dou Z, Rogers DR, Englehart KB 2010. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion. IEEE Trans. Biomed. Eng. 58:2867–75
    [Google Scholar]
  50. 50.  Krausz NE, Lenzi T, Hargrove LJ 2015. Depth sensing for improved control of lower limb prostheses. IEEE Trans. Biomed. Eng. 62:2576–87
    [Google Scholar]
  51. 51.  Shima K, Tsuji T 2010. Classification of combined motions in human joints through learning of individual motions based on muscle synergy theory. 2010 IEEE/SICE International Symposium on System Integration (SII)317–22 New York: IEEE
    [Google Scholar]
  52. 52.  Jiang N, Englehart KB, Parker PA 2009. Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal. IEEE Trans. Biomed. Eng. 56:1070–80
    [Google Scholar]
  53. 53.  Matrone G, Cipriani C, Secco E, Magenes G, Carrozza M 2010. Principal components analysis based on control of a multi-DoF underactuated prosthetic hand. J. NeuroEng. Rehabil. 7:16
    [Google Scholar]
  54. 54.  Tresch MC, Jarc A 2009. The case for and against muscle synergies. Curr. Opin. Neurobiol. 19:601–7
    [Google Scholar]
  55. 55.  Santello M, Flanders M, Soechting JF 1998. Postural hand synergies for tool use. J. Neurosci. 18:10105–15
    [Google Scholar]
  56. 56.  Castellini C, van der Smagt P 2013. Evidence of muscle synergies during human grasping. Biol. Cybernet. 107:233–45
    [Google Scholar]
  57. 57.  Calancie B, Needham-Shropshire B, Jacobs P, Willer K, Zych G, Green B 1994. Involuntary stepping after chronic spinal cord injury: evidence for a central rhythm generator for locomotion in man. Brain 117:1143–59
    [Google Scholar]
  58. 58.  Bicchi A, Gabiccini M, Santello M 2011. Modeling natural and artificial hands with synergies. Philos. Trans. R. Soc. B 366:3153–61
    [Google Scholar]
  59. 59.  Gioioso G, Salvietti G, Malvezzi M, Prattichizz D 2013. Mapping synergies from human to robotic hands with dissimilar kinematics: an approach in the object domain. IEEE Trans. Robot. 29:825–37
    [Google Scholar]
  60. 60.  Shepherd MK, Rouse EJ 2017. The VSPA foot: a quasi-passive ankle-foot prosthesis with continuously variable stiffness. Trans. Neural Syst. Rehabil. Eng. 25:2375–86
    [Google Scholar]
  61. 61.  Weir RF, Heckathorne CW, Childress DS 2001. Cineplasty as a control input for externally powered prosthetic components. J. Rehabil. Res. Dev. 38:357–63
    [Google Scholar]
  62. 62.  Weber DJ, Friesen R, Miller LE 2012. Interfacing the somatosensory system to restore touch and proprioception: essential considerations. J. Motor Behav. 44:403–18
    [Google Scholar]
  63. 63.  Jaffe DL, Harris HL, Leung SK 1990. Ultrasonic head controlled wheelchair/interface: a case study in development and technology transfer. Proceedings of the 13th Annual Rehabilitation Engineering and Assistive Technology Society (RESNA) Conference23–24 Arlington, VA: RESNA
    [Google Scholar]
  64. 64.  Moon I, Lee M, Ryu J, Mun M 2003. Intelligent robotic wheelchair with EMG-, gesture-, and voice-based interfaces. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 33453–58 New York: IEEE
    [Google Scholar]
  65. 65.  Bley F, Rous M, Canzler U, Kraiss KF 2004. Supervised navigation and manipulation for impaired wheelchair users. 2004 IEEE International Conference on Systems, Man and Cybernetics (SMC) 32790–96 New York: IEEE
    [Google Scholar]
  66. 66.  Touati Y, Ali-Cherif A, Achili B 2009. Smart wheelchair design and monitoring via wired and wireless networks. 2009 IEEE Symposium on Industrial Electronics and Applications (ISIEA) 2920–25 New York: IEEE
    [Google Scholar]
  67. 67.  Escobedo A, Spalanzani A, Laugier C 2013. Multimodal control of a robotic wheelchair: using contextual information for usability improvement. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)4262–67 New York: IEEE
    [Google Scholar]
  68. 68.  Bien Z, Chung MJ, Chang PH, Kwon DS, Kim DJ et al. 2004. Integration of a rehabilitation robotic system (KARES II) with human-friendly man-machine interaction units. Auton. Robots 16:165–91
    [Google Scholar]
  69. 69.  Thorp EB, Abdollahi F, Chen D, Farshchiansadegh A, Lee MH et al. 2016. Upper body-based power wheelchair control interface for individuals with tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 24:249–60
    [Google Scholar]
  70. 70.  Adachi Y, Goto K, Matsumoto Y, Ogasawara T 2003. Development of control assistant system for robotic wheelchair-estimation of user's behavior based on measurements of gaze and environment. 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation 2538–43 New York: IEEE
    [Google Scholar]
  71. 71.  Barea R, Boquete L, Mazo M, López E 2002. System for assisted mobility using eye movements based on electrooculography. IEEE Trans. Neural Syst. Rehabil. Eng. 10:209–18
    [Google Scholar]
  72. 72.  Carlson T, Millán JDR 2013. Brain-controlled wheelchairs: a robotic architecture. IEEE Robot. Autom. Mag. 20:65–73
    [Google Scholar]
  73. 73.  Katsura S, Ohnishi K 2004. Human cooperative wheelchair for haptic interaction based on dual compliance control. IEEE Trans. Ind. Electron. 51:221–28
    [Google Scholar]
  74. 74.  Luo RC, Hu CY, Chen TM, Lin MH 1999. Force reflective feedback control for intelligent wheelchairs. 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2918–23 New York: IEEE
    [Google Scholar]
  75. 75.  Kitagawa L, Kobayashi T, Beppu T, Terashima K 2001. Semi-autonomous obstacle avoidance of omnidirectional wheelchair by joystick impedance control. 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 42148–53 New York: IEEE
    [Google Scholar]
  76. 76.  Braga RA, Petry M, Reis LP, Moreira AP 2011. IntellWheels: modular development platform for intelligent wheelchairs. J. Rehabil. Res. Dev. 48:1061–76
    [Google Scholar]
  77. 77.  Wang Y, Chen W 2011. Hybrid map-based navigation for intelligent wheelchair. 2011 IEEE International Conference on Robotics and Automation (ICRA)637–42 New York: IEEE
    [Google Scholar]
  78. 78.  Luith T, Ojdanić D, Friman O, Prenzel O, Graser A 2007. Low level control in a semi-autonomous rehabilitation robotic system via a brain-computer interface. 2007 IEEE 10th International Conference on Rehabilitation Robotics (ICORR)721–28 New York: IEEE
    [Google Scholar]
  79. 79.  Simpson RC, Levine SP 2002. Voice control of a powered wheelchair. IEEE Trans. Neural Syst. Rehabil. Eng. 10:122–25
    [Google Scholar]
  80. 80.  Yanco HA 1998. Wheelesley, a robotic wheelchair system: indoor navigation and user interface. Assistive Technology and Artificial Intelligence VO Mittal, HA Yanco, J Aronis, RC Simpson 256–68 Berlin: Springer
    [Google Scholar]
  81. 81.  Walter MR, Hemachandra S, Homberg B, Tellex S, Teller S 2013. Learning semantic maps from natural language descriptions. Robotics: Science and Systems IX P Newman, D Fox, D Hsu, chap. 4. N.p.: Robot. Sci. Syst. Found.
    [Google Scholar]
  82. 82.  Busnel M, Cammoun R, Coulon-Lauture F, Détriché JM, Claire GL, Lesigne B 1999. The robotized workstation “MASTER” for users with tetraplegia: description and evaluation. J. Rehabil. Res. Dev. 36:217–29
    [Google Scholar]
  83. 83.  Volosyak I, Ivlev O, Gräser A 2005. Rehabilitation robot FRIEND II - the general concept and current implementation. 9th International Conference on Rehabilitation Robotics (ICORR)540–44 New York: IEEE
    [Google Scholar]
  84. 84.  Kim DJ, Hazlett-Knudsen R, Culver-Godfrey H, Rucks G, Cunningham T et al. 2011. How autonomy impacts performance and satisfaction: results from a study with spinal cord injured subjects using an assistive robot. IEEE Trans. Syst. Man Cybern. A 42:2–14
    [Google Scholar]
  85. 85.  Lankenau A, Röfer T 2001. A versatile and safe mobility assistant. IEEE Robot. Autom. Mag. 8:29–37
    [Google Scholar]
  86. 86.  Sheridan T 1992. Telerobotics, Automation, and Human Supervisory Control Cambridge, MA: MIT Press
    [Google Scholar]
  87. 87.  Crandall JW, Goodrich MA, Olsen DR Jr., Nielsen CW 2005. Validating human-robot interaction schemes in multitasking environments. IEEE Trans. Syst. Man Cybern. 35:438–49
    [Google Scholar]
  88. 88.  Fong T, Thorpe C, Baur C 2001. Advanced interfaces for vehicle teleoperation: collaborative control, sensor fusion displays, and remote driving tools. Auton. Robots 11:77–85
    [Google Scholar]
  89. 89.  Erdogan A, Argall B 2017. The effect of robotic wheelchair control paradigm and interface on user performance, effort and preference: an experimental assessment. Robot. Auton. Syst. 94:282–97
    [Google Scholar]
  90. 90.  Ezeh C, Trautman P, Devigne L, Bureau V, Babel M, Carlson T 2017. Probabilistic versus linear blending approaches to shared control for wheelchair driving. 2017 International Conference on Rehabilitation Robotics (ICORR)835–40 New York: IEEE
    [Google Scholar]
  91. 91.  Mazo M 2001. An integral system for assisted mobility. IEEE Robot. Autom. Mag. 8:46–56
    [Google Scholar]
  92. 92.  Madarasz RL, Heiny LC, Cromp RF, Mazur NM 1986. Design of an autonomous vehicle for the disabled. IEEE J. Robot. Autom. 2:117–26
    [Google Scholar]
  93. 93.  Wakaumi H, Nakamura K, Matsumura T 1992. Development of an automated wheelchair guided by a magnetic ferrite marker lane. J. Rehabil. Res. Dev. 29:27–34
    [Google Scholar]
  94. 94.  Prassler E, Scholz J, Fiorini P 2001. A robotics wheelchair for crowded public environment. IEEE Robot. Autom. Mag. 8:38–45
    [Google Scholar]
  95. 95.  Desmond R, Dickerman M, Fleming J, Sinyukov D, Schaufeld J, Padir T 2013. Development of modular sensors for semi-autonomous wheelchairs. 2013 IEEE International Conference on Technologies for Practical Robot Applications (TePRA) New York: IEEE https://doi.org/10.1109/TePRA.2013.6556380
    [Crossref] [Google Scholar]
  96. 96.  Urdiales C 2012. Collaborative Assistive Robot for Mobility Enhancement (CARMEN): The Bare Necessities: Assisted Wheelchair Navigation and Beyond Berlin: Springer
    [Google Scholar]
  97. 97.  Argall BD 2016. Modular and adaptive wheelchair automation. Experimental Robotics MA Hsieh, O Khatib, V Kumar 835–48 Cham, Switz.: Springer
    [Google Scholar]
  98. 98.  Nuttin M, Demeester E, Vanhooydonck D, Brussel HV 2001. Shared autonomy for wheelchair control: attempts to assess the user's autonomy. Autonome Mobile Systeme 2001 P Levi, M Schanz 127–33 Berlin: Springer
    [Google Scholar]
  99. 99.  Carlson T, Demiris Y 2012. Collaborative control for a robotic wheelchair: evaluation of performance, attention and workload. IEEE Trans. Syst. Man Cybern. B 42:876–88
    [Google Scholar]
  100. 100.  Nguyen A, Nguyen L, Su S, Nguyen H 2013. The advancement of an obstacle avoidance bayesian neural network for an intelligent wheelchair. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)3642–45 New York: IEEE
    [Google Scholar]
  101. 101.  Viswanathan P, Little J, Mackworth A, Mihailidis A 2011. Navigation and obstacle avoidance help (NOAH) for older adults with cognitive impairment: a pilot study. Proceedings of the International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS)43–50 New York: ACM
    [Google Scholar]
  102. 102.  Mallet P, Schoner G 2002. WAD project where attractor dynamics aids wheelchair navigation. 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 1690–95 New York: IEEE
    [Google Scholar]
  103. 103.  Simpson R, LoPresti E, Hayashi S, Nourbakhsh I, Miller D 2004. The smart wheelchair component system. J. Rehabil. Res. Dev. 41:429–42
    [Google Scholar]
  104. 104.  Katevas NI, Sgouros NM, Tzafestas SG, Papakonstantinou G, Beattie P et al. 1997. The autonomous mobile robot SENARIO: a sensor aided intelligent navigation system for powered wheelchairs. IEEE Robot. Autom. Mag. 4:60–70
    [Google Scholar]
  105. 105.  Nakanishi S, Kuno Y, Shimada N, Shirai Y 1999. Robotic wheelchair based on observations of both user and environment. 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2912–17 New York: IEEE
    [Google Scholar]
  106. 106.  Hamagami T, Hirata H 2004. Development of intelligent wheelchair acquiring autonomous, cooperative, and collaborative behavior. 2004 IEEE International Conference on Systems, Man and Cybernetics (SMC) 43525–30 New York: IEEE
    [Google Scholar]
  107. 107.  Gao C, Sands M, Spletzer JR 2010. Towards autonomous wheelchair systems in urban environments. Field and Service Robotics A Howard, K Iagnemma, A Kelly 13–23 Berlin: Springer
    [Google Scholar]
  108. 108.  Gomi T, Griffith A 1998. Developing intelligent wheelchairs for the handicapped. Assistive Technology and Artificial Intelligence VO Mittal, HA Yanco, J Aronis, R Simpson 150–78 Berlin: Springer
    [Google Scholar]
  109. 109.  Oishi M, Bibalan P, Cheng A, Mitchell IM 2011. Building a smart wheelchair on a flexible platform. Proceedings of the 2011 Rehabilitation Engineering and Assistive Technology Society (RESNA) Conference Arlington, VA: RESNA http://www.resna.org/sites/default/files/legacy/conference/proceedings/2011/RESNA_ICTA/oishi-69543.pdf
    [Google Scholar]
  110. 110.  Pasteau F, Narayanan V, Babel M, Chaumette F 2016. A visual servoing approach for autonomous corridor following and doorway passing in a wheelchair. Robot. Auton. Syst. 75:28–40
    [Google Scholar]
  111. 111.  Levine SP, Bell DA, Jaros LA, Simpson RC, Koren Y, Borenstein J 1999. The NavChair assistive wheelchair navigation system. IEEE Trans. Rehabil. Eng. 7:443–51
    [Google Scholar]
  112. 112.  Patel S, Jung SH, Ostrowski JP, Rao R, Taylor CJ 2002. Sensor based door navigation for a nonholonomic vehicle. 2002 IEEE International Conference on Robotics and Automation (ICRA) 33081–76 New York: IEEE
    [Google Scholar]
  113. 113.  Pineau J, Atrash A 2007. Smartwheeler: a robotic wheelchair test-bed for investigating new models of human-robot interaction. AAAI Spring Symposium on Multidisciplinary Collaboration for Socially Assistive Robotics59–65 Menlo Park, CA: AAAI Press
    [Google Scholar]
  114. 114.  Montesano L, Díaz M, Bhaskar S, Minguez J 2010. Towards an intelligent wheelchair system for users with cerebral palsy. IEEE Trans. Neural Syst. Rehabil. Eng. 18:193–202
    [Google Scholar]
  115. 115.  Gulati S, Jhurani C, Kuipers B, Longoria R 2009. A framework for planning comfortable and customizable motion of an assistive mobile robot. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)4253–60 New York: IEEE
    [Google Scholar]
  116. 116.  Kim B, Pineau J 2016. Socially adaptive path planning in human environments using inverse reinforcement learning. Int. J. Soc. Robot. 8:51–66
    [Google Scholar]
  117. 117.  Miller DP, Slack MG 1995. Design and testing of a low-cost robotic wheelchair prototype. J. Auton. Robots 2:77–88
    [Google Scholar]
  118. 118.  Bourhis G, Horn O, Habert O, Pruski A 2001. An autonomous vehicle for people with motor disabilities. IEEE Robot. Autom. Mag. 8:20–28
    [Google Scholar]
  119. 119.  Iturrate I, Antelis JM, Kübler A, Minguez J 2009. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans. Robot. 25:614–27
    [Google Scholar]
  120. 120.  Simpson RC, Poirot D, Baxter F 2002. The Hephaestus smart wheelchair system. IEEE Trans. Neural Syst. Rehabil. Eng. 10:118–22
    [Google Scholar]
  121. 121.  Li Q, Chen W, Wang J 2011. Dynamic shared control for human-wheelchair cooperation. 2011 IEEE International Conference on Robotics and Automation (ICRA)4278–83 New York: IEEE
    [Google Scholar]
  122. 122.  Fernandez-Carmona M, Fernandez-Espejo B, Peula J, Urdiales C, Sandoval F 2009. Efficiency based collaborative control modulated by biometrics for wheelchair assisted navigation. 2009 IEEE International Conference on Rehabilitation Robotics (ICORR)737–42 New York: IEEE
    [Google Scholar]
  123. 123.  Soh H, Demiris Y 2013. When and how to help: an iterative probabilistic model for learning assistance by demonstration. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)3230–36 New York: IEEE
    [Google Scholar]
  124. 124.  Zeng Q, Teo CL, Rebsamen B, Burdet E 2008. A collaborative wheelchair system. IEEE Trans. Neural Syst. Rehabil. Eng. 16:161–70
    [Google Scholar]
  125. 125.  Vanhooydonck D, Demeester E, Hüntemann A, Philips J, Vanacker G et al. 2010. Adaptable navigational assistance for intelligent wheelchairs by means of an implicit personalized user model. Robot. Auton. Syst. 58:963–77
    [Google Scholar]
  126. 126.  Philips J, Millán JDR, Vanacker G, Lew E, Galan F et al. 2007. Adaptive shared control of a brain-actuated simulated wheelchair. IEEE 10th International Conference on Rehabilitation Robotics (ICORR)408–14 New York: IEEE
    [Google Scholar]
  127. 127.  Vanacker G, Millán JDR, Lew E, Ferrez PW, Moles FG et al. 2007. Context-based filtering for assisted brain-actuated wheelchair driving. Comput. Intell. Neurosci. 2007:25130
    [Google Scholar]
  128. 128.  Demeester E, Hüntemann A, Vanhooydonck D, Vanacker G, Degeest A et al. 2006. Bayesian estimation of wheelchair driver intents: modeling intents as geometric paths tracked by the driver. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)5775–80 New York: IEEE
    [Google Scholar]
  129. 129.  Urdiales C, Pérez E, Peinado G, Fdez-Carmona M, Peula J et al. 2013. On the construction of a skill-based wheelchair navigation profile. IEEE Trans. Neural Syst. Rehabil. Eng. 21:917–27
    [Google Scholar]
  130. 130.  Mitchell I, Viswanathan P, Adhikari B, Rothfels E, Mackworth A 2014. Shared control policies for safe wheelchair navigation of elderly adults with cognitive and mobility impairments: designing a Wizard of Oz study. 2014 American Control Conference (ACC)4087–94 New York: IEEE
    [Google Scholar]
  131. 131.  Martens C, Prenzel O, Gräser A 2007. The rehabilitation robots FRIEND-I & II: daily life independency through semi-autonomous task-execution. Rehabilitation Robotics SS Kommu 137–62 Vienna, Austria: I-Tech Educ. Publ.
    [Google Scholar]
  132. 132.  Schrock P, Farelo F, Alqasemi R, Dubey R 2009. Design, simulation and testing of a new modular wheelchair mounted robotic arm to perform activities of daily living. 2009 IEEE International Conference on Rehabilitation Robotics (ICORR)518–23 New York: IEEE
    [Google Scholar]
  133. 133.  Stanger C, Anglin C, Harwin WS, Romilly DP 1994. Devices for assisting manipulation: a summary of user task priorities. IEEE Trans. Rehabil. Eng. 2:256–65
    [Google Scholar]
  134. 134.  Brault MW 2012. Americans with disabilities: 2010. Household economic studies Rep., US Census Bur., Washington, DC. https://www2.census.gov/library/publications/2012/demo/p70-131.pdf
    [Google Scholar]
  135. 135.  Sijs J, Liefhebber F, Romer GWRBE 2007. Combined position and force control of a robotic manipulator. IEEE 10th International Conference on Rehabilitation Robotics (ICORR)106–11 New York: IEEE
    [Google Scholar]
  136. 136.  Herlant LV, Holladay RM, Srinivasa SS 2016. Assistive teleoperation of robot arms via automatic time-optimal mode switching. 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI)35–42 New York: IEEE
    [Google Scholar]
  137. 137.  Gopinath D, Argall B 2017. Mode switch assistance to maximize human intent disambiguation. Robotics: Science and Systems XIII N Amato, S Srinivasa, N Ayanian, S Kuindersmapp, chap. 52. N.p. Robot. Sci. Syst. Found.
    [Google Scholar]
  138. 138.  Edwards AL, Dawson MR, Hebert JS, Sherstan C, Sutton RS et al. 2015. Application of real-time machine learning to myoelectric prosthesis control: a case series in adaptive switching. Prosthet. Orthot. Int. 40:573–81
    [Google Scholar]
  139. 139.  Kim DJ, Lovelett R, Behal A 2009. An empirical study with simulated ADL tasks using a vision-guided assistive robot arm. 2009 IEEE International Conference on Rehabilitation Robotics (ICORR)504–9 New York: IEEE
    [Google Scholar]
  140. 140.  Valbuena D, Cyriacks M, Friman O, Volosyak I, Graser A 2007. Brain-computer interface for high-level control of rehabilitation robotic systems. IEEE 10th International Conference on Rehabilitation Robotics (ICORR)619–25 New York: IEEE
    [Google Scholar]
  141. 141.  Driessen BJF, Kate TKT, Liefhebber F, Versluis AHG, van Woerden JA 2005. Collaborative control of the manus manipulator. Univers. Access Inform. Soc. 4:165–73
    [Google Scholar]
  142. 142.  Javdani S, Srinivasa S, Bagnell JA 2015. Shared autonomy via hindsight optimization. Robotics: Science and Systems XI LE Kavraki, D Hsu, J Buchli, chap. 32. N.p. Robot. Sci. Syst. Found.
    [Google Scholar]
  143. 143.  Nikolaidis S, Zhu YX, Hsu D, Srinivasa SS 2017. Human-robot mutual adaptation in shared autonomy. HRI '17: Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction294–302 New York: ACM
    [Google Scholar]
  144. 144.  Cipriani C, Zaccone F, Micera S, Carrozza MC 2008. On the shared control of an EMG-controlled prosthetic hand: analysis of user-prosthesis interaction. IEEE Trans. Robot. 24:170–84
    [Google Scholar]
  145. 145.  Pehlivan AU, Sergi F, O'Malley MK 2015. A subject-adaptive controller for wrist robotic rehabilitation. IEEE Trans. Mechatron. 20:1338–50
    [Google Scholar]
  146. 146.  Wolbrecht ET, Chan V, Reinkensmeyer DJ, Bobrow JE 2008. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 16:286–97
    [Google Scholar]
  147. 147.  Roentgen UR, Gelderblom GJ, Soede M, de Witte LP 2008. Inventory of electronic mobility aids for persons with visual impairments: a literature review. J. Vis. Impair. Blind. 102:702–24
    [Google Scholar]
  148. 148.  Derry M, Argall B 2014. Extending myoelectric prosthesis control with shapable automation: a first assessment. 2014 ACM/IEEE International Conference on Human-Robot Interactions (HRI)455–62 New York: ACM
    [Google Scholar]
  149. 149.  Gopinath D, Jain S, Argall BD 2017. Human-in-the-loop optimization of shared autonomy in assistive robotics. Robot. Autom. Lett. 2:247–54
    [Google Scholar]
  150. 150.  Seáñez-González I, Pierella C, Farshchiansadegh A, Thorp E, Wang X et al. 2016. Body-machine interfaces after spinal cord injury: rehabilitation and brain plasticity. Brain Sci 6:61
    [Google Scholar]
/content/journals/10.1146/annurev-control-061417-041727
Loading
/content/journals/10.1146/annurev-control-061417-041727
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error