1932

Abstract

This article explains some fundamental ideas concerning the optimal control of quantum systems through the study of a relatively simple two-level system coupled to optical fields. The model for this system includes both continuous and impulsive dynamics. Topics covered include open- and closed-loop control, impulsive control, open-loop optimal control, quantum filtering, and measurement feedback optimal control.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-061520-010444
2021-05-03
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/control/4/1/annurev-control-061520-010444.html?itemId=/content/journals/10.1146/annurev-control-061520-010444&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Dowling JP, Milburn GJ. 2003. Quantum technology: the second quantum revolution. Philos. Trans. R. Soc. A 361:1655–74
    [Google Scholar]
  2. 2. 
    Nielsen MA, Chuang IL. 2000. Quantum Computation and Quantum Information Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  3. 3. 
    Gardiner CW, Zoller P. 2000. Quantum Noise Berlin: Springer
    [Google Scholar]
  4. 4. 
    Nurdin HI, Yamamoto N. 2017. Linear Dynamical Quantum Systems: Analysis, Synthesis, and Control Cham, Switz: Springer
    [Google Scholar]
  5. 5. 
    Einstein A. 1917. Zur Quantentheorie der Strahlung. Phys. Z. 18:121–28
    [Google Scholar]
  6. 6. 
    Hudson RL, Parthasarathy KR. 1984. Quantum Ito's formula and stochastic evolutions. Commun. Math. Phys. 93:301–23
    [Google Scholar]
  7. 7. 
    Parthasarathy KR. 1992. An Introduction to Quantum Stochastic Calculus Berlin: Birkhäuser
    [Google Scholar]
  8. 8. 
    Gardiner CW, Collett MJ. 1985. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A 31:3761–74
    [Google Scholar]
  9. 9. 
    Willems JC. 1997. On interconnections, control, and feedback. IEEE Trans. Autom. Control 42:326–39
    [Google Scholar]
  10. 10. 
    Rabitz H, de Vivie-Riedle R, Motzkus M, Kompa K. 2000. Whither the future of controlling quantum phenomena?. Science 288:824–28
    [Google Scholar]
  11. 11. 
    Khaneja N, Brockett R, Glaser SJ. 2001. Time optimal control in spin systems. Phys. Rev. A 63:032308
    [Google Scholar]
  12. 12. 
    Belavkin VP. 1979. Optimal measurement and control in quantum dynamical systems Prepr. 411 Inst. Phys., Nicolaus Copernicus Univ. Toruń, Pol:.
    [Google Scholar]
  13. 13. 
    Huang GM, Tarn TJ, Clark JW. 1983. On the controllability of quantum-mechanical systems. J. Math. Phys. 24:2608–18
    [Google Scholar]
  14. 14. 
    D'Alessandro D 2007. Introduction to Quantum Control and Dynamics Boca Raton, FL: Chapman & Hall/CRC
    [Google Scholar]
  15. 15. 
    Sridharan S, James MR. 2008. Minimum time control of spin systems via dynamic programming. 2008 47th IEEE Conference on Decision and Control4558–63 Piscataway, NJ: IEEE.
    [Google Scholar]
  16. 16. 
    Fleming WH, Rishel RW. 1975. Deterministic and Stochastic Optimal Control New York: Springer
    [Google Scholar]
  17. 17. 
    Fleming WH, Soner HM. 2006. Controlled Markov Processes and Viscosity Solutions New York: Springer. , 2nd. ed.
    [Google Scholar]
  18. 18. 
    Belavkin VP. 1992. Quantum stochastic calculus and quantum nonlinear filtering. J. Multivar. Anal. 42:171–201
    [Google Scholar]
  19. 19. 
    Bouten L, van Handel R, James MR. 2007. An introduction to quantum filtering. SIAM J. Control Optim. 46:2199–241
    [Google Scholar]
  20. 20. 
    Wiseman HM, Milburn GJ. 2010. Quantum Measurement and Control Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  21. 21. 
    Carmichael H. 1993. An Open Systems Approach to Quantum Optics Berlin: Springer
    [Google Scholar]
  22. 22. 
    Anderson BDO, Moore JB. 1979. Optimal Filtering Englewood Cliffs, NJ: Prentice Hall
    [Google Scholar]
  23. 23. 
    Elliott RJ. 1982. Stochastic Calculus and Applications New York: Springer
    [Google Scholar]
  24. 24. 
    Korotkov AN. 2001. Selective quantum evolution of a qubit state due to continuous measurement. Phys. Rev. B 63:115403
    [Google Scholar]
  25. 25. 
    Doherty AC, Jacobs K. 1999. Feedback control of quantum systems using continuous state estimation. Phys. Rev. A 60:2700
    [Google Scholar]
  26. 26. 
    Bouten L, van Handel R, James MR. 2009. A discrete invitation to quantum filtering and feedback control. SIAM Rev 51:239–316
    [Google Scholar]
  27. 27. 
    Edwards SC, Belavkin VP. 2005. Optimal quantum feedback control via quantum dynamic programming. arXiv:quant-ph/0506018
  28. 28. 
    James MR. 2004. Risk-sensitive optimal control of quantum systems. Phys. Rev. A 69:032108
    [Google Scholar]
  29. 29. 
    James MR. 2005. A quantum Langevin formulation of risk-sensitive optimal control. J. Opt. B 7:S198–207
    [Google Scholar]
  30. 30. 
    Nielsen MA, Dowling MR, Gu M, Doherty AC. 2006. Optimal control, geometry, and quantum computing. Phys. Rev. A 73:062323
    [Google Scholar]
  31. 31. 
    Sridharan S, Gu M, James MR. 2008. Gate complexity using dynamic programming. Phys. Rev. A 78:52327
    [Google Scholar]
  32. 32. 
    Nurdin HI, James MR, Petersen IR. 2009. Coherent quantum LQG control. Automatica 45:1837–46
    [Google Scholar]
  33. 33. 
    Sichani AK, Vladimirov IG, Petersen IR. 2017. A numerical approach to optimal coherent quantum LQG controller design using gradient descent. Automatica 85:314–26
    [Google Scholar]
  34. 34. 
    Hassen SZS, Heurs M, Huntington EH, Petersen IR, James MR. 2009. Frequency locking of an optical cavity using linear quadratic gaussian integral control. J. Phys. B 42:175501
    [Google Scholar]
/content/journals/10.1146/annurev-control-061520-010444
Loading
/content/journals/10.1146/annurev-control-061520-010444
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error