1932

Abstract

Surface tension effects are known to be dominant at the submillimeter scale. Within this context, the literature has extensively described the underlying physics (e.g., surface tension, wetting, surface texturation, and coatings), and capillary forces have been exploited in a variety of applications (e.g., capillary picking, self-alignment, capillary sealing, and capillary bearings). As several stimuli can be used to control liquid menisci, these forces have been used mainly in microrobotics in open loop (i.e., without real-time feedback). However, at least two major sources of uncertainty hinder these forces from working properly in open loop: the variability due to contact-angle hysteresis (the difference between wetting and unwetting) and the variability in the involved volume of liquid. To be able to reject these disturbances, successful sensor integration and associated advanced control schemes need to be embedded in capillary microrobotic microsystems. This article analyzes research contributions in this field from three different perspectives: the stimulus action of the surface tension effect (light, B-field, etc.), the application field (actuation, picking, sealing, etc.), and the sensing and control schemes. Technologically complex developments coexist with elegant and straightforward engineering solutions. Biological aspects of surface tension are not included in this review.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-062422-102559
2023-05-03
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/control/6/1/annurev-control-062422-102559.html?itemId=/content/journals/10.1146/annurev-control-062422-102559&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Jurin J. 1718. An account of some experiments shown before the Royal Society: with an enquiry into the cause of ascent and suspension of water in capillary tubes. Philos. Trans. R. Soc. 30:739–47
    [Google Scholar]
  2. 2.
    Feng S, Zhu P, Zheng H, Zhan H, Chen C et al. 2021. Three-dimensional capillary ratchet-induced liquid directional steering. Science 373:1344–48
    [Google Scholar]
  3. 3.
    Laplace PS. 1805. Supplément au dixième livre du Traité de mécanique céleste. Sur l'action capillaire. Paris: Courcier
    [Google Scholar]
  4. 4.
    Plateau JAF. 1873. Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires Paris: Gauthier-Villars
    [Google Scholar]
  5. 5.
    Wenzel RN. 1936. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28:988–94
    [Google Scholar]
  6. 6.
    Washburn E. 1921. The dynamics of capillary flow. Phys. Rev. 17:273–83
    [Google Scholar]
  7. 7.
    Tanner LH. 1979. The spreading of silicone oil drops on horizontal surfaces. J. Phys. D 12:1473–84
    [Google Scholar]
  8. 8.
    Adamson AW, Gast AP. 1997. Physical Chemistry of Surfaces New York: Wiley & Sons. , 6th ed..
    [Google Scholar]
  9. 9.
    Israelachvili JN. 1992. Intermolecular and Surface Forces San Diego, CA: Academic. , 2nd ed..
    [Google Scholar]
  10. 10.
    de Gennes PG, Brochart-Wyard F, Quéré D. 2002. Gouttes, bulles, perles et ondes Paris: Belin
    [Google Scholar]
  11. 11.
    Lambert P 2013. Surface Tension in Microsystems: Engineering Below the Capillary Length Berlin: Springer
    [Google Scholar]
  12. 12.
    Mastrangeli M, Zhou Q, Sariola V, Lambert P. 2017. Surface tension-driven self-alignment. Soft Matter 13:304–27
    [Google Scholar]
  13. 13.
    Brakke K. 1992. The surface evolver. Exp. Math. 1:141–65
    [Google Scholar]
  14. 14.
    De Volder M, Peirs J, Reynaerts D, Coosemans J, Puers R et al. 2005. A novel hydraulic microactuator sealed by surface tension. Sens. Actuators A 123–24:547–54
    [Google Scholar]
  15. 15.
    Barbot A, Power M, Seichepine F, Yang GZ. 2020. Liquid seal for compact micropiston actuation at the capillary tip. Sci. Adv. 6:eaba5660
    [Google Scholar]
  16. 16.
    Lenders C, Gauthier M, Cojan R, Lambert P. 2012. Three-DOF microrobotic platform based on capillary actuation. IEEE Trans. Robot. 28:1157–61
    [Google Scholar]
  17. 17.
    Hagiwara W, Ito T, Tanaka K, Tokui R, Fuchiwaki O. 2019. Capillary force gripper for complex-shaped micro-objects with fast droplet forming by on–off control of a piston slider. IEEE Robot. Autom. Lett. 4:3695–702
    [Google Scholar]
  18. 18.
    Uran S, Šafaric R, Bratina B 2017. Reliable and accurate release of micro-sized objects with a gripper that uses the capillary-force method. Micromachines 8:182
    [Google Scholar]
  19. 19.
    Brzoska J, Brochard-Wyart F, Rondelez F. 1993. Motions of droplets on hydrophobic model surfaces induced by thermal gradients. Langmuir 9:2220–24
    [Google Scholar]
  20. 20.
    Amador GJ, Tabak AF, Ren Z, Alapan Y, Yasa O, Sitti M. 2018. Thermocapillary-driven fluid flow within microchannels. arXiv:1802.00475 [physics.flu-dyn]
  21. 21.
    Iazzolino A, Tourtit Y, Chafai A, Gilet T, Lambert P, Tadrist L. 2019. Pick up and release of micro-objects: a motion-free method to change the conformity of a capillary contact. Soft Matter 16:754
    [Google Scholar]
  22. 22.
    Maggi C, Saglimbeni F, Dipalo M, De Angelis F, Di Leonardo R 2015. Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects. Nat. Commun. 6:6–10
    [Google Scholar]
  23. 23.
    Zhang J, Wang Z, Wang Z, Zhang T, Wei L. 2019. In-fibre particle manipulation and device assembly via laser induced thermocapillary convection. Nat. Commun. 10:5206
    [Google Scholar]
  24. 24.
    Piñan Basualdo FN, Bolopion A, Gauthier M, Lambert P 2021. A microrobotic platform actuated by thermocapillary flows for manipulation at the air-water interface. Sci. Robot. 6:eabd3557
    [Google Scholar]
  25. 25.
    Hu W, Ishii KS, Ohta AT. 2011. Micro-assembly using optically controlled bubble microrobots. Appl. Phys. Lett. 99:094103
    [Google Scholar]
  26. 26.
    Gallardo BS, Gupta VK, Eagerton FD, Jong LI, Craig VS et al. 1999. Electrochemical principles for active control of liquids on submillimeter scales. Science 283:57–60
    [Google Scholar]
  27. 27.
    Wissman J, Dickey MD, Majidi C. 2017. Field-controlled electrical switch with liquid metal. Adv. Sci. 4:1700169
    [Google Scholar]
  28. 28.
    Läubli NF, Burri JT, Marquard J, Vogler H, Mosca G et al. 2021. 3D mechanical characterization of single cells and small organisms using acoustic manipulation and force microscopy. Nat. Commun. 12:2583
    [Google Scholar]
  29. 29.
    Shin JY, Abbott NL. 1999. Using light to control dynamic surface tensions of aqueous solutions of water soluble surfactants. Langmuir 15:4404–10
    [Google Scholar]
  30. 30.
    Diguet A, Guillermic RM, Magome N, Saint-Jalmes A, Chen Y et al. 2009. Photomanipulation of a droplet by the chromocapillary effect. Angew. Chem. 48:9281–84
    [Google Scholar]
  31. 31.
    Yucknovsky A, Rich BB, Westfried A, Pokroy B, Amdursky N. 2021. Self-propulsion of droplets via light-stimuli rapid control of their surface tension. Adv. Mater. Interfaces 8:2100751
    [Google Scholar]
  32. 32.
    Ji W, Li W, Wang Y, Lan D. 2019. Tunable spreading and shrinking on photocontrolled liquid substrate. ACS Omega 4:21967–74
    [Google Scholar]
  33. 33.
    Rosario R, Gust D, Hayes M, Jahnke F, Springer J, Garcia AA. 2002. Photon-modulated wettability changes on spiropyran-coated surfaces. Langmuir 18:8062–69
    [Google Scholar]
  34. 34.
    Takei A, Matsumoto K, Shomoyama I. 2010. Capillary motor driven by electrowetting. Lab Chip 10:1781
    [Google Scholar]
  35. 35.
    Kedzierski J, Holihan E. 2018. Linear and rotational microhydraulic actuators driven by electrowetting. Sci. Robot. 3:eaat5643
    [Google Scholar]
  36. 36.
    Barth CA, Hu X, Mibus MA, Reed ML, Knospe CR. 2018. Large membrane deflection via capillary force actuation. J. Micromech. Microeng. 28:065008
    [Google Scholar]
  37. 37.
    Moon I, Kim J. 2006. Using EWOD (electrowetting-on-dielectric) actuation in a micro conveyor system. Sens. Actuators A 130:537–44
    [Google Scholar]
  38. 38.
    Velev OD, Prevo BG, Bhatt KH. 2003. On-chip manipulation of free droplets. Nature 426:515–16
    [Google Scholar]
  39. 39.
    Chatterjee D, Shepherd H, Garrell RL. 2009. Electromechanical model for actuating liquids in a two-plate droplet microfluidic device. Lab Chip 9:1219–29
    [Google Scholar]
  40. 40.
    Daunay B, Lambert P, Jalabert L, Kumemura M, Renaudot R et al. 2012. Effect of substrate wettability in liquid dielectrophoresis (LDEP) based droplet generation: theoretical analysis and experimental confirmation. Lab Chip 12:361–68
    [Google Scholar]
  41. 41.
    von Kleist-Retzow FT, Haenssler OC, Fatikow S. 2018. Manipulation of liquid metal inside an SEM by taking advantage of electromigration. J. Microelectromech. Syst. 28:88–94
    [Google Scholar]
  42. 42.
    Li J. 2006. On the meniscus deformation when the pulsed voltage is applied. J. Electrostat. 64:44–52
    [Google Scholar]
  43. 43.
    Cenev Z, Harischandra PD, Nurmi S, Latikka M, Hynninen V et al. 2021. Ferrofluidic manipulator: automatic manipulation of nonmagnetic microparticles at the air–ferrofluid interface. IEEE/ASME Trans. Mechatron. 26:1932–40
    [Google Scholar]
  44. 44.
    Brousseau D, Borra EF, Jean-Ruel H, Parent J, Ritcey A. 2006. A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations. Opt. Express 14:11486
    [Google Scholar]
  45. 45.
    Hatch A, Kamholz AE, Holman G, Yager P, Böhringer KF. 2001. A ferrofluidic magnetic micropump. J. Microelectromech. Syst. 10:215–21
    [Google Scholar]
  46. 46.
    Hayakawa M, Vialetto J, Anyfantakis M, Takinoue M, Rudiuk S et al. 2019. Effect of moderate magnetic fields on the surface tension of aqueous liquids: a reliable assessment. RSC Adv. 9:10030
    [Google Scholar]
  47. 47.
    Jin H, Marmur A, Ikkala O, Ras RH. 2012. Vapour-driven marangoni propulsion: continuous, prolonged and tunable motion. Chem. Sci. 3:2526–29
    [Google Scholar]
  48. 48.
    Qiu T, Adams F, Palagi S, Melde K, Mark A et al. 2017. Wireless acoustic-surface actuators for miniaturized endoscopes. ACS Appl. Mater. Interfaces 9:42536–43
    [Google Scholar]
  49. 49.
    Bussonnière A, Baudoin M, Brunet P, Matar OB. 2016. Dynamics of sessile and pendant drops excited by surface acoustic waves: gravity effects and correlation between oscillatory and translational motions. Phys. Rev. E 93:053106
    [Google Scholar]
  50. 50.
    Sun D, Böhringer KF. 2020. An active self-cleaning surface system for photovoltaic modules using anisotropic ratchet conveyors and mechanical vibration. Microsyst. Nanoeng. 6:87
    [Google Scholar]
  51. 51.
    Berry S, Kedzierski J, Abedian B. 2006. Low voltage electrowetting using thin fluoroploymer films. J. Colloid Interface Sci. 303:517–24
    [Google Scholar]
  52. 52.
    Xia Y, Song C, Meng Y, Xue P, DeMello AJ et al. 2022. An addressable electrowetting valve for centrifugal microfluidics. Sens. Actuators B 369:132276
    [Google Scholar]
  53. 53.
    Hao C, Liu Y, Chen X, He Y, Li Q et al. 2014. Electrowetting on liquid-infused film (EWOLF): complete reversibility and controlled droplet oscillation suppression for fast optical imaging. Sci. Rep. 4:6846
    [Google Scholar]
  54. 54.
    Chiou PY, Moon H, Toshiyoshi H, Kim CJ, Wu MC. 2003. Light actuation of liquid by optoelectrowetting. Sens. Actuators A 104:222–28
    [Google Scholar]
  55. 55.
    Pei SN, Valley JK, Neale SL, Jamshidi A, Hsu HY, Wu MC. 2010. Light-actuated digital microfluidics for large-scale, parallel manipulation of arbitrarily sized droplets. 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS)252–55. Piscataway, NJ: IEEE
    [Google Scholar]
  56. 56.
    Sato H, Kaji N, Mochizuki T, Mori YH. 2006. Behavior of oblately deformed droplets in an immiscible dielectric liquid under a steady and uniform electric field. Phys. Fluids 18:127101
    [Google Scholar]
  57. 57.
    Im DJ. 2015. Next generation digital microfluidic technology: electrophoresis of charged droplets. Korean J. Chem. Eng. 32:1001–8
    [Google Scholar]
  58. 58.
    Chafai A, Vitry Y, Dehaeck S, Gallaire F, Scheid B et al. 2021. Two-dimensional modelling of transient capillary driven damped micro-oscillations and self-alignment of objects in microassembly. J. Fluid Mech. 910:A6
    [Google Scholar]
  59. 59.
    Piñan Basualdo F, Terrazas Mallea R, Scheid B, Bolopion A, Gauthier M, Lambert P 2021. Effect of insoluble surfactants on a thermocapillary flow. Phys. Fluids 33:072106
    [Google Scholar]
  60. 60.
    Brakke KA. 1996. The surface evolver and the stability of liquid surfaces. Philos. Trans. R. Soc. A 354:2143–57
    [Google Scholar]
  61. 61.
    Becker S, Urbassek HM, Horsch M, Hasse H. 2014. Contact angle of sessile drops in Lennard-Jones systems. Langmuir 30:13606–14
    [Google Scholar]
  62. 62.
    Tartakovsky A, Meakin P. 2005. Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys. Rev. E 72:026301
    [Google Scholar]
  63. 63.
    Bao Y, Li L, Shen L, Lei C, Gan Y. 2019. Modified smoothed particle hydrodynamics approach for modelling dynamic contact angle hysteresis. Acta Mech. Sin. 35:472–85
    [Google Scholar]
  64. 64.
    Kondo M, Matsumoto J. 2021. Surface tension and wettability calculation using density gradient potential in a physically consistent particle method. Comput. Methods Appl. Mech. Eng. 385:114072
    [Google Scholar]
  65. 65.
    Akinci N, Akinci G, Teschner M. 2013. Versatile surface tension and adhesion for SPH fluids. ACM Trans. Graph. 32:182
    [Google Scholar]
  66. 66.
    Israelachvili JN, Min Y, Akbulut M, Alig A, Carver G et al. 2010. Recent advances in the surface forces apparatus (SFA) technique. Rep. Prog. Phys. 73:036601
    [Google Scholar]
  67. 67.
    Song P, Ma Z, Ma J, Yang L, Wei J et al. 2020. Recent progress of miniature MEMS pressure sensors. Micromachines 11:56
    [Google Scholar]
  68. 68.
    Gabay C, Berge B, Dovillaire G, Bucourt S 2002. Dynamic study of a Varioptic variable focal lens. Current Developments in Lens Design and Optical Engineering III RE Fischer, WJ Smith, RB Johnson 159–65. Bellingham, WA: SPIE
    [Google Scholar]
  69. 69.
    Giorgini A, Avino S, Malara P, De Natale P, Gagliardi G. 2019. Liquid droplet microresonators. Sensors 19:473
    [Google Scholar]
  70. 70.
    Casier R, Lenders C, Lhernould MS, Gauthier M, Lambert P. 2013. Position measurement/tracking comparison of the instrumentation in a droplet-actuated-robotic platform. Sensors 13:5857–69
    [Google Scholar]
  71. 71.
    Nie B, Xing S, Brandt JD, Pan T. 2012. Droplet-based interfacial capacitive sensing. Lab Chip 12:1110–18
    [Google Scholar]
  72. 72.
    Avery J, Runciman M, Darzi A, Mylonas GP. 2019. Shape sensing of variable stiffness soft robots using electrical impedance tomography. 2019 International Conference on Robotics and Automation (ICRA)9066–72. Piscataway, NJ: IEEE
    [Google Scholar]
  73. 73.
    Takei A, Matsumoto K, Shimoyama I. 2009. Capillary torque caused by a liquid droplet sandwiched between two plates. Langmuir 26:2497–504
    [Google Scholar]
  74. 74.
    Sariola V, Jääskeläinen M, Zhou Q. 2010. Hybrid microassembly combining robotics and water droplet self-alignment. IEEE Trans. Robot. 26:965–77
    [Google Scholar]
  75. 75.
    Mastrangeli M, Abbasi S, Varel C, Hoof CV, Celis JP, Böhringer KF. 2009. Self-assembly from milli- to nanoscales: methods and applications. J. Micromech. Microeng. 2009:083001
    [Google Scholar]
  76. 76.
    Hu X, Mibus M, Zangari G, Knospe C, Reed ML. 2015. Interrogation of droplet configuration during electrowetting via impedance spectroscopy. IEEE J. Microelectromech. Syst. 24:2092–100
    [Google Scholar]
  77. 77.
    Pena-Francesch A, Giltinan J, Sitti M. 2019. Multifunctional and biodegradable self-propelled protein motors. Nat. Commun. 10:3188
    [Google Scholar]
  78. 78.
    Barbot A, Tan H, Power M, Seichepine F, Yang GZ. 2019. Floating magnetic microrobots for fiber functionalization. Sci. Robot. 4:eaax8336
    [Google Scholar]
  79. 79.
    He Y, Wang L, Li Q, Yang L, Rong W, Sun L. 2019. Characterization of rotary magnetic micromotor supported on single droplet. J. Micromech. Microeng. 29:125010
    [Google Scholar]
  80. 80.
    He Y, Wang L, Zhao M, Fan Z, Rong W, Sun L. 2022. Flexible magnetic micropartners for micromanipulation at interfaces. ACS Appl. Mater. Interfaces 14:22570–81
    [Google Scholar]
  81. 81.
    Zhang X, Zhao J, Zhu Q, Chen N, Zhang M, Pan Q. 2011. Bioinspired aquatic microrobot capable of walking on water surface like a water strider. ACS Appl. Mater. Interfaces 3:2630–36
    [Google Scholar]
  82. 82.
    Ni Q, Crane N 2018. Controlling normal stiffness in droplet-based linear bearings. Micromachines 9:525
    [Google Scholar]
  83. 83.
    Bark C, Binnenboese T. 1998. Gripping with low viscosity fluids. The Eleventh Annual International Workshop on Micro Electro Mechanical Systems301–5. Piscataway, NJ: IEEE
    [Google Scholar]
  84. 84.
    Pagano C, Zanoni L, Fassi I, Jovane F. 2006. Micro-assembly: design and analysis of a gripper based on capillary force. Proceedings of the First CIRP International Seminar on Assembly Systems165–70. Stuttgart, Ger: Inst. Ind. Manuf. Manag., Univ. Stuttgart
    [Google Scholar]
  85. 85.
    Giltinan J, Diller E, Sitti M. 2016. Programmable assembly of heterogeneous microparts by an untethered mobile capillary microgripper. Lab Chip 16:4445–57
    [Google Scholar]
  86. 86.
    Ye Z, Lum GZ, Song S, Rich S, Sitti M. 2016. Phase change of gallium enables highly reversible and switchable adhesion. Adv. Mater. 28:5088–92
    [Google Scholar]
  87. 87.
    Chang B, Sariola V, Jääskeläinen M, Zhou Q. 2010. Self-alignment in the stacking of microchips with mist-induced water droplets. J. Micromech. Microeng. 21:015016
    [Google Scholar]
  88. 88.
    Xiong X, Hanein Y, Fang J, Wang Y, Wang W et al. 2003. Controlled multibatch self-assembly of microdevices. J. Microelectromech. Syst. 12:117–27
    [Google Scholar]
  89. 89.
    Flauraud V, Mastrangeli M, Bernasconi GD, Butet J, Alexander DT et al. 2017. Nanoscale topographical control of capillary assembly of nanoparticles. Nat. Nanotechnol. 12:73–80
    [Google Scholar]
  90. 90.
    Collet M, Salomon S, Klein NY, Seichepine F, Vieu C et al. 2015. Large-scale assembly of single nanowires through capillary-assisted dielectrophoresis. Adv. Mater. 27:1268–73
    [Google Scholar]
/content/journals/10.1146/annurev-control-062422-102559
Loading
/content/journals/10.1146/annurev-control-062422-102559
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error