1932

Abstract

Medical robotics is a rapidly advancing discipline that is leading the evolution of robot-assisted surgery, personalized rehabilitation and assistance, and hospital automation. In China, both research and commercial developments in medical robotics have undergone exponential growth in recent years. In this review, we first give an overview of the clinical and social demands that motivate the rapid development in medical robotics. For each subdiscipline (surgery, rehabilitation and personal assistance, and hospital automation), we then summarize the major research projects sponsored by National Key Research and Development Programs. The remaining technical, commercial, and regulatory challenges are highlighted. This review also outlines some of the new opportunities in endoluminal and interventional robotics, micro- and nanorobotics, soft exoskeletons, intelligent human–robot interaction, and telemedicine and telesurgery, which may support the general uptake of robotics in medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-061521-070251
2022-05-03
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/control/5/1/annurev-control-061521-070251.html?itemId=/content/journals/10.1146/annurev-control-061521-070251&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Yang GZ, Bellingham J, Dupont PE, Fischer P, Floridi L et al. 2018. The grand challenges of science robotics. Sci. Robot. 3:eaar7650
    [Google Scholar]
  2. 2. 
    Taylor RH, Menciassi A, Fichtinger G, Fiorini P, Dario P 2016. Medical robotics and computer-integrated surgery. Springer Handbook of Robotics B Siciliano, O Khatib 1657–84 Cham, Switz: Springer
    [Google Scholar]
  3. 3. 
    Troccaz J, Dagnino G, Yang GZ 2019. Frontiers of medical robotics: from concept to systems to clinical translation. Annu. Rev. Biomed. Eng. 21:193–218
    [Google Scholar]
  4. 4. 
    Yang GZ, Cambias J, Cleary K, Daimler E, Drake J et al. 2017. Medical robotics—regulatory, ethical, and legal considerations for increasing levels of autonomy. Sci. Robot. 2:8638
    [Google Scholar]
  5. 5. 
    Ravichandar H, Polydoros AS, Chernova S, Billard A 2020. Recent advances in robot learning from demonstration. Annu. Rev. Control Robot. Auton. Syst. 3:297–330
    [Google Scholar]
  6. 6. 
    Zhou XY, Guo Y, Shen M, Yang GZ. 2020. Application of artificial intelligence in surgery. Front. Med. 14:417–30
    [Google Scholar]
  7. 7. 
    Barbot A, Tan H, Power M, Seichepine F, Yang GZ 2019. Floating magnetic microrobots for fiber functionalization. Sci. Robot. 4:eaax8336
    [Google Scholar]
  8. 8. 
    Davies B. 2000. A review of robotics in surgery. Proc. Inst. Mech. Eng. H 214:129–40
    [Google Scholar]
  9. 9. 
    Cundy TP, Shetty K, Clark J, Chang TP, Sriskandarajah K et al. 2013. The first decade of robotic surgery in children. J. Pediatr. Surg. 48:858–65
    [Google Scholar]
  10. 10. 
    Vitiello V, Lee SL, Cundy TP, Yang GZ. 2012. Emerging robotic platforms for minimally invasive surgery. IEEE Rev. Biomed. Eng. 6:111–26
    [Google Scholar]
  11. 11. 
    Payne CJ, Yang GZ. 2014. Hand-held medical robots. Ann. Biomed. Eng. 42:1594–605
    [Google Scholar]
  12. 12. 
    Attanasio A, Scaglioni B, De Momi E, Fiorini P, Valdastri P 2020. Autonomy in surgical robotics. Annu. Rev. Control Robot. Auton. Syst. 4:651–79
    [Google Scholar]
  13. 13. 
    Turchetti G, Palla I, Pierotti F, Cuschieri A 2012. Economic evaluation of da Vinci-assisted robotic surgery: a systematic review. Surg. Endosc. 26:598–606
    [Google Scholar]
  14. 14. 
    Simaan N, Yasin RM, Wang L. 2018. Medical technologies and challenges of robot-assisted minimally invasive intervention and diagnostics. Annu. Rev. Control Robot. Auton. Syst. 1:465–90
    [Google Scholar]
  15. 15. 
    Dellon B, Matsuoka Y. 2007. Prosthetics, exoskeletons, and rehabilitation. IEEE Robot. Autom. Mag. 14:130–34
    [Google Scholar]
  16. 16. 
    Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG. 2010. Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 362:1772–83
    [Google Scholar]
  17. 17. 
    Kubota S, Nakata Y, Eguchi K, Kawamoto H, Kamibayashi K, Sakane M 2013. Feasibility of rehabilitation training with a newly developed wearable robot for patients with limited mobility. Arch. Phys. Med. Rehabil. 94:1080–87
    [Google Scholar]
  18. 18. 
    Zhang Z, Fan J, Jin H, Zheng T, Zhao S, Ma S. 2021. Active knee joint exoskeleton for stair ascent augmentation. Sci. China Inf. Sci. 64:139204
    [Google Scholar]
  19. 19. 
    Xiao FY, Gao YS, Wang Y, Zhu YH, Zhao J. 2018. Design and evaluation of a 7-DOF cable-driven upper limb exoskeleton. J. Mech. Sci. Technol. 32:855–64
    [Google Scholar]
  20. 20. 
    Niu CM, Luo Q, Chou CH, Liu J, Hao M, Lan N. 2021. Neuromorphic model of reflex for realtime human-like compliant control of prosthetic hand. Annu. Biomed. Eng. 49:673–88
    [Google Scholar]
  21. 21. 
    Zhang T, Jiang L, Liu H. 2018. Design and functional evaluation of a dexterous myoelectric hand prosthesis with biomimetic tactile sensor. IEEE Trans. Neural Syst. Rehabil. Eng. 26:1391–99
    [Google Scholar]
  22. 22. 
    Wang Y, Chen W 2011. Hybrid map-based navigation for intelligent wheelchair. 2011 IEEE International Conference on Robotics and Automation637–42 Piscataway, NJ: IEEE
    [Google Scholar]
  23. 23. 
    Beckerle P, Salvietti G, Unal R, Prattichizzo D, Rossi S et al. 2017. A human–robot interaction perspective on assistive and rehabilitation robotics. Front. Neurorobot. 11:24
    [Google Scholar]
  24. 24. 
    Abdi J, Al-Hindawi A, Ng T, Vizcaychipi MP 2018. Scoping review on the use of socially assistive robot technology in elderly care. BMJ Open 8:e018815
    [Google Scholar]
  25. 25. 
    Gao A, Murphy RR, Chen W, Dagnino G, Fischer P et al. 2021. Progress in robotics for combating infectious diseases. Sci. Robot. 6:eabf1462
    [Google Scholar]
  26. 26. 
    Yang GZ, Nelson BJ, Murphy RR, Choset H, Christensen H, Collins SH. 2020. Combating COVID-19—the role of robotics in managing public health and infectious diseases. Sci. Robot. 5:eabb5589
    [Google Scholar]
  27. 27. 
    Yang J, Zhang C, Wang X, Wang W, Xi N, Liu L 2019. Development of micro- and nanorobotics: a review. Sci. China Technol. Sci. 62:1–20
    [Google Scholar]
  28. 28. 
    Gu E, Tang X, Langner S, Duchstein P, Zhao Y et al. 2020. Robot-based high-throughput screening of antisolvents for lead halide perovskites. Joule 4:1806–22
    [Google Scholar]
  29. 29. 
    Li J, Li X, Luo T, Wang R, Liu C et al. 2018. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 3:eaat8829
    [Google Scholar]
  30. 30. 
    Liu G, Yan G, Kuang S, Wang Y 2016. Detection of small bowel tumor based on multi-scale curvelet analysis and fractal technology in capsule endoscopy. Comput. Biol. Med. 70:131–38
    [Google Scholar]
  31. 31. 
    Grand View Res 2015. Medical robotic systems market worth $17.89 billion by 2022 Press Release Aug. http://www.grandviewresearch.com/press-release/global-medical-robotic-systems-market
    [Google Scholar]
  32. 32. 
    Natl. Bur. Stat. China 2021. Main data of the Seventh National Population Census Press Release May 11. http://www.stats.gov.cn/english/PressRelease/202105/t20210510_1817185.html
    [Google Scholar]
  33. 33. 
    Chen F, Liu G 2009. Population aging in China. International Handbook of Population Aging P Uhlenberg 157–72 Dordrecht, Neth: Springer
    [Google Scholar]
  34. 34. 
    Natl. Bur. Stat. China 2020. National economy was generally stable in 2019 with main projected targets for development achieved Press Release Jan. 17. http://www.stats.gov.cn/english/PressRelease/202001/t20200117_1723398.html
    [Google Scholar]
  35. 35. 
    Fullman N, Yearwood J, Abay SM, Abbafati C, Abd-Allah F et al. 2018. Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study; 2016. Lancet 391:2236–71
    [Google Scholar]
  36. 36. 
    Natl. Health Comm. People's Repub. China 2020. [2019 statistical communiqué of the People's Republic of China on health]. Press Release, June 6. http://www.nhc.gov.cn/guihuaxxs/s10748/202006/ebfe31f24cc145b198dd730603ec4442.shtml (In Chinese )
  37. 37. 
    Chai KC, Zhang YB, Chang KC. 2020. Regional disparity of medical resources and its effect on mortality rates in China. Front. Public Health 8:8
    [Google Scholar]
  38. 38. 
    Pang Y, Lyu J, Yu C, Guo Y, Lee L 2020. Risk factors for cardiovascular disease in the Chinese population: recent progress and implications. Glob. Health J. 4:65–71
    [Google Scholar]
  39. 39. 
    Afshin A, Sur PJ, Fay KA, Cornaby L, Ferrara G, Salama JS. 2017. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393:1958–72
    [Google Scholar]
  40. 40. 
    Zhou M, Wang H, Zeng X, Yin P, Zhu J, Chen W. 2019. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 394:1145–58
    [Google Scholar]
  41. 41. 
    Writ. Comm. Rep. Cardiovasc. Health Dis. China 2020. Report on Cardiovascular Health and Diseases in China 2019: an updated summary. Chin. Circ. J. 35:833–54
    [Google Scholar]
  42. 42. 
    GBD 2016 Lifetime Risk Stroke Collab 2018. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N. Engl. J. Med. 379:2429–37
    [Google Scholar]
  43. 43. 
    Wu S, Wu B, Liu M, Chen Z, Wang W et al. 2019. Stroke in China: advances and challenges in epidemiology, prevention, and management. Lancet Neurol 18:394–405
    [Google Scholar]
  44. 44. 
    Forw. Bus. Inf. Co 2020.. [ Report of market outlook and investment strategy planning on China medical robot industry (2021–2026)]. Forward Business Information Company May 7. https://www.qianzhan.com/analyst/detail/220/210507-9a3a6c57.html (In Chinese )
    [Google Scholar]
  45. 45. 
    O'Meara S 2020. Medical robotics in China: the rise of technology in three charts. Nature 582:S51–52
    [Google Scholar]
  46. 46. 
    Liu J, Zhang Y, Wang T, Xing H, Tian Z 2004. Neuromaster: a robot system for neurosurgery. 2004 IEEE International Conference on Robotics and Automation824–28 Piscataway, NJ: IEEE
    [Google Scholar]
  47. 47. 
    Meng C, Wang T, Chou W, Luan S, Zhang Y, Tian Z. 2004. Remote surgery case: robot-assisted teleneurosurgery. 2004 IEEE International Conference on Robotics and Automation819–23 Piscataway, NJ: IEEE
    [Google Scholar]
  48. 48. 
    He C, Patel N, Shahbazi M, Yang Y, Gehlbach P, Kobilarov M, Iordachita I 2019. Toward safe retinal microsurgery: development and evaluation of an RNN-based active interventional control framework. IEEE Trans. Biomed. Eng. 67:966–77
    [Google Scholar]
  49. 49. 
    He C, Yang E, Patel N, Ebrahimi A, Shahbazi M, Gehlbach P, Iordachita I 2020. Automatic light pipe actuating system for bimanual robot-assisted retinal surgery. IEEE ASME Trans. Mechatron. 25:2846–57
    [Google Scholar]
  50. 50. 
    Li Y, Hu J, Tao B, Yu D, Shen Y et al. 2020. Automatic robot-world calibration in an optical-navigated surgical robot system and its application for oral implant placement. Int. J. Comput. Assist. Radiol. Surg. 15:1685–92
    [Google Scholar]
  51. 51. 
    Qin C, Cao Z, Fan S, Wu Y, Sun Y, Politis C 2019. An oral and maxillofacial navigation system for implant placement with automatic identification of fiducial points. Int. J. Comput. Assist. Radiol. Surg. 14:281–89
    [Google Scholar]
  52. 52. 
    Wang W, Chen J, Ji Y, Jin W, Liu J, Zhang J 2020. Evaluation of lower leg muscle activities during human walking assisted by an ankle exoskeleton. IEEE Trans. Ind. Inform. 16:7168–76
    [Google Scholar]
  53. 53. 
    Wang B, Wu K, Hjort K, Guo C, Wu Z. 2019. High-performance liquid alloy patterning of epidermal strain sensors for local fine skin movement monitoring. Soft Robot 6:414–21
    [Google Scholar]
  54. 54. 
    Shi B, Hu L, Du H, Zhang J, Zhao W, Zhang L. 2021. Robot-assisted percutaneous vertebroplasty under local anaesthesia for osteoporotic vertebral compression fractures: a retrospective, clinical, non-randomized, controlled study. Int. J. Med. Robot. 17:e2216
    [Google Scholar]
  55. 55. 
    Du Z, Liang Y, Yan Z, Sun L, Chen W 2021. Human-robot interaction control of a haptic master manipulator used in laparoscopic minimally invasive surgical robot system. Mech. Mach. Theory 156:104132
    [Google Scholar]
  56. 56. 
    You W, Feng J, Liu Q, Liu X, Lv J et al. 2021. Case report: de novo vertebral artery dissection after intravascular stenting of the contralateral unruptured vertebral artery aneurysm. Front. Neurol. 12:599197
    [Google Scholar]
  57. 57. 
    Sun T, Lian B, Yang S, Song Y 2020. Kinematic calibration of serial and parallel robots based on finite and instantaneous screw theory. IEEE Trans. Robot. 36:816–34
    [Google Scholar]
  58. 58. 
    Yang P, Ge R, Chen ZQ, Wen BT 2022. Treatment of thoracic ossification of posterior longitudinal ligament with one-stage 360 degree circumferential decompression assisted by piezosurgery. J. Investig. Surg. 35:249–56
    [Google Scholar]
  59. 59. 
    Li C, Gu X, Xiao X, Lim CM, Ren H 2019. Flexible robot with variable stiffness in transoral surgery. IEEE ASME Trans. Mechatron. 25:1–10
    [Google Scholar]
  60. 60. 
    Li T, Pan A, Ren H. 2019. A high-resolution triaxial catheter tip force sensor with miniature flexure and suspended optical fibers. IEEE Trans. Ind. Electron. 67:5101–11
    [Google Scholar]
  61. 61. 
    Zhang T, Chen B, Zuo S 2022. A novel 3-DOF force sensing microneedle with integrated fiber bragg grating for microsurgery. IEEE Trans. Ind. Electron. 69:940–49
    [Google Scholar]
  62. 62. 
    Gu Y, Vyas K, Shen M, Yang J, Yang GZ 2020. Deep graph-based multimodal feature embedding for endomicroscopy image retrieval. IEEE Trans. Neural Netw. Learn. Syst. 32:481–92
    [Google Scholar]
  63. 63. 
    Sun W, Li B, Zhang F, Fang C, Lu Y et al. 2021. TENG-Bot: triboelectric nanogenerator powered soft robot made of uni-directional dielectric elastomer. Nano Energy 85:106012
    [Google Scholar]
  64. 64. 
    Li RQ, Xie XL, Zhou XH, Liu SQ, Ni ZL et al. 2021. Real-time multi-guidewire endpoint localization in fluoroscopy images. IEEE Trans. Med. Imaging. 40:2002–14
    [Google Scholar]
  65. 65. 
    Han JW, Wang L, Zhao H, Yang SM. 2020. Biomechanical analysis of the clinical characteristics of enlarged vestibular aqueduct syndrome with Mondini malformation. Acta Otolaryngol 140:813–17
    [Google Scholar]
  66. 66. 
    Duan X, Tian H, Li C, Han Z, Cui T et al. 2021. Virtual-fixture based drilling control for robot-assisted craniotomy: learning from demonstration. IEEE Robot. Autom. Lett. 6:2327–34
    [Google Scholar]
  67. 67. 
    Kuang S, Tang Y, Lin A, Yu S, Sun L 2018. Intelligent control for human-robot cooperation in orthopedics surgery. Intell. Orthop. 1093:245–62
    [Google Scholar]
  68. 68. 
    Yi B, Wang G, Li J, Jiang J, Son Z et al. 2017. Domestically produced Chinese minimally invasive surgical robot system “Micro Hand S” is applied to clinical surgery preliminarily in China. Surg. Endosc. 31:487–93
    [Google Scholar]
  69. 69. 
    Zeng Y, Wang G, Liu Y, Li Z, Yi B, Zhu S 2020. The “Micro Hand S” robot-assisted versus conventional laparoscopic right colectomy: short-term outcomes at a single center. J. Laparoendosc. Adv. Surg. Technol. 30:363–68
    [Google Scholar]
  70. 70. 
    Liu C, Shi C, Wang T, Zhang H, Jing L et al. 2021. Bio-inspired multimodal 3D endoscope for image-guided and robotic surgery. Opt. Express 29:145–57
    [Google Scholar]
  71. 71. 
    Rezazadeh S, Bai W, Sun M, Chen S, Lin Y, Cao Q 2019. Robotic spinal surgery system with force feedback for teleoperated drilling. J. Eng. 2019:500–5
    [Google Scholar]
  72. 72. 
    Wang J, Wang Y, Zhu G, Chen X, Zhao X et al. 2018. Influence of the quality of intraoperative fluoroscopic images on the spatial positioning accuracy of a CAOS system. Int. J. Med. Robot. 14:e1898
    [Google Scholar]
  73. 73. 
    Asif M, Song H, Chen L, Yang J, Frangi AF 2021. Intrinsic layer based automatic specular reflection detection in endoscopic images. Comput. Biol. Med. 128:104106
    [Google Scholar]
  74. 74. 
    Xu K, Zhao J, Fu M. 2014. Development of the SJTU unfoldable robotic system (SURS) for single port laparoscopy. IEEE ASME Trans. Mechatron. 20:2133–45
    [Google Scholar]
  75. 75. 
    Li Q, Yang H, Zhao J, Xu K. 2019. Configuration transition control of a continuum surgical manipulator for improved kinematic performance. IEEE Robot. Autom. Lett. 4:3750–57
    [Google Scholar]
  76. 76. 
    Jin L, Duan X, Li C, Shi Q, Wen H et al. 2021. Design of a novel parallel mechanism for haptic device. J. Mech. Robot. 13:045001
    [Google Scholar]
  77. 77. 
    Yang Y, Kong K, Li J, Wang S 2021. Design and implementation of a hand-held robot-assisted minimally invasive surgical device with enhanced intuitive manipulability and stable grip force. Int. J. Med. Robot. 2021:e2286
    [Google Scholar]
  78. 78. 
    Li W, Fan J, Li S, Tian Z, Zheng Z et al. 2021. Calibrating 3D scanner in the coordinate system of optical tracker for image-to-patient registration. Front. Neurorobot. 15:55
    [Google Scholar]
  79. 79. 
    Sodergren MH, Clark J, Athanasiou T, Teare J, Yang GZ, Darzi A 2009. Natural orifice translumenal endoscopic surgery: critical appraisal of applications in clinical practice. Surg. Endosc. 23:680–87
    [Google Scholar]
  80. 80. 
    Xu M, Xiao X, Wang Y, Qi H, Jung TP, Ming D 2018. A brain–computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli. IEEE Trans. Biomed. Eng. 65:1166–75
    [Google Scholar]
  81. 81. 
    Chen X, Liu Q, Tao W, Li L, Lee S et al. 2019. ReMAE: user-friendly toolbox for removing muscle artifacts from EEG. IEEE Trans. Instrum. Meas. 69:2105–19
    [Google Scholar]
  82. 82. 
    Wang X, Song Q, Wang X, Liu P 2018. Kinematics and dynamics analysis of a 3-DOF upper-limb exoskeleton with an internally rotated elbow joint. Appl. Sci. 8:464
    [Google Scholar]
  83. 83. 
    Wang X, Song Q, Zhou S, Tang J, Chen K, Cao H 2019. Multi-connection load compensation and load information calculation for an upper-limb exoskeleton based on a six-axis force/torque sensor. Int. J. Adv. Robot. Syst. 16: https://doi.org/10.1177/1729881419863186
    [Crossref] [Google Scholar]
  84. 84. 
    Hua Y, Zhu Y, Li C, Zhao J, Zhu Y. 2022. Assistance control of human-exoskeleton integrated system for balance recovery augmentation in sagittal plane. IEEE Trans. Ind. Electron. 69:528–38
    [Google Scholar]
  85. 85. 
    Huang R, Cheng H, Qiu J, Zhang J. 2019. Learning physical human–robot interaction with coupled cooperative primitives for a lower exoskeleton. IEEE Trans. Autom. Sci. Eng. 16:1566–74
    [Google Scholar]
  86. 86. 
    Xu J, Xu L, Li Y, Cheng G, Shi J, Liu J, Chen S. 2020. A multi-channel reinforcement learning framework for robotic mirror therapy. IEEE Robot. Autom. Lett. 5:5385–92
    [Google Scholar]
  87. 87. 
    Xu J, Li Y, Xu L, Peng C, Chen S et al. 2019. A multi-mode rehabilitation robot with magnetorheological actuators based on human motion intention estimation. IEEE Trans. Neural Syst. Rehabil. Eng. 27:2216–28
    [Google Scholar]
  88. 88. 
    Dong M, Fan W, Li J, Zhou X, Rong X, Kong Y, Zhou Y. 2021. A new ankle robotic system enabling whole-stage compliance rehabilitation training. IEEE ASME Trans. Mechatron. 26:1490–500
    [Google Scholar]
  89. 89. 
    Shi J, Chen D, Wang M 2020. Pre-impact fall detection with CNN-based class activation mapping method. Sensors 20:4750
    [Google Scholar]
  90. 90. 
    Chen C, Yu Y, Sheng X, Farina D, Zhu X 2021. Simultaneous and proportional control of wrist and hand movements by decoding motor unit discharges in real time. J. Neural Eng. 18:056010
    [Google Scholar]
  91. 91. 
    Yu Y, Chen C, Zhao J, Sheng X, Zhao J. 2022. Surface electromyography image driven torque estimation of multi-DoF wrist movements. IEEE Trans. Ind. Electron. 69:795–804
    [Google Scholar]
  92. 92. 
    Feng Y, Mai J, Agrawal SK, Wang Q. 2020. Energy regeneration from electromagnetic induction by human dynamics for lower extremity robotic prostheses. IEEE Trans. Robot. 36:1442–51
    [Google Scholar]
  93. 93. 
    Zheng E, Wang Q, Qiao H 2019. Locomotion mode recognition with robotic transtibial prosthesis in inter-session and inter-day applications. IEEE Trans. Neural Syst. Rehabil. Eng. 27:1836–45
    [Google Scholar]
  94. 94. 
    Wang Y, Kong X, Yang J, Li G, Zhao G 2020. Modeling and simulation of an unpowered lower extremity exoskeleton based on gait energy. Math. Probl. Eng. 2020:4670936
    [Google Scholar]
  95. 95. 
    Wang H, Lin M, Jin Z, Yan H, Liu G et al. 2020. A 4-DOF workspace lower limb rehabilitation robot: mechanism design, human joint analysis and trajectory planning. Appl. Sci. 10:4542
    [Google Scholar]
  96. 96. 
    Tong AN, Zhang JW, Zhou HJ, Tang HH, Bian JZ et al. 2020. Ischemic damage may play an important role in spinal cord injury during dancing. Spinal Cord 58:1310–16
    [Google Scholar]
  97. 97. 
    Zhang J, Xu K, Zhang S, Wang Y, Zheng N et al. 2019. Brain-machine interface-based rat-robot behavior control. Neural Interface: Frontiers and Applications X Zheng 123–47 Singapore: Springer
    [Google Scholar]
  98. 98. 
    Ma S, Zhang Y, Liang Y, Ren L, Tian W, Ren L. 2020. High-performance ionic-polymer–metal composite: toward large-deformation fast-response artificial muscles. Adv. Funct. Mater. 30:1908508
    [Google Scholar]
  99. 99. 
    Liu X, Wang Q. 2020. Real-time locomotion mode recognition and assistive torque control for unilateral knee exoskeleton on different terrains. IEEE ASME Trans. Mechatron. 25:2722–32
    [Google Scholar]
  100. 100. 
    Lu RR, Zheng MX, Li J, Gao TH, Hua XY et al. 2020. Motor imagery based brain-computer interface control of continuous passive motion for wrist extension recovery in chronic stroke patients. Neurosci. Lett. 718:134727
    [Google Scholar]
  101. 101. 
    Wei P, Zou T, Lv Z, Fan Y 2020. Functional MRI reveals locomotion-control neural circuits in human brainstem. Brain Sci 10:757
    [Google Scholar]
  102. 102. 
    Wang J, Wang W, Hou ZG 2019. Toward improving engagement in neural rehabilitation: attention enhancement based on brain–computer interface and audiovisual feedback. IEEE Trans. Cogn. Dev. Syst. 12:787–96
    [Google Scholar]
  103. 103. 
    Huo CC, Zheng Y, Lu WW, Zhang TY, Wang DF et al. 2021. Prospects for intelligent rehabilitation techniques to treat motor dysfunction. Neural Regen. Res. 16:264–69
    [Google Scholar]
  104. 104. 
    Leng Y, Lo WLA, Hu C, Bian R, Xu Z et al. 2020. The effects of extracorporeal shock wave therapy on spastic muscle of the wrist joint in stroke survivors: evidence from neuromechanical analysis. Front. Neurosci. 14:580762
    [Google Scholar]
  105. 105. 
    Irani B, Wang J, Chen W 2018. A localizability constraint-based path planning method for autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 20:2593–604
    [Google Scholar]
  106. 106. 
    Liang X, Wang H, Liu YH, Liu Z, Chen W. 2020. Leader-following formation control of nonholonomic mobile robots with velocity observers. IEEE ASME Trans. Mechatron. 25:1747–55
    [Google Scholar]
  107. 107. 
    Zhang X, Dai J, Li X, Li H, Fu H et al. 2019. sEMG-based shoulder-elbow composite motion pattern recognition and control methods for upper limb rehabilitation robot. Assem. Autom. 39:394–400
    [Google Scholar]
  108. 108. 
    Samuel OW, Zhou H, Li X, Wang H, Zhang H et al. 2018. Pattern recognition of electromyography signals based on novel time domain features for amputees' limb motion classification. Comput. Electr. Eng. 67:646–55
    [Google Scholar]
  109. 109. 
    Guo Y, Gu X, Yang GZ 2021. Human–robot interaction for rehabilitation robotics. Digitalization in Healthcare: Implementing Innovation and Artificial Intelligence P Glaunder, P Plugmann, G Lerzynski 269–95 Berlin: Springer
    [Google Scholar]
  110. 110. 
    Chang WH, Kim YH. 2013. Robot-assisted therapy in stroke rehabilitation. J. Stroke 15:174–81
    [Google Scholar]
  111. 111. 
    Mubin O, Alnajjar F, Jishtu N, Alsinglawi B, Al Mahmud A. 2019. Exoskeletons with virtual reality, augmented reality, and gamification for stroke patients' rehabilitation: systematic review. JMIR Rehabil. Assist. Technol. 6:e12010
    [Google Scholar]
  112. 112. 
    Xu W, Liu T, Li Y. 2018. Kinematics, dynamics, and control of a cable-driven hyper-redundant manipulator. IEEE ASME Trans. Mechatron. 23:1693–704
    [Google Scholar]
  113. 113. 
    Liang J, Wu J, Huang H, Xu W, Li B, Xi F 2019. Soft sensitive skin for safety control of a nursing robot using proximity and tactile sensors. IEEE Sens. J. 20:3822–30
    [Google Scholar]
  114. 114. 
    Peng Y, Liu M, Ming S, Yu W, Li L et al. 2020. Safety of a novel thulium fiber laser for lithotripsy: an in vitro study on the thermal effect and its impact factor. J. Endourol. 34:88–92
    [Google Scholar]
  115. 115. 
    Deng Y, Yang T, Dai S, Song G 2020. A miniature triaxial fiber optic force sensor for flexible ureteroscopy. IEEE Trans. Biomed. Eng. 68:2339–47
    [Google Scholar]
  116. 116. 
    Meng F, Xue X, Qiao B, Xing L, Song Y et al. 2020. A new multimodal, image-guided, robot-assisted, interstitial brachytherapy for the treatment of head and neck tumors—a preliminary study. Int. J. Med. Robot. 16:1–5
    [Google Scholar]
  117. 117. 
    Fu Y, He Z, Chen D 2019. Safety and waterproof design of multi-functional assisted bath robot. Intelligent Robotics and Applications: 12th International Conference, ICIRA 2019 Part V, ed. H Yu, J Liu, L Liu, Z Ju, Y Liu, D Zhou 648–59 Cham, Switz: Springer
    [Google Scholar]
  118. 118. 
    Liang S, Cao Y, Dai Y, Wang F, Bai X et al. 2021. A versatile optoelectronic tweezer system for micro-objects manipulation: transportation, patterning, sorting, rotating and storage. Micromachines 12:271
    [Google Scholar]
  119. 119. 
    Li X, Wang H, Shi Q, Liu J, Xin Z et al. 2021. Automated fabrication of the high-fidelity cellular micro-scaffold through proportion-corrective control of the photocuring process. IEEE Robot. Autom. Lett. 6:849–54
    [Google Scholar]
  120. 120. 
    Zhang L, Li C, Fan Y, Zhang X, Zhao J 2021. Physician-friendly tool center point calibration method for robot-assisted puncture surgery. Sensors 21:366
    [Google Scholar]
  121. 121. 
    Zhu JH, Yang R, Guo YX, Wang J, Liu XJ, Guo CB 2021. Navigation-guided core needle biopsy for skull base and parapharyngeal lesions: a five-year experience. Int. J. Clin. Oral Maxillofac. Surg. 50:7–13
    [Google Scholar]
  122. 122. 
    Zhang P, Li J, Zhang W, Hao Y, Ciuti G et al. 2021. Endoluminal motion recognition of a magnetically-guided capsule endoscope based on capsule-tissue interaction force. Sensors 21:2395
    [Google Scholar]
  123. 123. 
    Xu Y, Li K, Zhao Z, Meng MQH. 2021. A novel system for closed-loop simultaneous magnetic actuation and localization of WCE based on external sensors and rotating actuation. IEEE Trans. Autom. Sci. Eng. 18:1640–52
    [Google Scholar]
  124. 124. 
    Wang Z, Wu Y, Wang L, Gong L, Han C, Liang N, Li S. 2021. Predicting occult lymph node metastasis by nomogram in patients with lung adenocarcinoma ≤2 cm. Future Oncol 17:2005–13
    [Google Scholar]
  125. 125. 
    Cao G, Huo B, Yang L, Zhang F, Liu Y, Bian G. 2021. Model-based robust tracking control without observers for soft bending actuators. IEEE Robot. Autom. Lett. 6:5175–82
    [Google Scholar]
  126. 126. 
    Fan Z, Fang Y, Sun M, Zhao X 2019. Precise cell injection and extraction control based on microscopic visual feedback. IEEE ASME Trans. Mechatron. 25:872–81
    [Google Scholar]
  127. 127. 
    Wang H, Guo K, Zhang L, Zhu H, Li S et al. 2021. Valve-based consecutive bioprinting method for multimaterial tissue-like constructs with controllable interfaces. Biofabrication 13:035001
    [Google Scholar]
  128. 128. 
    Luo S, Zhou L, Wang D, Duan C, Liu H et al. 2018. A miniature endoscopic optical coherence tomography probe based on C-lens. IEEE Photonics J 10:3901310
    [Google Scholar]
  129. 129. 
    Chen T, Ning Z, Xu L, Feng X, Han S et al. 2019. Radiomics nomogram for predicting the malignant potential of gastrointestinal stromal tumours preoperatively. Eur. Radiol. 29:1074–82
    [Google Scholar]
  130. 130. 
    Ma L, Zhao Z, Zhang B, Jiang W, Fu L et al. 2018. Three-dimensional augmented reality surgical navigation with hybrid optical and electromagnetic tracking for distal intramedullary nail interlocking. Int. J. Med. Robot. 14:e1909
    [Google Scholar]
  131. 131. 
    Ma C, Chen G, Zhang X, Ning G, Liao H. 2018. Moving-tolerant augmented reality surgical navigation system using autostereoscopic three-dimensional image overlay. IEEE J. Biomed. Health Inform. 23:2483–93
    [Google Scholar]
  132. 132. 
    Jiang W, Zhou Y, Wang C, Peng L, Yang Y, Liu H 2020. Navigation strategy for robotic soft endoscope intervention. Int. J. Med. Robot. 16:e2056
    [Google Scholar]
  133. 133. 
    Li R, Pan J, Si Y, Yan B, Hu Y, Qin H 2019. Specular reflections removal for endoscopic image sequences with adaptive-RPCA decomposition. IEEE Trans. Med. Imaging 39:328–40
    [Google Scholar]
  134. 134. 
    Lee T, Kim C, Cho DD 2018. A monocular vision sensor-based efficient SLAM method for indoor service robots. IEEE Trans. Ind. Electron. 66:318–28
    [Google Scholar]
/content/journals/10.1146/annurev-control-061521-070251
Loading
/content/journals/10.1146/annurev-control-061521-070251
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error