1932

Abstract

Equivariance is a common and natural property of many nonlinear control systems, especially those associated with models of mechatronic and navigation systems. Such systems admit a symmetry, associated with the equivariance, that provides structure enabling the design of robust and high-performance observers. A key insight is to pose the observer state to lie in the symmetry group rather than on the system state space. This allows one to define a global intrinsic equivariant error but poses a challenge in defining internal dynamics for the observer. By choosing an equivariant lift of the system dynamics for the observer internal model, we show that the error dynamics have a particularly nice form. Applying the methodology of extended Kalman filtering to the equivariant error state yields a filter we term the equivariant filter. The geometry of the state-space manifold appears naturally as a curvature modification to the classical Riccati equation for extended Kalman filtering. The equivariant filter exploits the symmetry and respects the geometry of an equivariant system model, and thus yields high-performance, robust filters for a wide range of mechatronic and navigation systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-061520-010324
2022-05-03
2024-05-14
Loading full text...

Full text loading...

/deliver/fulltext/control/5/1/annurev-control-061520-010324.html?itemId=/content/journals/10.1146/annurev-control-061520-010324&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Campbell DK. 1987. Nonlinear science: from paradigms to practicalities. Los Alamos Sci. 15:218–62
    [Google Scholar]
  2. 2. 
    Mahony R, Hamel T, Trumpf J. 2020. Equivariant systems theory and observer design. arXiv:2006.08276 [eess.SY]
  3. 3. 
    Hua MD, Zamani M, Trumpf J, Mahony R, Hamel T 2011. Observer design on the special Euclidean group SE(3). In 2011 50th IEEE Conference on Decision and Control and European Control Conferencepp8169–75 Piscataway, NJ: IEEE
    [Google Scholar]
  4. 4. 
    Vasconcelos J, Cunha R, Silvestre C, Oliveira P 2010. A nonlinear position and attitude observer on SE(3) using landmark measurements. Syst. Control Lett. 59:155–66
    [Google Scholar]
  5. 5. 
    Madgwick S, Harrison A, Vaidyanathan R 2011. Estimation of IMU and MARG orientation using a gradient descent algorithm. 2011 IEEE International Conference on Rehabilitation Robotics Piscataway, NJ: IEEE https://doi.org/10.1109/ICORR.2011.5975346
    [Crossref] [Google Scholar]
  6. 6. 
    Hamel T, Mahony R, Trumpf J, Morin P, Hua MD 2011. Homography estimation on the special linear group based on direct point correspondence. In 2011 50th IEEE Conference on Decision and Control and European Control Conferencepp7902–8 Piscataway, NJ: IEEE
    [Google Scholar]
  7. 7. 
    Trumpf J, Hamel T, Mahony R, Lageman C 2012. Analysis of nonlinear attitude observers for time-varying reference measurements. IEEE Trans. Autom. Control 57:2789–800
    [Google Scholar]
  8. 8. 
    Grip HF, Fossen TI, Johansen TA, Saberi A 2012. Attitude estimation using biased gyro and vector measurements with time-varying reference vectors. IEEE Trans. Autom. Control 57:1332–38
    [Google Scholar]
  9. 9. 
    Batista P, Silvestre C, Oliveira P 2012. Sensor-based globally asymptotically stable filters for attitude estimation: analysis, design, and performance evaluation. IEEE Trans. Autom. Control 57:2095–100
    [Google Scholar]
  10. 10. 
    Izadi M, Sanyal A 2014. Rigid body attitude estimation based on the Lagrange–d'Alembert principle. Automatica 50:2570–77
    [Google Scholar]
  11. 11. 
    Hua MD, Hamel T, Mahony R, Trumpf J 2015. Gradient like observer design on the special Euclidean group SE(3) with system output on the projective space. In 2015 54th IEEE Conference on Decision and Controlpp2139–45 Piscataway, NJ: IEEE
    [Google Scholar]
  12. 12. 
    Allibert G, Mahony R, Bangura M 2016. Velocity aided attitude estimation for aerial robotic vehicles using latent rotation scaling. In 2016 IEEE International Conference on Robotics and Automationpp1538–43 Piscataway, NJ: IEEE
    [Google Scholar]
  13. 13. 
    Hua MD, Martin P, Hamel T 2016. Stability analysis of velocity-aided attitude observers for accelerated vehicles. Automatica 63:11–15
    [Google Scholar]
  14. 14. 
    Berkane S, Abdessameud A, Tayebi A 2017. Hybrid global exponential stabilization on SO(3). Automatica 81:279–85
    [Google Scholar]
  15. 15. 
    Le Bras F, Hamel T, Mahony R, Samson C 2017. Observers for position estimation using bearing and biased velocity information. Sensing and Control for Autonomous Vehicles T Fossen, K Pettersen, H Nijmeijer 3–23 Cham, Switz: Springer
    [Google Scholar]
  16. 16. 
    Zlotnik DE, Forbes JR 2018. Gradient-based observer for simultaneous localization and mapping. IEEE Trans. Autom. Control 63:4338–44
    [Google Scholar]
  17. 17. 
    Wang M, Tayebi A 2019. Hybrid pose and velocity-bias estimation on SE(3) using inertial and landmark measurements. IEEE Trans. Autom. Control 64:3399–406
    [Google Scholar]
  18. 18. 
    Hua MD, Trumpf J, Hamel T, Mahony R, Morin P 2019. Feature-based recursive observer design for homography estimation and its application to image stabilization. Asian J. Control 21:1443–58
    [Google Scholar]
  19. 19. 
    Hua MD, Trumpf J, Hamel T, Mahony R, Morin P 2020. Nonlinear observer design on (3) for homography estimation by exploiting point and line correspondences with application to image stabilization. Automatica 115:10
    [Google Scholar]
  20. 20. 
    Bonnabel S, Martin P, Rouchon P 2006. A non-linear symmetry-preserving observer for velocity-aided inertial navigation. In 2006 American Control Conferencepp2910–14 Piscataway, NJ: IEEE
    [Google Scholar]
  21. 21. 
    Martin P, Salaün E 2007. Invariant observers for attitude and heading estimation from low-cost inertial and magnetic sensors. In 2007 46th IEEE Conference on Decision and Controlpp1039–45 Piscataway, NJ: IEEE
    [Google Scholar]
  22. 22. 
    Martin P, Salaün E 2008. An invariant observer for earth-velocity-aided attitude heading reference systems. IFAC Proc. Vol. 41:29857–64
    [Google Scholar]
  23. 23. 
    Bonnabel S, Martin P, Rouchon P 2008. Symmetry-preserving observers. IEEE Trans. Autom. Control 53:2514–26
    [Google Scholar]
  24. 24. 
    Bonnabel S, Martin P, Rouchon P 2009. Non-linear symmetry-preserving observers on Lie groups. IEEE Trans. Autom. Control 54:1709–13
    [Google Scholar]
  25. 25. 
    Bonnabel S, Martin P, Salaün E 2009. Invariant extended Kalman filter: theory and application to a velocity-aided attitude estimation problem. In Proceedings of the 48th IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conferencepp1297–304 Piscataway, NJ: IEEE
    [Google Scholar]
  26. 26. 
    Zamani M, Trumpf J, Mahony R 2013. Minimum-energy filtering for attitude estimation. IEEE Trans. Autom. Control 58:2917–21
    [Google Scholar]
  27. 27. 
    Bourmaud G, Mégret R, Giremus A, Berthoumieu Y 2013. Discrete extended Kalman filter on Lie groups. In 21st European Signal Processing Conference (EUSIPCO 2013)pp1–5 Piscataway, NJ: IEEE
    [Google Scholar]
  28. 28. 
    Bourmaud G, Mégret R, Arnaudon M, Giremus A 2015. Continuous-discrete extended Kalman filter on matrix Lie groups using concentrated Gaussian distributions. J. Math. Imaging Vis. 51:209–28
    [Google Scholar]
  29. 29. 
    Barrau A, Bonnabel S 2015. Intrinsic filtering on Lie groups with applications to attitude estimation. IEEE Trans. Autom. Control 60:436–49
    [Google Scholar]
  30. 30. 
    Saccon A, Trumpf J, Mahony R, Aguiar AP 2016. Second-order-optimal minimum-energy filter on Lie groups. IEEE Trans. Autom. Control 61:2906–19
    [Google Scholar]
  31. 31. 
    Barrau A, Bonnabel S 2017. The invariant extended Kalman filter as a stable observer. IEEE Trans. Autom. Control 62:1797–812
    [Google Scholar]
  32. 32. 
    Barrau A, Bonnabel S 2018. Invariant Kalman filtering. Annu. Rev. Control Robot. Auton. Syst. 1:237–57
    [Google Scholar]
  33. 33. 
    Lavoie MA, Arsenault J, Forbes JR 2019. An invariant extended H filter. In 2019 IEEE 58th Conference on Decision and Controlpp7905–10 Piscataway, NJ: IEEE
    [Google Scholar]
  34. 34. 
    Phogat KS, Chang DE 2020. Invariant extended Kalman filter on matrix Lie groups. Automatica 114:108812
    [Google Scholar]
  35. 35. 
    van Goor P, Hamel T, Mahony R 2020. Equivariant filter (EqF): a general filter design for systems on homogeneous spaces. In 2020 59th IEEE Conference on Decision and Controlpp5401–8 Piscataway, NJ: IEEE
    [Google Scholar]
  36. 36. 
    van Goor P, Hamel T, Mahony R 2020. Equivariant filter (EqF). arXiv:2010.14666 [eess.SY]
  37. 37. 
    Bullo F, Lewis A 2005. Geometric Control of Mechanical Systems New York: Springer
  38. 38. 
    Jurdjevic V 1997. Geometric Control Theory Cambridge, UK: Cambridge Univ. Press
  39. 39. 
    van der Schaft A 1981. Symmetries and conservation laws for Hamiltonian systems with inputs and outputs: a generalization of Noether's theorem. Syst. Control Lett. 1:108–15
    [Google Scholar]
  40. 40. 
    Grizzle J, Marcus S 1985. The structure of nonlinear control systems possessing symmetries. IEEE Trans. Autom. Control 30:248–58
    [Google Scholar]
  41. 41. 
    Nijmeijer H, van der Schaft A 1985. Partial symmetries for nonlinear systems. Math. Syst. Theory 18:79–96
    [Google Scholar]
  42. 42. 
    Aghannan N, Rouchon P 2003. An intrinsic observer for a class of Lagrangian systems. IEEE Trans. Autom. Control 48:936–45
    [Google Scholar]
  43. 43. 
    Maithripala D, Berg J, Dayawansa W 2004. An intrinsic observer for a class of simple mechanical systems on a Lie group. In 2004 American Control ConferenceVol 2pp1546–51 Piscataway, NJ: IEEE
    [Google Scholar]
  44. 44. 
    Bonnabel S 2010. A simple intrinsic reduced-observer for geodesic flow. IEEE Trans. Autom. Control 55:2186–91
    [Google Scholar]
  45. 45. 
    Salcudean S 1991. A globally convergent angular velocity observer for rigid body motion. IEEE Trans. Autom. Control 46:1493–97
    [Google Scholar]
  46. 46. 
    Vik B, Fossen T 2001. A nonlinear observer for GPS and INS integration. In Proceedings of the 40th IEEE Conference on Decision and ControlVol 3pp2956–61 Piscataway, NJ: IEEE
    [Google Scholar]
  47. 47. 
    Thienel J, Sanner RM 2003. A coupled nonlinear spacecraft attitude controller and observer with an unknown constant gyro bias and gyro noise. IEEE Trans. Autom. Control 48:2011–15
    [Google Scholar]
  48. 48. 
    Lefferts E, Markley F, Shuster M 1982. Kalman filtering for spacecraft attitude estimation. J. Guid. Control Dyn. 5:417–29
    [Google Scholar]
  49. 49. 
    Markley FL 2003. Attitude error representations for Kalman filtering. J. Guid. Control Dyn. 26:311–17
    [Google Scholar]
  50. 50. 
    Choukroun D, Bar-Itzhack I, Oshman Y 2006. Novel quaternion Kalman filter. IEEE Trans. Aerosp. Electron. Syst. 42:174–90
    [Google Scholar]
  51. 51. 
    Crassidis JL, Markley FL, Cheng Y 2007. Nonlinear attitude filtering methods. J. Guid. Control Dyn. 30:12–28
    [Google Scholar]
  52. 52. 
    Mahony R, Hamel T, Pflimlin JM 2005. Complementary filter design on the special orthogonal group SO(3). In Proceedings of the 44th IEEE Conference on Decision and Control (CDC)pp1477–84 Piscataway, NJ: IEEE
    [Google Scholar]
  53. 53. 
    Bonnabel S, Rouchon P 2005. On invariant observers. Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems T Meurer, K Graichen, E-D Gilles 53–65 Berlin: Springer
    [Google Scholar]
  54. 54. 
    Hamel T, Mahony R 2006. Attitude estimation on SO(3) based on direct inertial measurements. In Proceedings of the 2006 IEEE International Conference on Robotics and Automationpp2170–75 Piscataway, NJ: IEEE
    [Google Scholar]
  55. 55. 
    Mahony R, Hamel T, Pflimlin JM 2008. Non-linear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control 53:1203–18
    [Google Scholar]
  56. 56. 
    Barrau A, Bonnabel S. 2016. An EKF-SLAM algorithm with consistency properties. arXiv:1510.06263 [cs.RO]
  57. 57. 
    Zhang T, Wu K, Song J, Huang S, Dissanayake G 2017. Convergence and consistency analysis for a 3-D invariant-EKF SLAM. IEEE Robot. Autom. Lett. 2:733–40
    [Google Scholar]
  58. 58. 
    Mahony R, Hamel T 2017. A geometric nonlinear observer for simultaneous localisation and mapping. In 2017 IEEE 56th Annual Conference on Decision and Controlpp2408–15 Piscataway, NJ: IEEE
    [Google Scholar]
  59. 59. 
    Mahony R, Hamel T, Trumpf J 2021. An homogeneous space geometry for simultaneous localisation and mapping. Annu. Rev. Control 51:254–67
    [Google Scholar]
  60. 60. 
    Mahony R, Trumpf J, Hamel T 2013. Observers for kinematic systems with symmetry. IFAC Proc. Vol. 46:23617–33
    [Google Scholar]
  61. 61. 
    Ng Y, van Goor P, Hamel T, Mahony R 2020. Equivariant systems theory and observer design for second order kinematic systems on matrix Lie groups. In 2020 59th IEEE Conference on Decision and Controlpp4194–99 Piscataway, NJ: IEEE
    [Google Scholar]
  62. 62. 
    Bonnabel S 2007. Left-invariant extended Kalman filter and attitude estimation. In 2007 46th IEEE Conference on Decision and Controlpp1027–32 Piscataway, NJ: IEEE
    [Google Scholar]
  63. 63. 
    Roumeliotis S, Sukhatme G, Bekey G 1999. Circumventing dynamic modeling: evaluation of the error-state Kalman filter applied to mobile robot localization. In Proceedings of the 1999 IEEE International Conference on Robotics and AutomationVol 2pp1656–63 Piscataway, NJ: IEEE
    [Google Scholar]
  64. 64. 
    Solà J. 2017. Quaternion kinematics for the error-state Kalman filter. arXiv:1711.02508 [cs.RO]
  65. 65. 
    Mahony R, Trumpf J 2021. Equivariant filter design for kinematic systems on Lie groups. IFAC-PapersOnLine 54:9253–60
    [Google Scholar]
  66. 66. 
    Hamel T, Samson C 2018. Riccati observers for the nonstationary PnP problem. IEEE Trans. Autom. Control 63:726–41
    [Google Scholar]
  67. 67. 
    Wang M, Berkane S, Tayebi A 2021. Nonlinear observers design for vision-aided inertial navigation systems. IEEE Trans. Autom. Control In press. https://doi.org/10.1109/TAC.2021.3086459
    [Crossref] [Google Scholar]
  68. 68. 
    Metni N, Pflimlin JM, Hamel T, Soueres P 2005. Attitude and gyro bias estimation for a flying UAV. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systemspp1114–20 Piscataway, NJ: IEEE
    [Google Scholar]
  69. 69. 
    Bonnabel S. 2007. Observateurs asymptotiques invariants: théorie et examples PhD Thesis, Mines ParisTech Paris:
  70. 70. 
    Hua MD, Allibert G 2018. Riccati observer design for pose, linear velocity and gravity direction estimation using landmark position and IMU measurements. In 2018 IEEE Conference on Control Technology and Applicationspp1313–18 Piscataway, NJ: IEEE
    [Google Scholar]
  71. 71. 
    van Goor P, Mahony R, Hamel T, Trumpf J 2020. An observer design for visual simultaneous localisation and mapping with output equivariance. IFAC-PapersOnLine 53:29560–65
    [Google Scholar]
  72. 72. 
    van Goor P, Mahony R, Hamel T, Trumpf J 2019. A geometric observer design for visual localisation and mapping. In 2019 IEEE 58th Conference on Decision and Controlpp2543–49 Piscataway, NJ: IEEE
    [Google Scholar]
  73. 73. 
    van Goor P, Mahony R. 2021. An equivariant filter for visual inertial odometry. 2021 IEEE International Conference on Robotics and Automationpp. 14432–38 Piscataway, NJ: IEEE
    [Google Scholar]
  74. 74. 
    Joshi AA, Maithripala DHS, Banavar RN. 2020. A bundle framework for observer design on smooth manifolds with symmetry. arXiv:1907.09234 [eess.SY]
  75. 75. 
    Ng Y, van Goor P, Mahony R, Hamel T 2019. Attitude observation for second order attitude kinematics. In 2019 IEEE 58th Conference on Decision and Controlpp2536–42 Piscataway, NJ: IEEE
    [Google Scholar]
  76. 76. 
    Brossard M, Bonnabel S, Condomines JP 2017. Unscented Kalman filtering on Lie groups. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systemspp2485–91 Piscataway, NJ: IEEE
    [Google Scholar]
  77. 77. 
    Brossard M, Bonnabel S, Barrau A 2018. Unscented Kalman filter on Lie groups for visual inertial odometry. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systemspp649–55 Piscataway, NJ: IEEE
    [Google Scholar]
  78. 78. 
    Brossard M, Barrau A, Bonnabel S 2020. A code for unscented Kalman filtering on manifolds (UKF-M). In 2020 IEEE International Conference on Robotics and Automationpp5701–8 Piscataway, NJ: IEEE
    [Google Scholar]
  79. 79. 
    Loianno G, Watterson M, Kumar V 2016. Visual inertial odometry for quadrotors on SE(3). In 2016 IEEE International Conference on Robotics and Automationpp1544–51 Piscataway, NJ: IEEE
    [Google Scholar]
  80. 80. 
    Berger J, Neufeld A, Becker F, Lenzen F, Schnörr C 2015. Second order minimum energy filtering on SE3 with nonlinear measurement equations. Scale Space and Variational Methods in Computer Vision: 5th International Conference, SSVM 2015 J-F Aujoul, M Nikolova, N Papadakis 397–409 Cham, Switz: Springer
    [Google Scholar]
  81. 81. 
    Berger J, Lenzen F, Becker F, Neufeld A, Schnörr C 2017. Second-order recursive filtering on the rigid-motion Lie group SE(3) based on nonlinear observations. J. Math. Imaging Vis. 58:102–29
    [Google Scholar]
  82. 82. 
    Maybeck PS 1982. Stochastic Models, Estimation, and Control Vol. 2. New York: Academic
  83. 83. 
    Markley FL 2004. Attitude estimation or quaternion estimation?. J. Astronaut. Sci. 52:221–38
    [Google Scholar]
  84. 84. 
    Bucy RS, Joseph PD 2005. Filtering for Stochastic Processes with Applications to Guidance Providence, RI: Am. Math. Soc.
  85. 85. 
    Lageman C, Trumpf J, Mahony R 2010. Gradient-like observers for invariant dynamics on a Lie group. IEEE Trans. Autom. Control 55:367–77
    [Google Scholar]
  86. 86. 
    Kobayashi S, Nomizu K 1963. Foundations of Differential Geometry Vol. 1. New York: Interscience
/content/journals/10.1146/annurev-control-061520-010324
Loading
/content/journals/10.1146/annurev-control-061520-010324
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error