1932

Abstract

Space-mounted robotics is becoming increasingly mainstream for many space missions. The aim of this article is threefold: first, to give a broad and quick overview of the importance of spacecraft-mounted robotics for future in-orbit servicing missions; second, to review the basic current approaches for modeling and control of spacecraft-mounted robotic systems; and third, to introduce some new developments in terms of modeling and control of spacecraft-mounted robotic manipulators using the language of hypercomplex numbers (dual quaternions). Some outstanding research questions and potential future directions in the field are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-062122-082114
2023-05-03
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/control/6/1/annurev-control-062122-082114.html?itemId=/content/journals/10.1146/annurev-control-062122-082114&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Wilde M, Harder J, Stoll E. 2019. Editorial: on-orbit servicing and active debris removal: enabling a paradigm shift in spaceflight. Front. Robot. AI 6:136
    [Google Scholar]
  2. 2.
    Goddard Space Flight Cent. 2010. On-orbit satellite servicing study Rep., Goddard Space Flight Cent., Natl. Aeronaut. Space Adm. Greenbelt, MD:
    [Google Scholar]
  3. 3.
    Reed BB. 2011. Robotic refueling mission overview Presentation at the Future In-Space Operations Colloquium Aug. 3
    [Google Scholar]
  4. 4.
    Natl. Sci. Technol. Counc 2022. In-space servicing, assembly, and manufacturing national strategy Rep., Natl. Sci. Technol. Counc. Washington, DC: https://www.whitehouse.gov/wp-content/uploads/2022/04/04-2022-ISAM-National-Strategy-Final.pdf
    [Google Scholar]
  5. 5.
    Akin DL. 2014. Innovative robotic systems for in-space operations Presentation at the Future In-Space Operations Colloquium Jan. 22. https://fiso.spiritastro.net/telecon13-15/Akin_1-22-14/Akin_1-22-14.pdf
    [Google Scholar]
  6. 6.
    Xu Y, Shum HY. 1991. Dynamic control of a space robot system with no thrust jets controlled base Tech. Rep. CMU-RI-TR-91-33, Robot. Inst. Carnegie Mellon Univ. Pittsburgh, PA:
    [Google Scholar]
  7. 7.
    Bronez MA, Clarke MM, Quinn A. 1986. Requirements development for a free-flying robot—the “Robin. .” In 1986 International Conference on Robotics and Automation (ICRA)667–72 Piscataway, NJ: IEEE
    [Google Scholar]
  8. 8.
    Akin D, Misky ML, Thiel E, Kurtzman C. 1983. Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS) – Phase 2, Vol. 1: Telepresence Technology Base Development Washington, DC: Natl. Aeronaut. Space Adm.
    [Google Scholar]
  9. 9.
    Qu R, Takei Y, Oda M, Nakanishi H, Wedler A, Yoshikawa K. 2017. A study on the end-effector exchange mechanism of a space robot. J. Mech. Eng. Autom. 7:278–84
    [Google Scholar]
  10. 10.
    Flores-Abad A, Ma O, Pham K, Ulrich S 2014. A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68:1–26
    [Google Scholar]
  11. 11.
    Kassel S. 1971. Lunokhod-1 Soviet lunar surface vehicle Tech. Rep. R-802-ARPA RAND Corp. Santa Monica, CA: https://apps.dtic.mil/sti/pdfs/AD0733960.pdf
    [Google Scholar]
  12. 12.
    Wilcox B, Nguyen T. 1998. Sojourner on Mars and lessons learned for future planetary rovers Tech. Pap. 981695 SAE Int. Warrendale, PA:
    [Google Scholar]
  13. 13.
    Crisp JA, Adler M, Matijevic JR, Squyres SW, Arvidson RE, Kass DM. 2003. Mars Exploration Rover mission. J. Geophys. Res. Planets 108:8061
    [Google Scholar]
  14. 14.
    Grotzinger JP, Crisp J, Vasavada AR, Anderson RC, Baker CJ et al. 2012. Mars Science Laboratory Mission and science investigation. Space Sci. Rev. 170:5–56
    [Google Scholar]
  15. 15.
    Farley K, Williford K, Stack K, Bhartia R, Chen A et al. 2020. Mars 2020 mission overview. Space Sci. Rev. 216:142
    [Google Scholar]
  16. 16.
    Ellery A. 2016. Planetary Rovers: Robotic Exploration of the Solar System Berlin: Springer
    [Google Scholar]
  17. 17.
    Yoshida K 2001. ETS-VII flight experiments for space robot dynamics and control. Experimental Robotics VII D Rus, S Singh 209–18 Berlin: Springer
    [Google Scholar]
  18. 18.
    Oda M. 1999. Space robot experiments on NASDA's ETS-VII satellite—preliminary overview of the experiment results. 1999 International Conference on Robotics and Automation (ICRA), Vol. 21390–95 Piscataway, NJ: IEEE
    [Google Scholar]
  19. 19.
    Oda M. 2001. ETS-VII: achievements, troubles and future. I-SAIRAS 2001: A New Space Odyssey; Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics and Automation in Space Longueuil, Can: Can. Space Agency
    [Google Scholar]
  20. 20.
    Umetani Y, Yoshida K. 1987. Continuous path control of space manipulators mounted on OMV. Acta Astronaut. 15:981–86
    [Google Scholar]
  21. 21.
    Yoshida K, Nenchev DN, Uchiyama M 1996. Moving base robotics and reaction management control. Robotics Research: The Seventh International Symposium G Giralt, G Hirzinger 100–9 London: Springer
    [Google Scholar]
  22. 22.
    Natl. Aeronaut. Space Adm. 2018. Remote manipulator system (Canadarm2). National Aeronautics and Space Administration https://www.nasa.gov/mission_pages/station/structure/elements/remote-manipulator-system-canadarm2
    [Google Scholar]
  23. 23.
    Matsueda T, Kuraoka K, Goma K, Sumi T, Okamura R. 1991. JEMRMS system design and development status. NTC '91 – National Telesystems Conference Proceedings391–95 Piscataway, NJ: IEEE
    [Google Scholar]
  24. 24.
    Boumans R, Heemskerk C. 1998. The European Robotic Arm for the International Space Station. Robot. Auton. Syst. 23:17–27
    [Google Scholar]
  25. 25.
    Hirzinger G, Brunner B, Dietrich J, Heindl J. 1994. ROTEX—the first remotely controlled robot in space. Proceedings of the 1994 IEEE International Conference on Robotics and Automation (ICRA), Vol. 32604–11 Piscataway, NJ: IEEE
    [Google Scholar]
  26. 26.
    Hirzinger G, Landzettel K, Reintsema D, Preusche C, Albu-Schaffer A et al. 2005. ROKVISS—robotics component verification on ISS. Proceedings of i-SAIRAS 2005: The 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space Noordwijk, Neth: ESA Publ. Div.
    [Google Scholar]
  27. 27.
    Shoemaker J, Wright M 2004. Orbital express space operations architecture program. Spacecraft Platforms and Infrastructure P Tchoryk Jr., M Wright 57–65 Bellingham, WA: SPIE
    [Google Scholar]
  28. 28.
    Henshaw CG. 2009. NRL robotics overview Presentation to the Future In-Space Operations Colloquium July 29. https://fiso.spiritastro.net/telecon07-09/Henshaw_7-29-09/Henshaw%20FREND%20Overview%207_29_09.pdf
    [Google Scholar]
  29. 29.
    Roesler G. 2016. Robotic Servicing of Geosynchronous Satellites (RSGS) program overview Presentation to the Future In-Space Operations Colloquium June 15. http://images.spaceref.com/fiso/2016/061516_roesler_darpa/Roesler_6-15-16.pdf
    [Google Scholar]
  30. 30.
    Reed BB. 2017. NASA satellite servicing evolution Presentation to the Future In-Space Operations Colloquium Jan. 11. http://images.spaceref.com/fiso/2017/011117_reed/Reed_1-11-17.pdf
    [Google Scholar]
  31. 31.
    Barnhart D, Sullivan B, Hunter R, Bruhn J, Fowler E et al. 2013. Phoenix Program Status – 2013. AIAA SPACE Conference and Exposition pap 2013–5341 Reston, VA: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  32. 32.
    Spacefl. 101 2016. China's new orbital debris clean-up satellite raises space militarization concerns. Spaceflight101 June 29. https://spaceflight101.com/long-march-7-maiden-launch/aolong-1-asat-concerns
    [Google Scholar]
  33. 33.
    Brophy JR, Friedman L, Culick F. 2012. Asteroid retrieval feasibility. 2012 IEEE Aerospace Conference Piscataway, NJ: IEEE https://www.kiss.caltech.edu/papers/asteroid/papers/asteroid_retrieval.pdf
    [Google Scholar]
  34. 34.
    Strange N, Landau D, McElrath T, Lantoine G, Lam T et al. 2013. Overview of mission design for NASA Asteroid Redirect Robotic Mission concept. 33rd International Electric Propulsion Conference pap 2013–321 Pasadena, CA: Jet Propuls. Lab.
    [Google Scholar]
  35. 35.
    Reuter GJ, Hess CW, Rhoades DE, McFadin LW, Healey KJ, Erickson JD. 1988. An intelligent, free-flying robot. Space Station Automation IV WC Chiou Sr. 20–27 Bellingham, WA: SPIE
    [Google Scholar]
  36. 36.
    Moosavian SAA, Papadopoulos E. 2004. Explicit dynamics of space free-flyers with multiple manipulators via SPACEMAPLE. Adv. Robot. 18:223–44
    [Google Scholar]
  37. 37.
    Moosavian SAA, Papadopoulos E. 1998. On the kinematics of multiple manipulator space free-flyers and their computation. J. Robot. Syst. 15:207–16
    [Google Scholar]
  38. 38.
    Papadopoulos E. 1991. On the dynamics and control of space manipulators PhD Thesis, Mass. Inst. Technol. Cambridge, MA:
    [Google Scholar]
  39. 39.
    Dubowsky S, Vance EE, Torres MA. 1989. The control of space manipulators subject to spacecraft attitude control saturation limits. Proceedings of the NASA Conference on Space Telerobotics, Vol. 4409–18 Pasadena, CA: Jet Propuls. Lab.
    [Google Scholar]
  40. 40.
    Egeland O, Sagli JR. 1993. Coordination of motion in a spacecraft/manipulator system. Int. J. Robot. Res. 12:366–79
    [Google Scholar]
  41. 41.
    Luh JY, Walker MW, Paul RP. 1980. On-line computational scheme for mechanical manipulators. J. Dyn. Syst. Meas. Control 102:69–76
    [Google Scholar]
  42. 42.
    Carignan CR, Akin DL. 2000. The reaction stabilization of on-orbit robots. IEEE Control Syst. Mag. 20:619–33
    [Google Scholar]
  43. 43.
    Featherstone R. 2008. Rigid Body Dynamics Algorithms Berlin: Springer
    [Google Scholar]
  44. 44.
    Nenchev DN, Yoshida K. 1999. Impact analysis and post-impact motion control issues of a free-floating space robot subject to a force impulse. IEEE Trans. Robot. Autom. 15:548–57
    [Google Scholar]
  45. 45.
    Seddaoui A, Saaj CM. 2019. Combined nonlinear h controller for a controlled-floating space robot. J. Guid. Control Dyn. 42:1878–85
    [Google Scholar]
  46. 46.
    Seddaoui A, Saaj CM, Nair MH. 2021. Modeling a controlled-floating space robot for in-space services: a beginner's tutorial. Front. Robot. AI 8:725333
    [Google Scholar]
  47. 47.
    Umetani Y, Yoshida K. 1989. Resolved motion rate control of space manipulators with generalized Jacobian matrix. IEEE Trans. Robot. Autom. 5:303–14
    [Google Scholar]
  48. 48.
    Papadopoulos E, Dubowsky S. 1993. Dynamic singularities in free-floating space manipulators. J. Dyn. Syst. Meas. Control 115:44–52
    [Google Scholar]
  49. 49.
    Vafa Z, Dubowsky S. 1987. On the dynamics of manipulators in space using the virtual manipulator approach. 1987 IEEE International Conference on Robotics and Automation (ICRA)579–85 Piscataway, NJ: IEEE
    [Google Scholar]
  50. 50.
    Vafa Z, Dubowsky S. 1990. The kinematics and dynamics of space manipulators: the virtual manipulator approach. Int. J. Robot. Res. 9:3–21
    [Google Scholar]
  51. 51.
    Vafa Z, Dubowsky S. 1990. On the dynamics of space manipulators using the virtual manipulator, with applications to path planning. J. Astronaut. Sci. 38:441–72
    [Google Scholar]
  52. 52.
    Vafa Z, Dubowsky S 1993. On the dynamics of space manipulators using the virtual manipulator, with applications to path planning. Space Robotics: Dynamics and Control Y Xu, T Kanade 45–76 Boston: Springer
    [Google Scholar]
  53. 53.
    Longman R 1993. The kinetics and workspace of a satellite-mounted robot. Space Robotics: Dynamics and Control Y Xu, T Kanade 27–44 Boston: Springer
    [Google Scholar]
  54. 54.
    Dubowsky S, Torres MA. 1991. Path planning for space manipulators to minimize spacecraft attitude disturbances. 1991 IEEE International Conference on Robotics and Automation (ICRA), Vol. 32522–28 Piscataway, NJ: IEEE
    [Google Scholar]
  55. 55.
    Perez A, McCarthy JM. 2004. Dual quaternion synthesis of constrained robotic systems. J. Mech. Des. 126:425–35
    [Google Scholar]
  56. 56.
    Pham HL, Perdereau V, Adorno BV, Fraisse P. 2010. Position and orientation control of robot manipulators using dual quaternion feedback. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems658–63 Piscataway, NJ: IEEE
    [Google Scholar]
  57. 57.
    Filipe N 2014. Nonlinear pose control and estimation for space proximity operations: an approach based on dual quaternions PhD Thesis, Ga. Inst. Technol. Atlanta, GA:
    [Google Scholar]
  58. 58.
    Clifford WK. 1873. Preliminary sketch of bi-quaternions. Proc. Lond. Math. Soc. 4:381–95
    [Google Scholar]
  59. 59.
    Fischer IS. 2017. Dual-Number Methods in Kinematics, Statics and Dynamics Boca Raton, FL: CRC
    [Google Scholar]
  60. 60.
    Valverde A. 2018. Dynamic modeling and control of spacecraft robotic systems using dual quaternions PhD Thesis, Ga. Inst. Technol. Atlanta, GA:
    [Google Scholar]
  61. 61.
    Valverde A, Tsiotras P. 2018. Dual quaternion framework for modeling of spacecraft-mounted multibody robotic systems. Front. Robot. AI 5:128
    [Google Scholar]
  62. 62.
    Valverde A. 2018. Dynamic modeling and control of spacecraft robotic systems using dual quaternions PhD Thesis, Ga. Inst. Technol. Atlanta, GA:
    [Google Scholar]
  63. 63.
    Filipe N, Tsiotras P. 2013. Simultaneous position and attitude control without linear and angular velocity feedback using dual quaternions. 2013 American Control Conference (ACC)4808–13 Piscataway, NJ: IEEE
    [Google Scholar]
  64. 64.
    Masutani Y, Miyazaki F, Arimoto S. 1989. Modeling and sensory feedback control for space manipulators. Proceedings of the NASA Conference on Space Telerobotics, Vol. 3287–96 Pasadena, CA: Jet Propuls. Lab.
    [Google Scholar]
  65. 65.
    Dubowsky S, Papadopoulos E. 1993. The kinematics, dynamics, and control of free-flying and free-floating space robotic systems. IEEE Trans. Robot. Autom. 9:531–43
    [Google Scholar]
  66. 66.
    Oda M. 1996. Coordinated control of spacecraft attitude and its manipulator. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Vol. 1732–38 Piscataway, NJ: IEEE
    [Google Scholar]
  67. 67.
    Senda K, Murotsu Y, Nagaoka H, Mitsuya A. 1995. Attitude control for free-flying space robot with CMG (Control Moment Gyroscopes). Guidance, Navigation, and Control Conference1494–502 Reston, VA: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  68. 68.
    Giordano AM, Ott C, Albu-Schäffer A. 2019. Coordinated control of spacecraft's attitude and end-effector for space robots. IEEE Robot. Autom. Lett. 4:2108–15
    [Google Scholar]
  69. 69.
    Oki T, Nakanishi H, Yoshida K. 2008. Time-optimal manipulator control of a free-floating space robot with constraint on reaction torque. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems2828–33 Piscataway, NJ: IEEE
    [Google Scholar]
  70. 70.
    Parlaktuna O, Ozkan M. 2004. Adaptive control of free-floating space manipulators using dynamically equivalent manipulator model. Robot. Auton. Syst. 46:185–93
    [Google Scholar]
  71. 71.
    Lampariello R, Agrawal S, Hirzinger G. 2003. Optimal motion planning for free-flying robots. 2003 International Conference on Robotics and Automation (ICRA), Vol. 33029–35 Piscataway, NJ: IEEE
    [Google Scholar]
  72. 72.
    Jacobsen S, Zhu C. 2002. Planning of safe kinematic trajectories for free-flying robots approaching an uncontrolled spinning satellite. Proceedings of the ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 5: 27th Biennial Mechanisms and Robotics Conference1145–51 New York: Am. Soc. Mech. Eng.
    [Google Scholar]
  73. 73.
    Chen Y, Meirovitch L. 1995. Control of a flexible space robot executing a docking maneuver. J. Guid. Control Dyn. 18:756–66
    [Google Scholar]
  74. 74.
    Grewal A, Modi V. 1995. Dynamics and control of flexible multibody systems: an application to orbiting platforms. IEEE International Conference on Systems, Man and Cybernetics: Intelligent Systems for the 21st Century, Vol. 32093–98 Piscataway, NJ: IEEE
    [Google Scholar]
  75. 75.
    Walker M, Wee LB. 1991. Adaptive control of space-based robot manipulators. IEEE Trans. Robot. Autom. 7:828–35
    [Google Scholar]
  76. 76.
    Ortega R, Spong MW. 1989. Adaptive motion control of rigid robots: a tutorial. Automatica 25:877–88
    [Google Scholar]
  77. 77.
    Slotine JJE, Li W. 1987. On the adaptive control of robot manipulators. Int. J. Robot. Res. 6:49–59
    [Google Scholar]
  78. 78.
    Senda K, Nagoaka H, Murotsu Y. 1999. Adaptive control of free-flying space robot with position/attitude control system. J. Guid. Control Dyn. 22:488–90
    [Google Scholar]
  79. 79.
    Masutani Y, Miyazaki F, Arimoto S. 1989. Sensory feedback control for space manipulators. Proceedings of the 1989 International Conference on Robotics and Automation (ICRA), Vol. 31346–51 Piscataway, NJ: IEEE
    [Google Scholar]
  80. 80.
    Caccavale F, Siciliano B. 2001. Quaternion-based kinematic control of redundant spacecraft/manipulator systems. Proceedings of the 2001 IEEE International Conference on Robotics and Automation (ICRA)435–40 Piscataway, NJ: IEEE
    [Google Scholar]
  81. 81.
    Nakamura Y, Mukherjee R. 1989. Nonholonomic path planning of space robots. Proceedings of the 1989 International Conference on Robotics and Automation (ICRA)1050–55 Piscataway, NJ: IEEE
    [Google Scholar]
  82. 82.
    Nakamura Y, Mukherjee R. 1991. Nonholonomic path planning of space robots via a bidirectional approach. IEEE Trans. Robot. Autom. 7:500–14
    [Google Scholar]
  83. 83.
    Nanos K, Papadopoulos E. 2011. On the use of free-floating space robots in the presence of angular momentum. Intell. Serv. Robot. 4:3–15
    [Google Scholar]
  84. 84.
    Giordano AM, Garofalo G, De Stefano M, Ott C, Albu-Schäffer A. 2016. Dynamics and control of a free-floating space robot in presence of nonzero linear and angular momenta. IEEE 55th Conference on Decision and Control (CDC)7527–34 Piscataway, NJ: IEEE
    [Google Scholar]
  85. 85.
    Papadopoulos E, Dubowsky S. 1991. On the nature of control algorithms for free-floating space manipulators. IEEE Trans. Robot. Autom. 7:750–58
    [Google Scholar]
  86. 86.
    Nanos K, Papadopoulos E. 2012. On Cartesian motions with singularities avoidance for free-floating space robots. 2012 IEEE International Conference on Robotics and Automation (ICRA)5398–403 Piscataway, NJ: IEEE
    [Google Scholar]
  87. 87.
    Nanos K, Papadopoulos E. 2015. Avoiding dynamic singularities in Cartesian motions of free-floating manipulators. IEEE Trans. Aerosp. Electron. Syst. 51:2305–18
    [Google Scholar]
  88. 88.
    Reyhanoglu M, McClamroch NH. 1991. Reorientation of space multibody systems maintaining zero angular momentum. Navigation and Control Conference1330–40 Reston, VA: Am. Soc. Mech. Eng.
    [Google Scholar]
  89. 89.
    Reyhanoglu M, McClamroch NH. 1991. Controllability and stabilizability of planar multibody systems with angular momentum preserving control torques. Proceedings of the 1991 American Control Conference1102–107 Piscataway, NJ: IEEE
    [Google Scholar]
  90. 90.
    Nijmeijer H, van der Schaft A. 1990. Nonlinear Dynamical Control Systems New York: Springer
    [Google Scholar]
  91. 91.
    Nanos K, Papadopoulos E. 2017. On the dynamics and control of free-floating space manipulator systems in the presence of angular momentum. Front. Robot. AI 4:26
    [Google Scholar]
  92. 92.
    Haddad WM, Chellaboina V. 2011. Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach Princeton, NJ: Princeton University Press
    [Google Scholar]
  93. 93.
    Filipe N, Valverde A, Tsiotras P. 2016. Pose tracking without linear and angular-velocity feedback using dual quaternions. IEEE Trans. Aerosp. Electron. Syst. 52:411–22
    [Google Scholar]
  94. 94.
    Saleh JH, Castet JF. 2011. Spacecraft Reliability and Multi-State Failures: A Statistical Approach Hoboken, NJ: Wiley & Sons
    [Google Scholar]
  95. 95.
    Polites ME. 1999. Technology of automated rendezvous and capture in space. J. Spacecr. Rockets 36:280–91
    [Google Scholar]
  96. 96.
    Natl. Aeronaut. Space Adm 2020. 2020 NASA Technology Taxonomy Washington, DC: Natl. Aeronaut. Space Adm https://www.nasa.gov/sites/default/files/atoms/files/2020_nasa_technology_taxonomy.pdf
    [Google Scholar]
  97. 97.
    Dimitrov D. 2005. Dynamics and control of space manipulators during a satellite capturing operation PhD Thesis, Tohoku Univ. Sendai, Jpn:.
    [Google Scholar]
  98. 98.
    Xu S, Wang H, Zhang D, Yang B 2014. Extended Jacobian based adaptive zero reaction motion control for free-floating space manipulators. Proceedings of the 33rd Chinese Control Conference8359–64 Piscataway, NJ: IEEE
    [Google Scholar]
  99. 99.
    Dubanchet V, Saussié D, Alazard D, Bérard C, Le Peuvédic C 2015. Modeling and control of a space robot for active debris removal. CEAS Space J. 7:203–18
    [Google Scholar]
/content/journals/10.1146/annurev-control-062122-082114
Loading
/content/journals/10.1146/annurev-control-062122-082114
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error