1932

Abstract

Soft robots’ flexibility and compliance give them the potential to outperform traditional rigid-bodied robots while performing multiple tasks in unexpectedly changing environments and conditions. However, soft robots are yet to reveal their full potential; nature is still far more advanced in several areas, such as locomotion and manipulation. To understand what limits their performance and hinders their transition from laboratory to real-world conditions, future studies should focus on understanding the principles behind the design and operation of soft robots. Such studies should also consider the major challenges with regard to complex materials, accurate modeling, advanced control, and intelligent behaviors. As a starting point for such studies, this review provides a current overview of the field by examining the working mechanisms of advanced actuation and sensing modalities, modeling techniques, control strategies, and learning architectures for soft robots. Next, we summarize how these approaches can be applied to create sophisticated soft robots and examine their application areas. Finally, we provide future perspectives on what key challenges should be tackled first to advance soft robotics to truly add value to our society.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-062322-100607
2023-05-03
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/control/6/1/annurev-control-062322-100607.html?itemId=/content/journals/10.1146/annurev-control-062322-100607&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kim S, Laschi C, Trimmer B. 2013. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31:28794
    [Google Scholar]
  2. 2.
    Rus D, Tolley MT. 2015. Design, fabrication and control of soft robots. Nature 521:46775
    [Google Scholar]
  3. 3.
    Majidi C. 2019. Soft-matter engineering for soft robotics. Adv. Mater. Technol. 4:1800477
    [Google Scholar]
  4. 4.
    Amend J, Cheng N, Fakhouri S, Culley B. 2016. Soft robotics commercialization: jamming grippers from research to product. Soft Robot. 3:21322
    [Google Scholar]
  5. 5.
    Jørgensen TB, Jensen SHN, Aanæs H, Hansen NW, Krüger N. 2019. An adaptive robotic system for doing pick and place operations with deformable objects. J. Intell. Robot. Syst. 94:81100
    [Google Scholar]
  6. 6.
    Wang Z, Kanegae R, Hirai S. 2021. Circular shell gripper for handling food products. Soft Robot. 8:54254
    [Google Scholar]
  7. 7.
    Galloway KC, Becker KP, Phillips B, Kirby J, Licht S et al. 2016. Soft robotic grippers for biological sampling on deep reefs. Soft Robot. 3:2333
    [Google Scholar]
  8. 8.
    Kurumaya S, Phillips BT, Becker KP, Rosen MH, Gruber DF et al. 2018. A modular soft robotic wrist for underwater manipulation. Soft Robot. 5:399409
    [Google Scholar]
  9. 9.
    Vogt DM, Becker KP, Phillips BT, Graule MA, Rotjan RD et al. 2018. Shipboard design and fabrication of custom 3D-printed soft robotic manipulators for the investigation of delicate deep-sea organisms. PLOS ONE 13:e0200386
    [Google Scholar]
  10. 10.
    Bernth JE, Arezzo A, Liu H. 2017. A novel robotic meshworm with segment-bending anchoring for colonoscopy. IEEE Robot. Autom. Lett. 2:171824
    [Google Scholar]
  11. 11.
    Abidi H, Gerboni G, Brancadoro M, Fras J, Diodato A et al. 2018. Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery. Int. J. Med. Robot. 14:e1875
    [Google Scholar]
  12. 12.
    Hu W, Lum GZ, Mastrangeli M, Sitti M. 2018. Small-scale soft-bodied robot with multimodal locomotion. Nature 554:8185
    [Google Scholar]
  13. 13.
    Martinez RV, Branch JL, Fish CR, Jin L, Shepherd RF et al. 2013. Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv. Mater. 25:20512
    [Google Scholar]
  14. 14.
    Mosadegh B, Polygerinos P, Keplinger C, Wennstedt S, Shepherd RF et al. 2014. Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24:216370
    [Google Scholar]
  15. 15.
    Onal CD, Rus D. 2013. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspir. Biomim. 8:026003
    [Google Scholar]
  16. 16.
    Marchese AD, Katzschmann RK, Rus D. 2015. A recipe for soft fluidic elastomer robots. Soft Robot. 2:725
    [Google Scholar]
  17. 17.
    Polygerinos P, Correll N, Morin SA, Mosadegh B, Onal CD et al. 2017. Soft robotics: review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Adv. Eng. Mater. 19:1700016
    [Google Scholar]
  18. 18.
    Pelrine RE, Kornbluh RD, Joseph JP. 1998. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens. Actuators A 64:7785
    [Google Scholar]
  19. 19.
    Perju E, Ko YS, Dünki SJ, Opris DM. 2020. Increased electromechanical sensitivity of polysiloxane elastomers by chemical modification with thioacetic groups. Mater. Des. 186:108319
    [Google Scholar]
  20. 20.
    Huang J, Lu T, Zhu J, Clarke DR, Suo Z. 2012. Large, uni-directional actuation in dielectric elastomers achieved by fiber stiffening. Appl. Phys. Lett. 100:211901
    [Google Scholar]
  21. 21.
    Gupta U, Qin L, Wang Y, Godaba H, Zhu J. 2019. Soft robots based on dielectric elastomer actuators: a review. Smart Mater. Struct. 28:103002
    [Google Scholar]
  22. 22.
    Youn JH, Jeong SM, Hwang G, Kim H, Hyeon K et al. 2020. Dielectric elastomer actuator for soft robotics applications and challenges. Appl. Sci. 10:640
    [Google Scholar]
  23. 23.
    Iacob M, Verma A, Buchner T, Sheima Y, Katzschmann R, Opris DM. 2021. Slot-die coating of an on-the-shelf polymer with increased dielectric permittivity for stack actuators. ACS Appl. Polym. Mater. 4:15057
    [Google Scholar]
  24. 24.
    Acome E, Mitchell SK, Morrissey T, Emmett M, Benjamin C et al. 2018. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359:6165
    [Google Scholar]
  25. 25.
    Rothemund P, Kellaris N, Mitchell SK, Acome E, Keplinger C 2021. HASEL artificial muscles for a new generation of lifelike robots—recent progress and future opportunities. Adv. Mater. 33:2003375
    [Google Scholar]
  26. 26.
    Kellaris N, Gopaluni Venkata V, Smith GM, Mitchell SK, Keplinger C 2018. Peano-HASEL actuators: muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci. Robot. 3:eaar3276
    [Google Scholar]
  27. 27.
    Leroy E, Hinchet R, Shea H. 2020. Multimode hydraulically amplified electrostatic actuators for wearable haptics. Adv. Mater. 32:2002564
    [Google Scholar]
  28. 28.
    Helps T, Romero C, Taghavi M, Conn AT, Rossiter J. 2022. Liquid-amplified zipping actuators for micro-air vehicles with transmission-free flapping. Sci. Robot. 7:eabi8189
    [Google Scholar]
  29. 29.
    O'Neill MR, Acome E, Bakarich S, Mitchell SK, Timko J et al. 2020. Rapid 3D printing of electrohydraulic (HASEL) tentacle actuators. Adv. Funct. Mater. 30:2005244
    [Google Scholar]
  30. 30.
    Wang J, Gao D, Lee PS. 2021. Recent progress in artificial muscles for interactive soft robotics. Adv. Mater. 33:2003088
    [Google Scholar]
  31. 31.
    Yang Y, Wu Y, Li C, Yang X, Chen W 2020. Flexible actuators for soft robotics. Adv. Intell. Syst. 2:1900077
    [Google Scholar]
  32. 32.
    Lee SJ, Han MJ, Kim SJ, Jho JY, Lee HY, Kim YH. 2006. A new fabrication method for IPMC actuators and application to artificial fingers. Smart Mater. Struct. 15:1217
    [Google Scholar]
  33. 33.
    Mousavi MSS, Alaei A, Hasani M, Kolahdouz M, Manteghi F, Ataei F. 2018. Fabrication of ionic polymer metal composite for bio-actuation application: sputtering and electroless plating methods. Mater. Res. Express 6:035312
    [Google Scholar]
  34. 34.
    Cianchetti M. 2013. Fundamentals on the use of shape memory alloys in soft robotics. Interdisciplinary Mechatronics MK Habib, JP Davim 22754. Hoboken, NJ: Wiley
    [Google Scholar]
  35. 35.
    Laschi C, Cianchetti M, Mazzolai B, Margheri L, Follador M, Dario P 2012. Soft robot arm inspired by the octopus. Adv. Robot. 26:70927
    [Google Scholar]
  36. 36.
    Lin HT, Leisk GG, Trimmer B. 2011. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir. Biomim. 6:026007
    [Google Scholar]
  37. 37.
    Villanueva A, Smith C, Priya S. 2011. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspir. Biomim. 6:036004
    [Google Scholar]
  38. 38.
    Kim HJ, Song SH, Ahn SH. 2012. A turtle-like swimming robot using a smart soft composite (SSC) structure. Smart Mater. Struct. 22:014007
    [Google Scholar]
  39. 39.
    Huang X, Kumar K, Jawed MK, Mohammadi Nasab A, Ye Z et al. 2019. Highly dynamic shape memory alloy actuator for fast moving soft robots. Adv. Mater. Technol. 4:1800540
    [Google Scholar]
  40. 40.
    Abbott JJ, Diller E, Petruska AJ. 2020. Magnetic methods in robotics. Annu. Rev. Control Robot. Auton. Syst. 3:5790
    [Google Scholar]
  41. 41.
    Kim Y, Parada GA, Liu S, Zhao X. 2019. Ferromagnetic soft continuum robots. Sci. Robot. 4:eaax7329
    [Google Scholar]
  42. 42.
    Kim Y, Zhao X. 2022. Magnetic soft materials and robots. Chem. Rev. 122:531764
    [Google Scholar]
  43. 43.
    Huang HW, Sakar MS, Petruska AJ, Pané S, Nelson BJ. 2016. Soft micromachines with programmable motility and morphology. Nat. Commun. 7:12263
    [Google Scholar]
  44. 44.
    Lum GZ, Ye Z, Dong X, Marvi H, Erin O et al. 2016. Shape-programmable magnetic soft matter. PNAS 113:600715
    [Google Scholar]
  45. 45.
    Ren Z, Hu W, Dong X, Sitti M 2019. Multi-functional soft-bodied jellyfish-like swimming. Nat. Commun. 10:2703
    [Google Scholar]
  46. 46.
    Kim Y, Yuk H, Zhao R, Chester SA, Zhao X. 2018. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558:27479
    [Google Scholar]
  47. 47.
    Xu T, Zhang J, Salehizadeh M, Onaizah O, Diller E. 2019. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Sci. Robot. 4:eaav4494
    [Google Scholar]
  48. 48.
    Li M, Wang Y, Chen A, Naidu A, Napier BS et al. 2018. Flexible magnetic composites for light-controlled actuation and interfaces. PNAS 115:811924
    [Google Scholar]
  49. 49.
    Alapan Y, Karacakol AC, Guzelhan SN, Isik I, Sitti M. 2020. Reprogrammable shape morphing of magnetic soft machines. Sci. Adv. 6:eabc6414
    [Google Scholar]
  50. 50.
    Ricotti L, Trimmer B, Feinberg AW, Raman R, Parker KK et al. 2017. Biohybrid actuators for robotics: a review of devices actuated by living cells. Sci. Robot. 2:eaaq0495
    [Google Scholar]
  51. 51.
    Mazzolai B, Laschi C. 2020. A vision for future bioinspired and biohybrid robots. Sci. Robot. 5:eaba6893
    [Google Scholar]
  52. 52.
    Trimmer BA. 2020. Metal or muscle? The future of biologically inspired robots. Sci. Robot. 5:eaba6149
    [Google Scholar]
  53. 53.
    Raman R, Grant L, Seo Y, Cvetkovic C, Gapinske M et al. 2017. Damage, healing, and remodeling in optogenetic skeletal muscle bioactuators. Adv. Healthc. Mater. 6:1700030
    [Google Scholar]
  54. 54.
    Xi J, Schmidt JJ, Montemagno CD. 2005. Self-assembled microdevices driven by muscle. Nat. Mater. 4:18084
    [Google Scholar]
  55. 55.
    Akiyama Y, Hoshino T, Iwabuchi K, Morishima K. 2012. Room temperature operable autonomously moving bio-microrobot powered by insect dorsal vessel tissue. PLOS ONE 7:e38274
    [Google Scholar]
  56. 56.
    Feinberg AW, Feigel A, Shevkoplyas SS, Sheehy S, Whitesides GM, Parker KK. 2007. Muscular thin films for building actuators and powering devices. Science 317:136670
    [Google Scholar]
  57. 57.
    Nawroth JC, Lee H, Feinberg AW, Ripplinger CM, McCain ML et al. 2012. A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30:79297
    [Google Scholar]
  58. 58.
    Williams BJ, Anand SV, Rajagopalan J, Saif MTA. 2014. A self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun. 5:3081
    [Google Scholar]
  59. 59.
    Park SJ, Gazzola M, Park KS, Park S, Di Santo V et al. 2016. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353:15862
    [Google Scholar]
  60. 60.
    Lee KY, Park SJ, Matthews DG, Kim SL, Marquez CA et al. 2022. An autonomously swimming biohybrid fish designed with human cardiac biophysics. Science 375:63947
    [Google Scholar]
  61. 61.
    Cvetkovic C, Raman R, Chan V, Williams BJ, Tolish M et al. 2014. Three-dimensionally printed biological machines powered by skeletal muscle. PNAS 111:1012530
    [Google Scholar]
  62. 62.
    Guix M, Mestre R, Patiño T, De Corato M, Fuentes J et al. 2021. Biohybrid soft robots with self-stimulating skeletons. Sci. Robot. 6:eabe7577
    [Google Scholar]
  63. 63.
    Raman R, Cvetkovic C, Uzel SG, Platt RJ, Sengupta P et al. 2016. Optogenetic skeletal muscle-powered adaptive biological machines. PNAS 113:3497502
    [Google Scholar]
  64. 64.
    Aydin O, Zhang X, Nuethong S, Pagan-Diaz GJ, Bashir R et al. 2019. Neuromuscular actuation of biohybrid motile bots. PNAS 116:1984147
    [Google Scholar]
  65. 65.
    Herr H, Dennis RG. 2004. A swimming robot actuated by living muscle tissue. J. NeuroEng. Rehabil. 1:6
    [Google Scholar]
  66. 66.
    Uesugi K, Shimizu K, Akiyama Y, Hoshino T, Iwabuchi K, Morishima K 2016. Contractile performance and controllability of insect muscle-powered bioactuator with different stimulation strategies for soft robotics. Soft Robot. 3:1322
    [Google Scholar]
  67. 67.
    Baryshyan A, Domigan L, Hunt B, Trimmer B, Kaplan D 2014. Self-assembled insect muscle bioactuators with long term function under a range of environmental conditions. RSC Adv. 4:3996268
    [Google Scholar]
  68. 68.
    Katzschmann RK, Thieffry M, Goury O, Kruszewski A, Guerra TM et al. 2019. Dynamically closed-loop controlled soft robotic arm using a reduced order finite element model with state observer. 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft)71724. Piscataway, NJ: IEEE
    [Google Scholar]
  69. 69.
    Doroudchi A, Berman S. 2021. Configuration tracking for soft continuum robotic arms using inverse dynamic control of a Cosserat rod model. 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft)20714. Piscataway, NJ: IEEE
    [Google Scholar]
  70. 70.
    Katzschmann RK, Della Santina C, Toshimitsu Y, Bicchi A, Rus D 2019. Dynamic motion control of multi-segment soft robots using piecewise constant curvature matched with an augmented rigid body model. 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft)45461. Piscataway, NJ: IEEE
    [Google Scholar]
  71. 71.
    Coevoet E, Morales-Bieze T, Largilliere F, Zhang Z, Thieffry M et al. 2017. Software toolkit for modeling, simulation, and control of soft robots. Adv. Robot. 31:120824
    [Google Scholar]
  72. 72.
    Du T, Wu K, Ma P, Wah S, Spielberg A et al. 2021. DiffPD: Differentiable Projective Dynamics. ACM Trans. Graph. 41:13
    [Google Scholar]
  73. 73.
    Li M, Ferguson Z, Schneider T, Langlois TR, Zorin D et al. 2020. Incremental potential contact: intersection-and inversion-free, large-deformation dynamics. ACM Trans. Graph. 39:49
    [Google Scholar]
  74. 74.
    Hu Y, Liu J, Spielberg A, Tenenbaum JB, Freeman WT et al. 2019. ChainQueen: a real-time differentiable physical simulator for soft robotics. 2019 International Conference on Robotics and Automation (ICRA)626571. Piscataway, NJ: IEEE
    [Google Scholar]
  75. 75.
    Allard J, Cotin S, Faure F, Bensoussan PJ, Poyer F et al. 2007. SOFA—an open source framework for medical simulation. Medicine Meets Virtual Reality 15 JD Westwood, RS Haluck, HM Hoffman, GT Mogel, R Phillips et al.1318. Amsterdam: IOS
    [Google Scholar]
  76. 76.
    Goury O, Carrez B, Duriez C. 2021. Real-time simulation for control of soft robots with self-collisions using model order reduction for contact forces. IEEE Robot. Autom. Lett. 6:375259
    [Google Scholar]
  77. 77.
    COMSOL 2021. COMSOL Multiphysics® simulation software. COMSOL https://www.comsol.com/comsol-multiphysics
    [Google Scholar]
  78. 78.
    Smith M. 2009. ABAQUS/Standard User's Manual, Version 6.9 Johnston, RI: Dassault Syst. Simulia
    [Google Scholar]
  79. 79.
    Verschoor M, Jalba AC. 2019. Efficient and accurate collision response for elastically deformable models. ACM Trans. Graph. 38:17
    [Google Scholar]
  80. 80.
    Ma P, Du T, Zhang JZ, Wu K, Spielberg A et al. 2021. DiffAqua: a differentiable computational design pipeline for soft underwater swimmers with shape interpolation. ACM Trans. Graph. 40:132
    [Google Scholar]
  81. 81.
    Nava E, Zhang JZ, Michelis MY, Du T, Ma P et al. 2022. Fast aquatic swimmer optimization with differentiable projective dynamics and neural network hydrodynamic models. Proceedings of the 39th International Conference on Machine Learning K Chaudhuri, S Jegelka, L Song, C Szepesvari, G Niu, S Sabato 1641327. Proc. Mach. Learn. Res. 162. N.p.: PMLR
    [Google Scholar]
  82. 82.
    Zhang JZ, Zhang Y, Ma P, Nava E, Du T et al. 2021. Learning material parameters and hydrodynamics of soft robotic fish via differentiable simulation. arXiv:2109.14855 [cs.RO]
  83. 83.
    Dubied M, Michelis MY, Spielberg A, Katzschmann RK. 2022. Sim-to-real for soft robots using differentiable FEM: recipes for meshing, damping, and actuation. IEEE Robot. Autom. Lett. 7:501522
    [Google Scholar]
  84. 84.
    Naughton N, Sun J, Tekinalp A, Parthasarathy T, Chowdhary G, Gazzola M. 2021. Elastica: a compliant mechanics environment for soft robotic control. IEEE Robot. Autom. Lett. 6:338996
    [Google Scholar]
  85. 85.
    Renda F, Boyer F, Dias J, Seneviratne L. 2018. Discrete Cosserat approach for multisection soft manipulator dynamics. IEEE Trans. Robot. 34:151833
    [Google Scholar]
  86. 86.
    Till J, Aloi V, Rucker C. 2019. Real-time dynamics of soft and continuum robots based on Cosserat rod models. Int. J. Robot. Res. 38:72346
    [Google Scholar]
  87. 87.
    Grazioso S, Di Gironimo G, Siciliano B. 2019. A geometrically exact model for soft continuum robots: the finite element deformation space formulation. Soft Robot. 6:790811
    [Google Scholar]
  88. 88.
    Della Santina C, Bicchi A, Rus D 2020. On an improved state parametrization for soft robots with piecewise constant curvature and its use in model based control. IEEE Robot. Autom. Lett. 5:10018
    [Google Scholar]
  89. 89.
    Della Santina C, Katzschmann RK, Biechi A, Rus D 2018. Dynamic control of soft robots interacting with the environment. 2018 IEEE International Conference on Soft Robotics (RoboSoft)4653. Piscataway, NJ: IEEE
    [Google Scholar]
  90. 90.
    Della Santina C, Katzschmann RK, Bicchi A, Rus D 2020. Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment. Int. J. Robot. Res. 39:490513
    [Google Scholar]
  91. 91.
    Toshimitsu Y, Wong KW, Buchner T, Katzschmann R. 2021. SoPrA: fabrication & dynamical modeling of a scalable soft continuum robotic arm with integrated proprioceptive sensing. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)65360. Piscataway, NJ: IEEE
    [Google Scholar]
  92. 92.
    Huang X, Zou J, Gu G. 2021. Kinematic modeling and control of variable curvature soft continuum robots. IEEE/ASME Trans. Mechatron. 26:317585
    [Google Scholar]
  93. 93.
    Della Santina C, Rus D 2019. Control oriented modeling of soft robots: the polynomial curvature case. IEEE Robot. Autom. Lett. 5:29098
    [Google Scholar]
  94. 94.
    Singh I, Amara Y, Melingui A, Mani Pathak P, Merzouki R 2018. Modeling of continuum manipulators using Pythagorean hodograph curves. Soft Robot. 5:42542
    [Google Scholar]
  95. 95.
    Kazemipour A, Fischer O, Toshimitsu Y, Wong KW, Katzschmann RK. 2022. Adaptive dynamic sliding mode control of soft continuum manipulators. 2022 International Conference on Robotics and Automation (ICRA)325965. Piscataway, NJ: IEEE
    [Google Scholar]
  96. 96.
    Thuruthel TG, Falotico E, Renda F, Laschi C 2019. Model-based reinforcement learning for closed-loop dynamic control of soft robotic manipulators. IEEE Trans. Robot. 35:12434
    [Google Scholar]
  97. 97.
    Gillespie MT, Best CM, Townsend EC, Wingate D, Killpack MD. 2018. Learning nonlinear dynamic models of soft robots for model predictive control with neural networks. 2018 IEEE International Conference on Soft Robotics (RoboSoft)3945. Piscataway, NJ: IEEE
    [Google Scholar]
  98. 98.
    Pfaff T, Fortunato M, Sanchez-Gonzalez A, Battaglia P. 2021. Learning mesh-based simulation with graph networks. 2021 International Conference on Learning Representations La Jolla, CA: Int. Conf. Learn. Represent https://openreview.net/pdf?id=roNqYL0_XP
    [Google Scholar]
  99. 99.
    Soter G, Conn A, Hauser H, Rossiter J. 2018. Bodily aware soft robots: integration of proprioceptive and exteroceptive sensors. 2018 IEEE International Conference on Robotics and Automation (ICRA)244853. Piscataway, NJ: IEEE
    [Google Scholar]
  100. 100.
    Bruder D, Fu X, Gillespie RB, Remy CD, Vasudevan R. 2020. Data-driven control of soft robots using Koopman operator theory. IEEE Trans. Robot. 37:94861
    [Google Scholar]
  101. 101.
    Han M, Euler-Rolle J, Katzschmann RK. 2022. DeSKO: stability-assured robust control with a deep stochastic Koopman operator. 2022 International Conference on Learning Representations La Jolla, CA: Int. Conf. Learn. Represent https://openreview.net/pdf?id=hniLRD_XCA
    [Google Scholar]
  102. 102.
    Kim JI, Hong M, Lee K, Kim D, Park YL, Oh S. 2020. Learning to walk a tripod mobile robot using nonlinear soft vibration actuators with entropy adaptive reinforcement learning. IEEE Robot. Autom. Lett. 5:231724
    [Google Scholar]
  103. 103.
    Zhang B, Liu P 2021. Model-based and model-free robot control: a review. RiTA 2020: Proceedings of the 8th International Conference on Robot Intelligence Technology and Applications E Chew, APPA Majeed, P Liu, J Platts, H Myung et al.4555. Singapore: Springer
    [Google Scholar]
  104. 104.
    Caasenbrood BJ, Pogromsky AY, Nijmeijer H. 2020. Dynamic modeling of hyper-elastic soft robots using spatial curves. IFAC-PapersOnLine 53:2923843
    [Google Scholar]
  105. 105.
    Jiang H, Wang Z, Jin Y, Chen X, Li P et al. 2021. Hierarchical control of soft manipulators towards unstructured interactions. Int. J. Robot. Res. 40:41134
    [Google Scholar]
  106. 106.
    Garriga-Casanovas A, Rodriguez y Baena F. 2019. Kinematics of continuum robots with constant curvature bending and extension capabilities. J. Mech. Robot. 11:011010
    [Google Scholar]
  107. 107.
    Della Santina C, Pallottino L, Rus D, Bicchi A 2019. Exact task execution in highly under-actuated soft limbs: an operational space based approach. IEEE Robot. Autom. Lett. 4:250815
    [Google Scholar]
  108. 108.
    Wang H, Yang B, Liu Y, Chen W, Liang X, Pfeifer R. 2016. Visual servoing of soft robot manipulator in constrained environments with an adaptive controller. IEEE/ASME Trans. Mechatron. 22:4150
    [Google Scholar]
  109. 109.
    Fischer O, Toshimitsu Y, Kazemipour A, Katzschmann RK. 2023. Dynamic task space control enables soft manipulators to perform real-world tasks. Adv. Intell. Syst. 5:2200024
    [Google Scholar]
  110. 110.
    Trumić M, Della Santina C, Jovanović K, Fagiolini A 2021. Adaptive control of soft robots based on an enhanced 3D augmented rigid robot matching. 2021 American Control Conference (ACC)499196. Piscataway, NJ: IEEE
    [Google Scholar]
  111. 111.
    Verghese M, Richter F, Gunn A, Weissbrod P, Yip M 2022. Model-free visual control for continuum robot manipulators via orientation adaptation. Robotics Research: The 19th International Symposium ISRR T Asfour, E Yoshida, J Park, H Christensen, O Khatib 95970. Cham, Switz: Springer
    [Google Scholar]
  112. 112.
    Satheeshbabu S, Uppalapati NK, Chowdhary G, Krishnan G. 2019. Open loop position control of soft continuum arm using deep reinforcement learning. 2019 International Conference on Robotics and Automation (ICRA)513339. Piscataway, NJ: IEEE
    [Google Scholar]
  113. 113.
    Navarro SE, Nagels S, Alagi H, Faller LM, Goury O et al. 2020. A model-based sensor fusion approach for force and shape estimation in soft robotics. IEEE Robot. Autom. Lett. 5:562128
    [Google Scholar]
  114. 114.
    Homberg BS, Katzschmann RK, Dogar MR, Rus D. 2019. Robust proprioceptive grasping with a soft robot hand. Auton. Robots 43:68196
    [Google Scholar]
  115. 115.
    Teyssier M, Parilusyan B, Roudaut A, Steimle J. 2021. Human-like artificial skin sensor for physical human-robot interaction. 2021 IEEE International Conference on Robotics and Automation (ICRA)362633. Piscataway, NJ: IEEE
    [Google Scholar]
  116. 116.
    Mirzanejad H, Agheli M. 2019. Soft force sensor made of magnetic powder blended with silicone rubber. Sens. Actuators A 293:10818
    [Google Scholar]
  117. 117.
    Kuppuswamy N, Alspach A, Uttamchandani A, Creasey S, Ikeda T, Tedrake R. 2020. Soft-bubble grippers for robust and perceptive manipulation. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)991724. Piscataway, NJ: IEEE
    [Google Scholar]
  118. 118.
    Shih B, Christianson C, Gillespie K, Lee S, Mayeda J et al. 2019. Design considerations for 3D printed, soft, multimaterial resistive sensors for soft robotics. Front. Robot. AI 6:30
    [Google Scholar]
  119. 119.
    Ozel S, Skorina EH, Luo M, Tao W, Chen F et al. 2016. A composite soft bending actuation module with integrated curvature sensing. 2016 IEEE International Conference on Robotics and Automation (ICRA)496368. Piscataway, NJ: IEEE
    [Google Scholar]
  120. 120.
    Nguyen PH, Sridar S, Zhang W, Polygerinos P. 2017. Design and control of a 3-chambered fiber reinforced soft actuator with off-the-shelf stretch sensors. Int. J. Intell. Robot. Appl. 1:34251
    [Google Scholar]
  121. 121.
    Georgopoulou A, Clemens F. 2022. Pellet-based fused deposition modeling for the development of soft compliant robotic grippers with integrated sensing elements. Flex. Print. Electron. 7:025010
    [Google Scholar]
  122. 122.
    Truby RL, Della Santina C, Rus D 2020. Distributed proprioception of 3D configuration in soft, sensorized robots via deep learning. IEEE Robot. Autom. Lett. 5:3299306
    [Google Scholar]
  123. 123.
    Tapia J, Knoop E, Mutn M, Otaduy MA, Bächer M. 2020. MakeSense: automated sensor design for proprioceptive soft robots. Soft Robot. 7:33245
    [Google Scholar]
  124. 124.
    Chossat JB, Park YL, Wood RJ, Duchaine V. 2013. A soft strain sensor based on ionic and metal liquids. IEEE Sens. J. 13:340514
    [Google Scholar]
  125. 125.
    Truby RL, Wehner M, Grosskopf AK, Vogt DM, Uzel SG et al. 2018. Soft somatosensitive actuators via embedded 3D printing. Adv. Mater. 30:1706383
    [Google Scholar]
  126. 126.
    Wang H, Zhang R, Chen W, Liang X, Pfeifer R. 2016. Shape detection algorithm for soft manipulator based on fiber Bragg gratings. IEEE/ASME Trans. Mechatron. 21:297782
    [Google Scholar]
  127. 127.
    Zhang Z, Wang X, Wang S, Meng D, Liang B. 2018. Shape detection and reconstruction of soft robotic arm based on fiber Bragg grating sensor array. 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO)97883. Piscataway, NJ: IEEE
    [Google Scholar]
  128. 128.
    Sefati S, Murphy RJ, Alambeigi F, Pozin M, Iordachita I et al. 2018. FBG-based control of a continuum manipulator interacting with obstacles. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)647783. Piscataway, NJ: IEEE
    [Google Scholar]
  129. 129.
    Zhuang W, Sun G, Li H, Lou X, Dong M, Zhu L. 2018. FBG based shape sensing of a silicone octopus tentacle model for soft robotics. Optik 165:715
    [Google Scholar]
  130. 130.
    Monet F, Sefati S, Lorre P, Poiffaut A, Kadoury S et al. 2020. High-resolution optical fiber shape sensing of continuum robots: a comparative study. 2020 IEEE International Conference on Robotics and Automation (ICRA)887783. Piscataway, NJ: IEEE
    [Google Scholar]
  131. 131.
    Walck G, Perdereau V. 2014. Software compensation of magnetic crosstalk on Hall-effect-based rotary encoders close together. 2014 IEEE International Conference on Robotics and Automation (ICRA)490611. Piscataway, NJ: IEEE
    [Google Scholar]
  132. 132.
    Khaykin Y, Oosthuizen R, Zarnett L, Wulffhart ZA, Whaley B et al. 2011. CARTO-guided vs. NavX-guided pulmonary vein antrum isolation and pulmonary vein antrum isolation performed without 3-D mapping: effect of the 3-D mapping system on procedure duration and fluoroscopy time. J. Interv. Card. Electrophysiol. 30:23340
    [Google Scholar]
  133. 133.
    Khaykin Y, Zarnett L, Friedlander D, Wulffhart ZA, Whaley B et al. 2012. Point-by-point pulmonary vein antrum isolation guided by intracardiac echocardiography and 3D mapping and duty-cycled multipolar AF ablation: effect of multipolar ablation on procedure duration and fluoroscopy time. J. Interv. Card. Electrophysiol. 34:30310
    [Google Scholar]
  134. 134.
    der Maur PA, Djambazi B, Haberthür Y, Hörmann P, Kübler A et al. 2021. RoBoa: construction and evaluation of a steerable vine robot for search and rescue applications. 2021 IEEE International Conference on Soft Robotics (RoboSoft)1520. Piscataway, NJ: IEEE
    [Google Scholar]
  135. 135.
    Katzschmann RK, DelPreto J, MacCurdy R, Rus D. 2018. Exploration of underwater life with an acoustically controlled soft robotic fish. Sci. Robot. 3:eaar3449
    [Google Scholar]
  136. 136.
    Brown E, Rodenberg N, Amend J, Mozeika A, Steltz E et al. 2010. Universal robotic gripper based on the jamming of granular material. PNAS 107:1880914
    [Google Scholar]
  137. 137.
    Gorissen B, De Volder M, Reynaerts D. 2018. Chip-on-tip endoscope incorporating a soft robotic pneumatic bending microactuator. Biomed. Microdevices 20:73
    [Google Scholar]
  138. 138.
    Shintake J, Cacucciolo V, Floreano D, Shea H. 2018. Soft robotic grippers. Adv. Mater. 30:1707035
    [Google Scholar]
  139. 139.
    Shintake J, Rosset S, Schubert B, Floreano D, Shea H. 2016. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv. Mater. 28:23138
    [Google Scholar]
  140. 140.
    Zhang YF, Zhang N, Hingorani H, Ding N, Wang D et al. 2019. Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Adv. Funct. Mater. 29:1806698
    [Google Scholar]
  141. 141.
    Drotman D, Jadhav S, Sharp D, Chan C, Tolley MT. 2021. Electronics-free pneumatic circuits for controlling soft-legged robots. Sci. Robot. 6:eaay2627
    [Google Scholar]
  142. 142.
    Chautems C, Tonazzini A, Boehler Q, Jeong SH, Floreano D, Nelson BJ. 2020. Magnetic continuum device with variable stiffness for minimally invasive surgery. Adv. Intell. Syst. 2:1900086
    [Google Scholar]
  143. 143.
    Gu G, Zhang N, Xu H, Lin S, Yu Y et al. 2021. A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-021-00767-0
    [Google Scholar]
  144. 144.
    Fusco S, Sakar MS, Kennedy S, Peters C, Bottani R et al. 2014. An integrated microrobotic platform for on-demand, targeted therapeutic interventions. Adv. Mater. 26:95257
    [Google Scholar]
  145. 145.
    Morimoto Y, Onoe H, Takeuchi S. 2018. Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues. Sci. Robot. 3:eaat4440
    [Google Scholar]
  146. 146.
    Song S, Sitti M. 2014. Soft grippers using micro-fibrillar adhesives for transfer printing. Adv. Mater. 26:49016
    [Google Scholar]
  147. 147.
    Morin SA, Shepherd RF, Kwok SW, Stokes AA, Nemiroski A, Whitesides GM. 2012. Camouflage and display for soft machines. Science 337:82832
    [Google Scholar]
  148. 148.
    Won P, Kim KK, Kim H, Park JJ, Ha I et al. 2021. Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater. 33:2002397
    [Google Scholar]
  149. 149.
    Tolley MT, Shepherd RF, Galloway KC, Wood RJ, Whitesides GM et al. 2014. A resilient, untethered soft robot. Soft Robot. 1:21323
    [Google Scholar]
  150. 150.
    Li T, Li G, Liang Y, Cheng T, Dai J et al. 2017. Fast-moving soft electronic fish. Sci. Adv. 3:e1602045
    [Google Scholar]
  151. 151.
    Li G, Chen X, Zhou F, Liang Y, Xiao Y et al. 2021. Self-powered soft robot in the Mariana Trench. Nature 591:6671
    [Google Scholar]
  152. 152.
    Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM et al. 2016. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536:45155
    [Google Scholar]
  153. 153.
    Aubin CA, Choudhury S, Jerch R, Archer LA, Pikul JH, Shepherd RF. 2019. Electrolytic vascular systems for energy-dense robots. Nature 571:5157
    [Google Scholar]
  154. 154.
    Ranzani T, Cianchetti M, Gerboni G, De Falco I, Menciassi A. 2016. A soft modular manipulator for minimally invasive surgery: design and characterization of a single module. IEEE Trans. Robot. 32:187200
    [Google Scholar]
  155. 155.
    Lussi J, Mattmann M, Sevim S, Grigis F, De Marco C et al. 2021. A submillimeter continuous variable stiffness catheter for compliance control. Adv. Sci. 8:2101290
    [Google Scholar]
  156. 156.
    Kobayashi T, Matsunaga T, Haga Y 2016. Active bending electric endoscope using shape memory alloy wires. New Trends in Medical and Service Robots H Bleuler, M Bouri, F Mondada, D Pisla, A Rodic, P Helmer 13139. Cham, Switz: Springer
    [Google Scholar]
  157. 157.
    Mair LO, Adam G, Chowdhury S, Davis A, Arifin DR et al. 2021. Soft capsule magnetic millirobots for region-specific drug delivery in the central nervous system. Front. Robot. AI 26:226
    [Google Scholar]
  158. 158.
    Hawkes EW, Majidi C, Tolley MT. 2021. Hard questions for soft robotics. Sci. Robot. 6:eabg6049
    [Google Scholar]
  159. 159.
    Rothemund P, Kim Y, Heisser RH, Zhao X, Shepherd RF, Keplinger C. 2021. Shaping the future of robotics through materials innovation. Nat. Mater. 20:158287
    [Google Scholar]
  160. 160.
    Terryn S, Langenbach J, Roels E, Brancart J, Bakkali-Hassani C et al. 2021. A review on self-healing polymers for soft robotics. Mater. Today 47:187205
    [Google Scholar]
  161. 161.
    Hartmann F, Baumgartner M, Kaltenbrunner M. 2021. Becoming sustainable, the new frontier in soft robotics. Adv. Mater. 33:2004413
    [Google Scholar]
  162. 162.
    Mitchell SK, Martin T, Keplinger C. 2022. A pocket-sized ten-channel high voltage power supply for soft electrostatic actuators. Adv. Mater. Technol. 7:2101469
    [Google Scholar]
  163. 163.
    Mirvakili SM, Leroy A, Sim D, Wang EN. 2021. Solar-driven soft robots. Adv. Sci. 8:2004235
    [Google Scholar]
  164. 164.
    Terryn S, Brancart J, Lefeber D, Van Assche G, Vanderborght B. 2017. Self-healing soft pneumatic robots. Sci. Robot. 2:eaan4268
    [Google Scholar]
  165. 165.
    Pena-Francesch A, Jung H, Demirel MC, Sitti M. 2020. Biosynthetic self-healing materials for soft machines. Nat. Mater. 19:123035
    [Google Scholar]
  166. 166.
    Dong X, Kheiri S, Lu Y, Xu Z, Zhen M, Liu X. 2021. Toward a living soft microrobot through optogenetic locomotion control of Caenorhabditis elegans. Sci. Robot. 6:eabe3950
    [Google Scholar]
  167. 167.
    Rauschecker JP, Leaver AM, Mühlau M. 2010. Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron 66:81926
    [Google Scholar]
/content/journals/10.1146/annurev-control-062322-100607
Loading
/content/journals/10.1146/annurev-control-062322-100607
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error