1932

Abstract

The control of wave energy converters (WECs) to maximize power capture is a challenging problem. In particular, the nature of the wave excitation, which is in general panchromatic (or multi-sinusoidal), presents a reciprocating energy source that needs to be rectified through some means. In addition, the development of suitable control-oriented models is also challenging, requiring correct representation of system hydrodynamics and power take-off (PTO) components, while also lending themselves to control synthesis and real-time computational performance, along with a challenging optimal control problem. This article presents a moment-based mathematical framework for the formulation and solution of WEC control. It shows that moments are ideally suited to WEC control in terms of their ability to accurately characterize the nature of the wave excitation force (and the consequent evolutions in the system variables) while also gracefully including hydrodynamic and PTO nonlinearities as well as a natural extension to WEC arrays. Model reduction, to mold the system model into a control-friendly form, is also a feature of this framework.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-070523-115155
2024-07-10
2025-06-17
Loading full text...

Full text loading...

/deliver/fulltext/control/7/1/annurev-control-070523-115155.html?itemId=/content/journals/10.1146/annurev-control-070523-115155&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Faedo N, Ringwood JV. 2021.. A control design framework for wave energy devices. . In Proceedings of the 14th European Wave and Tidal Energy Conference, pap. 1919 . N.p.:: Eur. Wave Tidal Energy Conf.
    [Google Scholar]
  2. 2.
    Guo B, Ringwood JV. 2021.. A review of wave energy technology from a research and commercial perspective. . IET Renew. Power Gen. 15:(14):306590
    [Crossref] [Google Scholar]
  3. 3.
    Annaswamy AM, Johansson KH, Pappas GJ, eds. 2023.. Control for societal-scale challenges: road map 2030. Rep. , IEEE Control Syst. Soc., Piscataway, NJ:
    [Google Scholar]
  4. 4.
    Ringwood JV, Zhan S, Faedo N. 2023.. Empowering wave energy with control technology: possibilities and pitfalls. . Annu. Rev. Control 55::1844
    [Crossref] [Google Scholar]
  5. 5.
    Falnes J, Kurniawan A. 2020.. Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  6. 6.
    Windt C, Faedo N, Penalba M, Dias F, Ringwood JV. 2021.. Reactive control of wave energy devices—the modelling paradox. . Appl. Ocean Res. 109::102574
    [Crossref] [Google Scholar]
  7. 7.
    Hals J, Falnes J, Moan T. 2011.. Constrained optimal control of a heaving buoy wave-energy converter. . J. Offshore Mech. Arct. Eng. 133:(1):011401
    [Crossref] [Google Scholar]
  8. 8.
    Faedo N, Olaya S, Ringwood JV. 2017.. Optimal control, MPC and MPC-like algorithms for wave energy systems: an overview. . IFAC J. Syst. Control 1::3756
    [Crossref] [Google Scholar]
  9. 9.
    Cretel JA, Lightbody G, Thomas GP, Lewis AW. 2011.. Maximisation of energy capture by a wave-energy point absorber using model predictive control. . IFAC Proc. Vol. 44:(1):371421
    [Crossref] [Google Scholar]
  10. 10.
    Astolfi A. 2010.. Model reduction by moment matching for linear and nonlinear systems. . IEEE Trans. Autom. Control 55:(10):232136
    [Crossref] [Google Scholar]
  11. 11.
    Peña-Sanchez Y, Windt C, Davidson J, Ringwood JV. 2019.. A critical comparison of excitation force estimators for wave energy devices. . IEEE Trans. Control Syst. Technol. 28:(6):226375
    [Crossref] [Google Scholar]
  12. 12.
    Peña-Sanchez Y, Garcia-Abril M, Paparella F, Ringwood JV. 2018.. Estimation and forecasting of excitation force for arrays of wave energy devices. . IEEE Trans. Sustain. Energy 9:(4):167280
    [Crossref] [Google Scholar]
  13. 13.
    Cunningham J, Faedo N, Ringwood JV. 2019.. Excitation force estimation for wave energy systems using a moment-domain representation. . In Proceedings of the 13th European Wave and Tidal Energy Conference, pap. 1418 . N.p.:: Eur. Wave Tidal Energy Conf.
    [Google Scholar]
  14. 14.
    Papillon L, Costello R, Ringwood JV. 2020.. Boundary element and integral methods in potential flow theory: a review with a focus on wave energy applications. . J. Ocean Eng. Mar. Energy 6::30337
    [Crossref] [Google Scholar]
  15. 15.
    Ochi MK. 2005.. Ocean Waves: The Stochastic Approach. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  16. 16.
    Babarit A, Delhommeau G. 2015.. Theoretical and numerical aspects of the open source BEM solver NEMOH. Paper presented at the 11th European Wave and Tidal Energy Conference, Nantes, Fr.:, Sept. 6–11
    [Google Scholar]
  17. 17.
    Lee CH. 1995.. WAMIT theory manual. Rep., Dep. Ocean Eng. , Mass. Inst. Technol., Cambridge, MA:
    [Google Scholar]
  18. 18.
    Cummins W. 1962.. The impulse response function and ship motions. . Schiffstechnik 47::1019
    [Google Scholar]
  19. 19.
    Folley M, Forehand D. 2016.. Conventional multiple degree-of-freedom array models. . In Numerical Modelling of Wave Energy Converters, ed. M Folley , pp. 15164. London:: Academic
    [Google Scholar]
  20. 20.
    Taghipour R, Perez T, Moan T. 2008.. Hybrid frequency–time domain models for dynamic response analysis of marine structures. . Ocean Eng. 35:(7):685705
    [Crossref] [Google Scholar]
  21. 21.
    Morison J, Johnson J, Schaaf S. 1950.. The force exerted by surface waves on piles. . J. Pet. Technol. 2:(5):14954
    [Crossref] [Google Scholar]
  22. 22.
    Giorgi G, Ringwood JV. 2017.. Computationally efficient nonlinear Froude–Krylov force calculations for heaving axisymmetric wave energy point absorbers. . J. Ocean Eng. Mar. Energy 3::2133
    [Crossref] [Google Scholar]
  23. 23.
    Todalshaug JH, Ásgeirsson GS, Hjálmarsson E, Maillet J, Möller P, et al. 2016.. Tank testing of an inherently phase-controlled wave energy converter. . Int. J. Mar. Energy 15::6884
    [Crossref] [Google Scholar]
  24. 24.
    Richter M, Magaña ME, Sawodny O, Brekken TK. 2013.. Nonlinear model predictive control of a point absorber wave energy converter. . IEEE Trans. Sustain. Energy 4:(1):11826
    [Crossref] [Google Scholar]
  25. 25.
    Paduano B, Carapellese F, Pasta E, Faedo N, Mattiazzo G. 2022.. Optimal controller tuning for a nonlinear moored wave energy converter via non-parametric frequency-domain techniques. . In Trends in Renewable Energies Offshore, ed. CG Soares , pp. 393400. Boca Raton, FL:: CRC
    [Google Scholar]
  26. 26.
    Gottlieb O, Yim SC. 1992.. Nonlinear oscillations, bifurcations and chaos in a multi-point mooring system with a geometric nonlinearity. . Appl. Ocean Res. 14:(4):24157
    [Crossref] [Google Scholar]
  27. 27.
    Narayanan S, Yim S, Polo P. 1998.. Nonlinear system identification of a moored structural system. . In The Eighth International Ocean and Polar Engineering Conference, pap. ISOPE-I-98-264 . Richardson, TX:: OnePetro
    [Google Scholar]
  28. 28.
    Scruggs J, Lattanzio S, Taflanidis A, Cassidy I. 2013.. Optimal causal control of a wave energy converter in a random sea. . Appl. Ocean Res. 42::115
    [Crossref] [Google Scholar]
  29. 29.
    Faedo N, Scarciotti G, Astolfi A, Ringwood JV. 2018.. Energy-maximising control of wave energy converters using a moment-domain representation. . Control Eng. Pract. 81::8596
    [Crossref] [Google Scholar]
  30. 30.
    Scarciotti G, Astolfi A. 2017.. Nonlinear model reduction by moment matching. . Found. Trends Syst. Control 4:(3–4):224409
    [Crossref] [Google Scholar]
  31. 31.
    Astolfi A, Scarciotti G, Simard J, Faedo N, Ringwood JV. 2020.. Model reduction by moment matching: beyond linearity; a review of the last 10 years. . In 2020 59th IEEE Conference on Decision and Control. Piscataway, NJ:: IEEE. https://doi.org/10.1109/CDC42340.2020.9304389
    [Google Scholar]
  32. 32.
    Isidori A. 1995.. Nonlinear Control Systems. London:: Springer
    [Google Scholar]
  33. 33.
    Padoan A, Scarciotti G, Astolfi A. 2017.. A geometric characterization of the persistence of excitation condition for the solutions of autonomous systems. . IEEE Trans. Autom. Control 62:(11):566677
    [Crossref] [Google Scholar]
  34. 34.
    Faedo N, Peña-Sanchez Y, Ringwood JV. 2018.. Finite-order hydrodynamic model determination for wave energy applications using moment-matching. . Ocean Eng. 163::25163
    [Crossref] [Google Scholar]
  35. 35.
    Faedo N, Peña-Sanchez Y, Giorgi G, Ringwood JV. 2019.. Moment-matching-based input-output parametric approximation for a multi-DoF WEC including hydrodynamic nonlinearities. . In Proceedings of the 13th European Wave and Tidal Energy Conference, pap. 1449 . N.p.:: Eur. Wave Tidal Energy Conf.
    [Google Scholar]
  36. 36.
    Faedo N, Peña-Sanchez Y, Ringwood JV. 2019.. Parameterisation of radiation forces for a multiple degree-of-freedom wave energy converter using moment-matching. . In The 29th International Ocean and Polar Engineering Conference, pap. ISOPE-I-19-518 . Richardson, TX:: OnePetro
    [Google Scholar]
  37. 37.
    Faedo N, Peña-Sanchez Y, Ringwood JV. 2020.. Parametric representation of arrays of wave energy converters for motion simulation and unknown input estimation: a moment-based approach. . Appl. Ocean Res. 98::102055
    [Crossref] [Google Scholar]
  38. 38.
    Peña-Sanchez Y, Faedo N, Ringwood JV. 2019.. A critical comparison between parametric approximation methods for radiation forces in wave energy systems. . In The 29th International Ocean and Polar Engineering Conference, pap. ISOPE-I-19-521 . Richardson, TX:: OnePetro
    [Google Scholar]
  39. 39.
    Faedo N, Peña-Sanchez Y, Ringwood JV. 2018.. Passivity preserving moment-based finite-order hydrodynamic model identification for wave energy applications. . In Advances in Renewable Energies Offshore, ed. CG Soares , pp. 35159. Boca Raton, FL:: CRC
    [Google Scholar]
  40. 40.
    Mekhiche M, Edwards KA. 2014.. Ocean Power Technologies Powerbuoy®: system-level design, development and validation methodology. . In Proceedings of the 2nd Marine Energy Technology Symposium, pp. 19. N.p.:: Mar. Energy Technol. Symp.
    [Google Scholar]
  41. 41.
    Faedo N. 2020.. Optimal control and model reduction for wave energy systems: a moment-based approach. PhD Thesis , Maynooth Univ., Maynooth, Ireland:
    [Google Scholar]
  42. 42.
    Faedo N, Dores F, Ringwood JV. 2023.. Nonlinear model reduction for wave energy systems: a moment-based approach. . IEEE Trans. Control Syst. Technol. In press
    [Google Scholar]
  43. 43.
    Faedo N, Scarciotti G, Astolfi A, Ringwood JV. 2021.. On the approximation of moments for nonlinear systems. . IEEE Trans. Autom. Control 66:(11):553845
    [Crossref] [Google Scholar]
  44. 44.
    Faedo N, Piuma FJD, Giorgi G, Bracco G, Ringwood JV, Mattiazzo G. 2021.. Data-driven nonlinear model reduction by moment-matching for the ISWEC system. . In 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering. Piscataway, NJ:: IEEE. https://doi.org/10.1109/ICECCME52200.2021.9591007
    [Google Scholar]
  45. 45.
    Papini G, Piuma FJD, Faedo N, Ringwood JV, Mattiazzo G. 2022.. Nonlinear model reduction by moment-matching for a point absorber wave energy conversion system. . J. Mar. Sci. Eng. 10:(5):656
    [Crossref] [Google Scholar]
  46. 46.
    Scarciotti G, Jiang ZP, Astolfi A. 2020.. Data-driven constrained optimal model reduction. . Eur. J. Control 53::6878
    [Crossref] [Google Scholar]
  47. 47.
    Ringwood JV, Bacelli G, Fusco F. 2014.. Energy-maximizing control of wave-energy converters: the development of control system technology to optimize their operation. . IEEE Control Syst. 34:(5):3055
    [Crossref] [Google Scholar]
  48. 48.
    Mérigaud A, Ringwood JV. 2017.. Free-surface time-series generation for wave energy applications. . IEEE J. Ocean. Eng. 43:(1):1935
    [Crossref] [Google Scholar]
  49. 49.
    Boyd SP, Vandenberghe L. 2004.. Convex Optimization. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  50. 50.
    Faedo N, Scarciotti G, Astolfi A, Ringwood JV. 2021.. Nonlinear energy-maximizing optimal control of wave energy systems: a moment-based approach. . IEEE Trans. Control Syst. Technol. 29:(6):253347
    [Crossref] [Google Scholar]
  51. 51.
    Potra FA, Wright SJ. 2000.. Interior-point methods. . J. Comp. Appl. Math. 124:(1–2):281302
    [Crossref] [Google Scholar]
  52. 52.
    Faedo N, Giorgi G, Ringwood JV, Mattiazzo G. 2022.. Nonlinear moment-based optimal control of wave energy converters with non-ideal power take-off systems. . In Proceedings of the ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering, Vol. 8, Ocean Renewable Energy, pap. V008T09A082 . New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  53. 53.
    Faedo N, Giorgi G, Ringwood JV, Mattiazzo G. 2022.. Optimal control of wave energy systems considering nonlinear Froude–Krylov effects: control-oriented modelling and moment-based control. . Nonlinear Dyn. 109::1777804
    [Crossref] [Google Scholar]
  54. 54.
    Ringwood JV, Tom N, Ferri F, Yu Y-H, Coe RG, . 2023.. The wave energy control competition (WECCCOMP): wave energy control algorithms compared in both simulation and tank testing. . Appl. Ocean Res. 138:103653
    [Google Scholar]
  55. 55.
    Faedo N, Peña-Sanchez Y, Ringwood JV. 2020.. Receding-horizon energy-maximising optimal control of wave energy systems based on moments. . IEEE Trans. Sustain. Energy 12:(1):37886
    [Crossref] [Google Scholar]
  56. 56.
    Mosquera F, Faedo N, Evangelista C, Puleston P, Ringwood JV. 2022.. Energy-maximising tracking control for a nonlinear heaving point absorber system commanded by second order sliding modes. . IFAC-PapersOnLine 55:(31):35762
    [Crossref] [Google Scholar]
  57. 57.
    Faedo N, Mosquera FD, Evangelista CA, Ringwood JV, Puleston PF. 2022.. Preliminary experimental assessment of second-order sliding mode control for wave energy conversion systems. . In 2022 Australian & New Zealand Control Conference (ANZCC), pp. 6368. Piscataway, NJ:: IEEE
    [Google Scholar]
  58. 58.
    Mérigaud A, Tona P. 2020.. Spectral control of wave energy converters with non-ideal power take-off systems. . J. Mar. Sci. Eng. 8:(11):851
    [Crossref] [Google Scholar]
  59. 59.
    Prabhu KM. 2013.. Window Functions and Their Applications in Signal Processing. Boca Raton, FL:: CRC
    [Google Scholar]
  60. 60.
    Faedo N, García-Violini D, Scarciotti G, Astolfi A, Ringwood JV. 2019.. Robust moment-based energy-maximising optimal control of wave energy converters. . In 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 428691. Piscataway, NJ:: IEEE
    [Google Scholar]
  61. 61.
    Ben-Tal A, Nemirovski A. 1998.. Robust convex optimization. . Math. Oper. Res. 23:(4):769805
    [Crossref] [Google Scholar]
  62. 62.
    Sniedovich M. 2011.. A classical decision theoretic perspective on worst-case analysis. . Appl. Math. 56:(5):499
    [Crossref] [Google Scholar]
  63. 63.
    Faedo N, Mattiazzo G, Ringwood JV. 2022.. Robust energy-maximising control of wave energy systems under input uncertainty. . In 2022 European Control Conference (ECC), pp. 61419. Piscataway, NJ:: IEEE
    [Google Scholar]
  64. 64.
    Faedo N, Scarciotti G, Astolfi A, Ringwood JV. 2021.. Energy-maximising moment-based constrained optimal control of ocean wave energy farms. . IET Renew. Power Gener. 15:(14):3395408
    [Crossref] [Google Scholar]
  65. 65.
    Faedo N, Scarciotti G, Astolfi A, Ringwood JV. 2019.. Moment-based constrained optimal control of an array of wave energy converters. . In 2019 American Control Conference (ACC), pp. 4797802. Piscataway, NJ:: IEEE
    [Google Scholar]
  66. 66.
    Faedo N, Peña-Sanchez Y, Garcia-Violini D, Ferri F, Mattiazzo G, Ringwood JV. 2023.. Experimental assessment and validation of energy-maximising moment-based optimal control for a prototype wave energy converter. . Control Eng. Pract. 133::105454
    [Crossref] [Google Scholar]
  67. 67.
    Faedo N, Mosquera FD, Pasta E, Papini G, Peña-Sanchez Y, et al. 2024.. Experimental assessment of combined sliding mode and moment-based control (SM2C) for arrays of wave energy conversion systems. . Control Eng. Pract. 144::105818
    [Crossref] [Google Scholar]
  68. 68.
    Hansen RH, Kramer MM. 2011.. Modelling and control of the Wavestar prototype. Paper presented at the 9th European Wave and Tidal Energy Conference, Southampton, UK:
    [Google Scholar]
  69. 69.
    Faedo N, Peña-Sanchez Y, Pasta E, Papini G, Mosquera FD, Ferri F. 2023.. SWELL: an open-access experimental dataset for arrays of wave energy conversion systems. . Renew. Energt 212::699716
    [Crossref] [Google Scholar]
  70. 70.
    Pérez-Ventura U, Mendoza-Avila J, Fridman L. 2021.. Design of a proportional integral derivative-like continuous sliding mode controller. . Int. J. Robust Nonlinear Control 31:(9):343954
    [Crossref] [Google Scholar]
  71. 71.
    Carapellese F, Pasta E, Paduano B, Faedo N, Mattiazzo G. 2022.. Intuitive LTI energy-maximising control for multi-degree of freedom wave energy converters: the PeWEC case. . Ocean Eng. 256::111444
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-control-070523-115155
Loading
/content/journals/10.1146/annurev-control-070523-115155
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error