1932

Abstract

The desire for functional replacement of a missing hand is an ancient one. Historically, humans have replaced a missing limb with a prosthesis for cosmetic, vocational, or personal autonomy reasons. The hand is a powerful tool, and its loss causes severe physical and often mental debilitation. Technological advancements have allowed the development of increasingly effective artificial hands, which can improve the quality of life of people who suffered a hand amputation. Here, we review the state of the art of robotic prosthetic hands (RPHs), with particular attention to the potential and current limits of their main building blocks: the hand itself, approaches to decoding voluntary commands and controlling the hand, and systems and methods for providing sensory feedback to the user. We also briefly describe existing approaches to characterizing the performance of subjects using RPHs for grasping tasks and provide perspectives on the future of different components and the overall field of RPH development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-071020-104336
2021-05-03
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/control/4/1/annurev-control-071020-104336.html?itemId=/content/journals/10.1146/annurev-control-071020-104336&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Piazza C, Grioli G, Catalano MG, Bicchi A. 2019. A century of robotic hands. Annu. Rev. Control Robot. Auton. Syst. 2:1–32
    [Google Scholar]
  2. 2. 
    Castiello U. 2005. The neuroscience of grasping. Nat. Rev. Neurosci. 6:726–36
    [Google Scholar]
  3. 3. 
    Bicchi A. 2000. Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Trans. Robot. Autom. 16:652–62
    [Google Scholar]
  4. 4. 
    Marasco PD, Kim K, Colgate JE, Peshkin MA, Kuiken TA. 2011. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain 134:747–58
    [Google Scholar]
  5. 5. 
    Ehrsson HH, Rosen B, Stockselius A, Ragno C, Kohler P, Lundborg G. 2008. Upper limb amputees can be induced to experience a rubber hand as their own. Brain 131:3443–52
    [Google Scholar]
  6. 6. 
    Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J et al. 2014. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6:222ra19
    [Google Scholar]
  7. 7. 
    Kyberd PJ, Hill W. 2011. Survey of upper limb prosthesis users in Sweden, the United Kingdom and Canada. Prosthet. Orthot. Int. 35:234–41
    [Google Scholar]
  8. 8. 
    Dubernard JM, Owen E, Herzberg G, Lanzetta M, Martin X et al. 1999. Human hand allograft: report on first 6 months. Lancet 353:1315–20
    [Google Scholar]
  9. 9. 
    Piazza C, Catalano MG, Godfrey SG, Rossi M, Grioli G et al. 2017. The SoftHand Pro-H. IEEE Robot. Autom. Mag. 24:487–101
    [Google Scholar]
  10. 10. 
    Smit G, Plettenburg DH, Van Der Helm FCT. 2015. The lightweight Delft Cylinder hand: first multi-articulating hand that meets the basic user requirements. IEEE Trans. Neural Syst. Rehabil. Eng. 23:431–40
    [Google Scholar]
  11. 11. 
    Baril M, Laliberté T, Gosselin C, Routhier F. 2013. On the design of a mechanically programmable underactuated anthropomorphic prosthetic gripper. J. Mech. Des. 135:121008
    [Google Scholar]
  12. 12. 
    Smit G, Plettenburg DH. 2010. Efficiency of voluntary closing hand and hook prostheses. Prosthet. Orthot. Int. 34:411–27
    [Google Scholar]
  13. 13. 
    Biddiss E, Chau T. 2007. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet. Orthot. Int. 31:236–57
    [Google Scholar]
  14. 14. 
    Lotti F, Tiezzi P, Vassura G, Biagiotti L, Palli G, Melchiorri C. 2005. Development of UB Hand 3: early results. Proceedings of the 2005 IEEE International Conference on Robotics and Automation4488–93 Piscataway, NJ: IEEE
    [Google Scholar]
  15. 15. 
    Honda Y, Miyazaki F, Nishikawa A. 2010. Control of pneumatic five-fingered robot hand using antagonistic muscle ratio and antagonistic muscle activity. 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics337–42 Piscataway, NJ: IEEE
    [Google Scholar]
  16. 16. 
    Cordella F, Ciancio AL, Sacchetti R, Davalli A, Cutti AG et al. 2016. Literature review on needs of upper limb prosthesis users. Front. Neurosci. 10:209
    [Google Scholar]
  17. 17. 
    Melchiorri C, Palli G, Berselli G, Vassura G. 2013. Development of the UB Hand IV: overview of design solutions and enabling technologies. IEEE Robot. Autom. Mag. 20:372–81
    [Google Scholar]
  18. 18. 
    Pfeifer R, Gomez G 2009. Morphological computation – connecting brain, body, and environment. Creating Brain-Like Intelligence B Sendhoff, E Körner, O Sporns, H Ritter, K Doya 66–83 Berlin: Springer
    [Google Scholar]
  19. 19. 
    Jing X, Yong X, Jiang Y, Li G, Yokoi H. 2019. Anthropomorphic prosthetic hand with combination of light weight and diversiform motions. Appl. Sci. 9:4203
    [Google Scholar]
  20. 20. 
    Mohammadi A, Lavranos J, Zhou H, Mutlu R, Alici G et al. 2020. A practical 3D-printed soft robotic prosthetic hand with multi-articulating capabilities. PLOS ONE 15:e0232766
    [Google Scholar]
  21. 21. 
    Chamara RPDD, Gopura RARC. 2019. An under-actuated mechanism for anthropomorphic robotic prosthetic hand. 2019 5th International Conference on Control, Automation and Robotics162–66 Piscataway, NJ: IEEE
    [Google Scholar]
  22. 22. 
    Pozzobon LA, Da Silva Guerra R, Librelotto GR 2019. A low-cost, compliant, underactuated prosthetic hand with custom flex sensors for finger bending estimation. 2019 19th International Conference on Advanced Robotics69–74 Piscataway, NJ: IEEE
    [Google Scholar]
  23. 23. 
    Fajardo J, Ferman V, Cardona D, Maldonado G, Lemus A, Rohmer E. 2020. Galileo Hand: an anthropomorphic and affordable upper-limb prosthesis. IEEE Access 8:81365–77
    [Google Scholar]
  24. 24. 
    Abayasiri RAM, Abayasiri RST, Gunawardhana RAGM, Premakumara RMC, Mallikarachchi S et al. 2020. An under-actuated hand prosthesis with finger abduction and adduction for human like grasps. 2020 6th International Conference on Control, Automation and Robotics574–80 Piscataway, NJ: IEEE
    [Google Scholar]
  25. 25. 
    Yong X, Jing X, Wu X, Jiang J, Yokoi H. 2019. Development of an adaptive prosthetic hand. 2019 IEEE International Conference on Robotics and Biomimetics2800–5 Piscataway, NJ: IEEE
    [Google Scholar]
  26. 26. 
    Weiner P, Starke J, Hundhausen F, Beil J, Asfour T. 2018. The KIT prosthetic hand: design and control. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems3328–34 Piscataway, NJ: IEEE
    [Google Scholar]
  27. 27. 
    Nemoto Y, Ogawa K, Yoshikawa M. 2020. F3Hand II: a flexible five-fingered prosthetic hand using curved pneumatic artificial muscles. 2020 IEEE/SICE International Symposium on System Integration99–104 Piscataway, NJ: IEEE
    [Google Scholar]
  28. 28. 
    Controzzi M, Cipriani C, Carrozza MC. 2008. Mechatronic design of a transradial cybernetic hand. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems576–81 Piscataway, NJ: IEEE
    [Google Scholar]
  29. 29. 
    Trivedi D, Rahn CD, Kier WM, Walker ID. 2008. Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5:520417
    [Google Scholar]
  30. 30. 
    Hirose S, Ma S. 1991. Coupled tendon-driven multijoint manipulator. 1991 IEEE International Conference on Robotics and Automation1268–75 Piscataway, NJ: IEEE
    [Google Scholar]
  31. 31. 
    Carrozza MC, Cappiello G, Stellin G, Zaccone F, Vecchi F et al. 2005. A cosmetic prosthetic hand with tendon driven under-actuated mechanism and compliant joints: ongoing research and preliminary results. Proceedings of the 2005 IEEE International Conference on Robotics and Automation2661–66 Piscataway, NJ: IEEE
    [Google Scholar]
  32. 32. 
    Godfrey SB, Zhao KD, Theuer A, Catalano MG, Bianchi M et al. 2018. The SoftHand Pro: functional evaluation of a novel, flexible, and robust myoelectric prosthesis. PLOS ONE 13:13e0205653
    [Google Scholar]
  33. 33. 
    Amend J, Lipson H. 2017. The JamHand: dexterous manipulation with minimal actuation. Soft Robot 4:70–80
    [Google Scholar]
  34. 34. 
    Yamaguchi A, Takemura K, Yokota S, Edamura K. 2011. A robot hand using electro-conjugate fluid. 2011 IEEE International Conference on Robotics and Automation5923–28 Piscataway, NJ: IEEE
    [Google Scholar]
  35. 35. 
    Zhao H, O'Brien K, Li S, Shepherd RF 2016. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 1:eaai7529
    [Google Scholar]
  36. 36. 
    Yoshida K, Bertram MJ, Cox TGH, Riso RR 2017. Peripheral nerve recording electrodes and techniques. Neuroprosthetics: Theory and Practice K Yoshida, MJ Bertram, TG Hunter Cox, RR Riso 377–466 Singapore: World Sci.
    [Google Scholar]
  37. 37. 
    Navarro X, Valderrama E, Stieglitz T, Schüttler M. 2001. Selective fascicular stimulation of the rat sciatic nerve with multipolar polyimide cuff electrodes. Restor. Neurol. Neurosci. 18:9–21
    [Google Scholar]
  38. 38. 
    Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, Tyler DJ 2014. A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 6:257ra138
    [Google Scholar]
  39. 39. 
    Vu PP, Vaskov AK, Irwin ZT, Henning PT, Lueders DR et al. 2020. A regenerative peripheral nerve interface allows real-time control of an artificial hand in upper limb amputees. Sci. Transl. Med. 12:eaay2857
    [Google Scholar]
  40. 40. 
    Raspopovic S, Cimolato A, Panarese A, Vallone F, del Valle J et al. 2020. Neural signal recording and processing in somatic neuroprosthetic applications. A review. J. Neurosci. Methods 337:108653
    [Google Scholar]
  41. 41. 
    Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P 2005. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Peripher. Nerv. Syst. 258:229–58
    [Google Scholar]
  42. 42. 
    Boretius T, Badia J, Pascual-Font A, Schuettler M, Navarro X et al. 2010. A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens. Bioelectron. 26:62–69
    [Google Scholar]
  43. 43. 
    Yoshida K, Pellinen D, Pivin D, Rousche P, Kipke D. 2000. Development of the thin-film longitudinal intra-fascicular electrode. Proceedings of the 5th Annual Conference of the International Functional Electrical Stimulation Society279–84 Graz, Austria: Int. Funct. Electr. Stimul. Soc.
    [Google Scholar]
  44. 44. 
    Badia J, Boretius T, Andreu D, Azevedo-Coste C, Stieglitz T, Navarro X. 2011. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles. J. Neural Eng. 8:036023
    [Google Scholar]
  45. 45. 
    Howell B, Grill WM 2015. Design of electrodes for stimulation and recording. Implantable Neuroprostheses for Restoring Function K Kilgore 59–93 Amsterdam: Elsevier
    [Google Scholar]
  46. 46. 
    Cui X, Wiler J, Dzaman M, Altschuler RA, Martin DC. 2003. In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials 24:777–87
    [Google Scholar]
  47. 47. 
    Kennedy PR, Bakay RAE, Sharpe SM. 1992. Behavioral correlates of action potentials recorded chronically inside the cone electrode. Neuroreport 3:605–8
    [Google Scholar]
  48. 48. 
    Lacour SP, Courtine G, Guck J. 2016. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1:16063
    [Google Scholar]
  49. 49. 
    Kipke DR. 2004. Implantable neural probe systems for cortical neuroprostheses. 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society5344–47 Piscataway, NJ: IEEE
    [Google Scholar]
  50. 50. 
    Merletti R, Holobar A, Farina D. 2008. Analysis of motor units with high-density surface electromyography. J. Electromyogr. Kinesiol. 18:879–90
    [Google Scholar]
  51. 51. 
    Smith LH, Hargrove LJ. 2013. Comparison of surface and intramuscular EMG pattern recognition for simultaneous wrist/hand motion classification. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society4223–6 Piscataway, NJ: IEEE
    [Google Scholar]
  52. 52. 
    Farrell TR, Weir RF. 2008. A comparison of the effects of electrode implantation and targeting on pattern classification accuracy for prosthesis control. IEEE Trans. Biomed. Eng. 55:2198–211
    [Google Scholar]
  53. 53. 
    Cracchiolo M, Valle G, Petrini F, Strauss I, Granata G et al. 2020. Decoding of grasping tasks from intraneural recordings in trans-radial amputee. J. Neural Eng. 17:026034
    [Google Scholar]
  54. 54. 
    Wendelken S, Page DM, Davis T, Wark HAC, Kluger DT et al. 2017. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves. J. Neuroeng. Rehabil. 14:121
    [Google Scholar]
  55. 55. 
    Cipriani C, Dalonzo M, Carrozza MC. 2012. A miniature vibrotactile sensory substitution device for multifingered hand prosthetics. IEEE Trans. Biomed. Eng. 59:400–8
    [Google Scholar]
  56. 56. 
    Chen B, Feng Y, Wang Q. 2016. Combining vibrotactile feedback with volitional myoelectric control for robotic transtibial prostheses. Front. Neurorobot. 10:8
    [Google Scholar]
  57. 57. 
    Antfolk C, D'Alonzo M, Controzzi M, Lundborg G, Rosen B et al. 2013. Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: vibrotactile versus mechanotactile sensory feedback. IEEE Trans. Neural Syst. Rehabil. Eng. 21:112–20
    [Google Scholar]
  58. 58. 
    Gonzalez J, Soma H, Sekine M, Yu W 2012. Psycho-physiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study. J. Neuroeng. Rehabil. 9:33
    [Google Scholar]
  59. 59. 
    Osborn L, Betthauser J, Kaliki R, Thakor N. 2018. Targeted transcutaneous electrical nerve stimulation for phantom limb sensory feedback. 2017 IEEE Biomedical Circuits and Systems Conference Piscataway, NJ: IEEE https://doi.org/10.1109/BIOCAS.2017.8325200
    [Crossref] [Google Scholar]
  60. 60. 
    D'Anna E, Petrini FM, Artoni F, Popovic I, Simanić I et al. 2017. A somatotopic bidirectional hand prosthesis with transcutaneous electrical nerve stimulation based sensory feedback. Sci. Rep. 7:10930
    [Google Scholar]
  61. 61. 
    Oddo CM, Raspopovic S, Artoni F, Mazzoni A, Spigler G et al. 2016. Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans. eLife 5:e09148
    [Google Scholar]
  62. 62. 
    Valle G, Mazzoni A, Iberite F, D'Anna E, Strauss I et al. 2018. Biomimetic intraneural sensory feedback enhances sensation naturalness, tactile sensitivity, and manual dexterity in a bidirectional prosthesis. Neuron 100:37–45.e7
    [Google Scholar]
  63. 63. 
    Valle G, D'Anna E, Strauss I, Clemente F, Granata G et al. 2020. Hand control with invasive feedback is not impaired by increased cognitive load. Front. Bioeng. Biotechnol. 8:287
    [Google Scholar]
  64. 64. 
    D'Anna E, Valle G, Mazzoni A, Strauss I, Iberite F et al. 2019. A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback. Sci. Robot. 4:eaau8892
    [Google Scholar]
  65. 65. 
    Shokur S, Gallo S, Moioli RC, Donati ARC, Morya E et al. 2016. Assimilation of virtual legs and perception of floor texture by complete paraplegic patients receiving artificial tactile feedback. Sci. Rep. 6:32293
    [Google Scholar]
  66. 66. 
    Geethanjali P. 2016. Myoelectric control of prosthetic hands: state-of-the-art review. Med. Devices Evid. Res. 9:247–55
    [Google Scholar]
  67. 67. 
    Farina D, Jiang N, Rehbaum H, Holobar A, Graimann B et al. 2014. The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Trans. Neural Syst. Rehabil. Eng. 22:797–809
    [Google Scholar]
  68. 68. 
    Ferguson S, Dunlop GR 2002. Grasp recognition from myoelectric signals. Proceedings of the Australasian Conference on Robotics and Automation W Friedrich, P Lim 83–87 Sydney: Aust. Robot. Autom. Assoc.
    [Google Scholar]
  69. 69. 
    Martelloni C, Carpaneto J, Micera S. 2008. Classification of upper arm EMG signals during object-specific grasp. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society5061–64 Piscataway, NJ: IEEE
    [Google Scholar]
  70. 70. 
    Kakoty NM, Hazarika SM. 2011. Recognition of grasp types through principal components of DWT based EMG features. 2011 IEEE International Conference on Rehabilitation Robotics Piscataway, NJ: IEEE https://doi.org/10.1109/ICORR.2011.5975398
    [Crossref] [Google Scholar]
  71. 71. 
    Castellini C, Van Der Smagt P. 2009. Surface EMG in advanced hand prosthetics. Biol. Cybern. 100:35–47
    [Google Scholar]
  72. 72. 
    Atzori M, Cognolato M, Müller H. 2016. Deep learning with convolutional neural networks applied to electromyography data: a resource for the classification of movements for prosthetic hands. Front. Neurorobot. 10:9
    [Google Scholar]
  73. 73. 
    Tenore FVG, Ramos A, Fahmy A, Acharya S, Etienne-Cummings R, Thakor NV 2009. Decoding of individuated finger movements using surface electromyography. IEEE Trans. Biomed. Eng. 56:1427–34
    [Google Scholar]
  74. 74. 
    Bhattachargee CK, Sikder N, Hasan MT, Nahid A. 2019. Finger movement classification based on statistical and frequency features extracted from surface EMG signals. 2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering Piscataway, NJ: IEEE https://doi.org/10.1109/IC4ME247184.2019.9036671
    [Crossref] [Google Scholar]
  75. 75. 
    Bhagwat S, Mukherji P. 2020. Electromyogram (EMG) based fingers movement recognition using sparse filtering of wavelet packet coefficients. Sādhanā 45:3
    [Google Scholar]
  76. 76. 
    Muceli S, Farina D. 2012. Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom. IEEE Trans. Neural Syst. Rehabil. Eng. 20:371–78
    [Google Scholar]
  77. 77. 
    Jiang N, Vest-Nielsen JL, Muceli S, Farina D. 2012. EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees. J. Neuroeng. Rehabil. 9:42
    [Google Scholar]
  78. 78. 
    Hioki M, Kawasaki H. 2012. Estimation of finger joint angles from sEMG using a neural network including time delay factor and recurrent structure. ISRN Rehabil 2012.604314
    [Google Scholar]
  79. 79. 
    Zhuang KZ, Sommer N, Mendez V, Aryan S, Formento E et al. 2019. Shared human-robot proportional control of a dexterous myoelectric prosthesis. Nat. Mach. Intell. 1:400–11
    [Google Scholar]
  80. 80. 
    Mussa-Ivaldi FA, Casadio M, Danziger ZC, Mosier KM, Scheidt RA. 2011. Sensory motor remapping of space in human-machine interfaces. Prog. Brain Res. 191:45–64
    [Google Scholar]
  81. 81. 
    Dyson M, Barnes J, Nazarpour K. 2018. Myoelectric control with abstract decoders. J. Neural Eng. 15:056003
    [Google Scholar]
  82. 82. 
    Dyson M, Dupan S, Jones H, Nazarpour K. 2020. Learning, generalization, and scalability of abstract myoelectric control. IEEE Trans. Neural Syst. Rehabil. Eng. 28:1539–47
    [Google Scholar]
  83. 83. 
    Daley H, Englehart K, Hargrove L, Kuruganti U. 2012. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control. J. Electromyogr. Kinesiol. 22:478–84
    [Google Scholar]
  84. 84. 
    Hargrove L, Englehart K, Hudgins B. 2006. The effect of electrode displacements on pattern recognition based myoelectric control. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society2203–6 Piscataway, NJ: IEEE
    [Google Scholar]
  85. 85. 
    Boschmann A, Platzner M. 2014. Towards robust HD EMG pattern recognition: reducing electrode displacement effect using structural similarity. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society4547–50 Piscataway, NJ: IEEE
    [Google Scholar]
  86. 86. 
    Stango A, Negro F, Farina D. 2015. Spatial correlation of high density EMG signals provides features robust to electrode number and shift in pattern recognition for myocontrol. IEEE Trans. Neural Syst. Rehabil. Eng. 23:189–98
    [Google Scholar]
  87. 87. 
    Farina D, Holobar A, Merletti R, Enoka RM. 2010. Decoding the neural drive to muscles from the surface electromyogram. Clin. Neurophysiol. 121:1616–23
    [Google Scholar]
  88. 88. 
    Kapelner T, Negro F, Aszmann OC, Farina D. 2018. Decoding motor unit activity from forearm muscles: perspectives for myoelectric control. IEEE Trans. Neural Syst. Rehabil. Eng. 26:244–51
    [Google Scholar]
  89. 89. 
    Dai C, Hu X. 2020. Finger joint angle estimation based on motoneuron discharge activities. IEEE J. Biomed. Heal. Inform. 24:760–67
    [Google Scholar]
  90. 90. 
    Hu Y, Wong Y, Wei W, Du Y, Kankanhalli M, Geng W. 2018. A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition. PLOS ONE 13:e0206049
    [Google Scholar]
  91. 91. 
    Olsson AE, Sager P, Andersson E, Björkman A, Malešević N, Antfolk C. 2019. Extraction of multi-labelled movement information from the raw HD-sEMG image with time-domain depth. Sci. Rep. 9:7244
    [Google Scholar]
  92. 92. 
    Ameri A, Akhaee MA, Scheme E, Englehart K. 2019. Regression convolutional neural network for improved simultaneous EMG control. J. Neural Eng. 16:036015
    [Google Scholar]
  93. 93. 
    Xia P, Hu J, Peng Y. 2018. EMG-based estimation of limb movement using deep learning with recurrent convolutional neural networks. Artif. Organs 42:E67–77
    [Google Scholar]
  94. 94. 
    Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P et al. 2018. The history began from AlexNet: a comprehensive survey on deep learning approaches. arXiv:1803.01164 [cs.CV]
  95. 95. 
    Patricia N, Caputo B 2014. Learning to learn, from transfer learning to domain adaptation: a unifying perspective. 2014 IEEE Conference on Computer Vision and Pattern Recognition1442–49 Piscataway, NJ: IEEE
    [Google Scholar]
  96. 96. 
    Tommasi T, Orabona F, Castellini C, Caputo B. 2013. Improving control of dexterous hand prostheses using adaptive learning. IEEE Trans. Robot. 29:207–19
    [Google Scholar]
  97. 97. 
    Côté-Allard U, Fall CL, Drouin A, Campeau-Lecours A, Gosselin C et al. 2019. Deep learning for electromyographic hand gesture signal classification using transfer learning. IEEE Trans. Neural Syst. Rehabil. Eng. 27:760–71
    [Google Scholar]
  98. 98. 
    Du Y, Jin W, Wei W, Hu Y, Geng W 2017. Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation. Sensors 17:6–9
    [Google Scholar]
  99. 99. 
    Ameri A, Akhaee MA, Scheme E, Englehart K. 2019. A deep transfer learning approach to reducing the effect of electrode shift in EMG pattern recognition-based control. IEEE Trans. Neural Syst. Rehabil. Eng. 28:370–79
    [Google Scholar]
  100. 100. 
    Phinyomark A, Scheme E. 2018. EMG pattern recognition in the era of big data and deep learning. Big Data Cogn. Comput. 2:21
    [Google Scholar]
  101. 101. 
    Khamparia A, Singh KM. 2019. A systematic review on deep learning architectures and applications. Expert Syst 36:e12400
    [Google Scholar]
  102. 102. 
    Biddiss E, Chau T. 2007. Upper-limb prosthetics: critical factors in device abandonment. Am. J. Phys. Med. Rehabil. 86:977–87
    [Google Scholar]
  103. 103. 
    Došen S, Cipriani C, Kostić M, Controzzi M, Carrozza MC, Popovič DB. 2010. Cognitive vision system for control of dexterous prosthetic hands: experimental evaluation. J. Neuroeng. Rehabil. 7:42
    [Google Scholar]
  104. 104. 
    Light CM, Chappell PH, Hudgins B, Engelhart K. 2002. Intelligent multifunction myoelectric control of hand prostheses. J. Med. Eng. Technol. 26:139–46
    [Google Scholar]
  105. 105. 
    Fani S, Bianchi M, Jain S, Neto JSP, Boege S et al. 2016. Assessment of myoelectric controller performance and kinematic behavior of a novel soft synergy-inspired robotic hand for prosthetic applications. Front. Neurorobot. 10:11
    [Google Scholar]
  106. 106. 
    Smith LH, Kuiken TA, Hargrove LJ. 2014. Real-time simultaneous and proportional myoelectric control using intramuscular EMG. J. Neural Eng. 11:066013
    [Google Scholar]
  107. 107. 
    Pasquina PF, Evangelista M, Carvalho AJ, Lockhart J, Griffin S et al. 2015. First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. J. Neurosci. Methods 244:85–93
    [Google Scholar]
  108. 108. 
    Zia ur Rehman M, Gilani S, Waris A, Niazi I, Slabaugh G et al. 2018. Stacked sparse autoencoders for EMG-based classification of hand motions: a comparative multi day analyses between surface and intramuscular EMG. Appl. Sci. 8:1126
    [Google Scholar]
  109. 109. 
    Kamavuako EN, Scheme EJ, Englehart KB. 2014. Combined surface and intramuscular EMG for improved real-time myoelectric control performance. Biomed. Signal. Process. Control 10:102–7
    [Google Scholar]
  110. 110. 
    Dantas H, Warren DJ, Wendelken SM, Davis TS, Clark GA, Mathews VJ. 2019. Deep learning movement intent decoders trained with dataset aggregation for prosthetic limb control. IEEE Trans. Biomed. Eng. 66:3192–203
    [Google Scholar]
  111. 111. 
    Petrini FM, Mazzoni A, Rigosa J, Giambattistelli F, Granata G et al. 2019. Microneurography as a tool to develop decoding algorithms for peripheral neuro-controlled hand prostheses. BioMed. Eng. OnLine 18:44
    [Google Scholar]
  112. 112. 
    Rossini PM, Micera S, Benvenuto A, Carpaneto J, Cavallo G et al. 2010. Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin. Neurophysiol. 121:777–83
    [Google Scholar]
  113. 113. 
    Davis TS, Wark HAC, Hutchinson DT, Warren DJ, O'Neill K et al. 2016. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J. Neural Eng. 13:036001
    [Google Scholar]
  114. 114. 
    Petrini FM, Valle G, Strauss I, Granata G, Di Iorio R et al. 2019. Six-month assessment of a hand prosthesis with intraneural tactile feedback. Ann. Neurol. 85:137–54
    [Google Scholar]
  115. 115. 
    Mazzoni A, Oddo CM, Valle G, Camboni D, Strauss I et al. 2020. Morphological neural computation restores discrimination of naturalistic textures in trans-radial amputees. Sci. Rep. 10:527
    [Google Scholar]
  116. 116. 
    Graczyk EL, Schiefer MA, Saal HP, Delhaye BP, Bensmaia SJ, Tyler DJ. 2016. The neural basis of perceived intensity in natural and artificial touch. Sci. Transl. Med. 8:362ra142
    [Google Scholar]
  117. 117. 
    Kogler V, Nguyen TAK, Digiovanna J, Micera S. 2011. Recording vestibular evoked potentials induced by electrical stimulation of the horizontal semicircular canal in guinea pig. 2011 5th International IEEE/EMBS Conference on Neural Engineering261–64 Piscataway, NJ: IEEE
    [Google Scholar]
  118. 118. 
    Micera S, Carpaneto J, Raspopovic S. 2010. Control of hand prostheses using peripheral information. IEEE Rev. Biomed. Eng. 3:48–68
    [Google Scholar]
  119. 119. 
    Englehart K, Hudgins B. 2003. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 50:848–54
    [Google Scholar]
  120. 120. 
    Park M, Bok BG, Ahn JH, Kim MS. 2018. Recent advances in tactile sensing technology. Micromachines 9:321
    [Google Scholar]
  121. 121. 
    Pfeifer R, Iida F, Gómez G. 2006. Morphological computation for adaptive behavior and cognition. Int. Congr. Ser. 1291:22–9
    [Google Scholar]
  122. 122. 
    Kim Y, Chortos A, Xu W, Liu Y, Oh JY et al. 2018. A bioinspired flexible organic artificial afferent nerve. Science 360:998–1003
    [Google Scholar]
  123. 123. 
    Wu J, Jia QS, Johansson KH, Shi L. 2013. Event-based sensor data scheduling: trade-off between communication rate and estimation quality. IEEE Trans. Autom. Control 58:1041–6
    [Google Scholar]
  124. 124. 
    Bartolozzi C, Ros PM, Diotalevi F, Jamali N, Natale L et al. 2017. Event-driven encoding of off-the-shelf tactile sensors for compression and latency optimisation for robotic skin. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems166–73 Piscataway, NJ: IEEE
    [Google Scholar]
  125. 125. 
    Lee WW, Tan YJ, Yao H, Li S, See HH et al. 2019. A neuro-inspired artificial peripheral nervous system for scalable electronic skins. Sci. Robot. 4:eaax2198
    [Google Scholar]
  126. 126. 
    Antfolk C, D'Alonzo M, Rosén B, Lundborg G, Sebelius F, Cipriani C 2013. Sensory feedback in upper limb prosthetics. Expert Rev. Med. Devices 10:45–54
    [Google Scholar]
  127. 127. 
    Mann RW, Reimers SD. 1970. Kinesthetic sensing for the EMG controlled “Boston Arm. .” IEEE Trans. Man-Mach. Syst. 11:110–15
    [Google Scholar]
  128. 128. 
    Patterson PE, Katz JA. 1992. Design and evaluation of a sensory feedback system that provides grasping pressure in a myoelectric hand. J. Rehabil. Res. Dev. 29:1–8
    [Google Scholar]
  129. 129. 
    Clemente F, D'Alonzo M, Controzzi M, Edin BB, Cipriani C 2016. Non-invasive, temporally discrete feedback of object contact and release improves grasp control of closed-loop myoelectric transradial prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 24:1314–22
    [Google Scholar]
  130. 130. 
    D'Alonzo M, Clemente F, Cipriani C 2015. Vibrotactile stimulation promotes embodiment of an alien hand in amputees with phantom sensations. IEEE Trans. Neural Syst. Rehabil. Eng. 23:450–57
    [Google Scholar]
  131. 131. 
    Stephens-Fripp B, Alici G, Mutlu R 2018. A review of non-invasive sensory feedback methods for trans-radial prosthetic hands. IEEE Access 6:6878–99
    [Google Scholar]
  132. 132. 
    Dosen S, Markovic M, Strbac M, Belic M, Kojic V et al. 2017. Multichannel electrotactile feedback with spatial and mixed coding for closed-loop control of grasping force in hand prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 25:183–95
    [Google Scholar]
  133. 133. 
    Geng B, Dong J, Jensen W, Dosen S, Farina D, Kamavuako EN. 2018. Psychophysical evaluation of subdermal electrical stimulation in relation to prosthesis sensory feedback. IEEE Trans. Neural Syst. Rehabil. Eng. 26:709–15
    [Google Scholar]
  134. 134. 
    Dong J, Geng B, Niazi IK, Amjad I, Dosen S et al. 2020. The variability of psychophysical parameters following surface and subdermal stimulation: a multiday study in amputees. IEEE Trans. Neural Syst. Rehabil. Eng. 28:174–80
    [Google Scholar]
  135. 135. 
    Flesher SN, Downey JE, Weiss JM, Hughes CL, Herrera AJ et al. 2019. Restored tactile sensation improves neuroprosthetic arm control. bioRxiv 653428. https://doi.org/10.1101/653428
    [Crossref]
  136. 136. 
    Graczyk EL, Resnik L, Schiefer MA, Schmitt MS, Tyler DJ. 2018. Home use of a neural-connected sensory prosthesis provides the functional and psychosocial experience of having a hand again. Sci. Rep. 8:9866
    [Google Scholar]
  137. 137. 
    George JA, Page DM, Davis TS, Duncan CC, Hutchinson T et al. 2020. Long-term performance of Utah Slanted Electrode Arrays and intramuscular electromyographic leads implanted chronically in human arm nerves and muscles.. bioRxiv 2020.03.30.016683. https://doi.org/10.1101/2020.03.30.016683
    [Crossref]
  138. 138. 
    Ortiz-Catalan M, Mastinu E, Sassu P, Aszmann O, Brånemark R. 2020. Self-contained neuromusculoskeletal arm prostheses. N. Engl. J. Med. 382:1732–38
    [Google Scholar]
  139. 139. 
    George JA, Kluger DT, Davis TS, Wendelken SM, Okorokova EV et al. 2019. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci. Robot. 4:eaax2352
    [Google Scholar]
  140. 140. 
    Chandrasekaran S, Nanivadekar AC, McKernan G, Helm ER, Boninger ML et al. 2020. Sensory restoration by epidural stimulation of the lateral spinal cord in upper-limb amputees. eLife 9:e54349
    [Google Scholar]
  141. 141. 
    Controzzi M, Clemente F, Barone D, Luciani LB, Pierotti N et al. 2019. Progress towards the development of the DeTOP hand prosthesis: a sensorized transradial prosthesis for clinical use. Converging Clinical and Engineering Research on Neurorehabilitation III L Masia, S Micera, M Akay, J Pons 103–6 Cham, Switz: Springer
    [Google Scholar]
  142. 142. 
    Formento E, D'Anna E, Gribi S, Lacour SP, Micera S 2019. A biomimetic electrical stimulation strategy to induce asynchronous stochastic neural activity. J. Neural Eng. 17:046019
    [Google Scholar]
  143. 143. 
    Sengupta A, Ye Y, Wang R, Liu C, Roy K. 2019. Going deeper in spiking neural networks: VGG and residual architectures. Front Neurosci 13:95
    [Google Scholar]
  144. 144. 
    Lindner HYN, Nätterlund BS, Hermansson LMN. 2010. Upper limb prosthetic outcome measures: review and content comparison based on International Classification of Functioning, Disability and Health. Prosthet. Orthot. Int. 34:109–28
    [Google Scholar]
  145. 145. 
    Hill W, Stavdahl Ø, Hermansson LN, Kyberd P, Swanson S, Hubbard S. 2009. Functional outcomes in the WHO-ICF model: establishment of the upper limb prosthetic outcome measures group. J. Prosthet. Orthot. 21:115–19
    [Google Scholar]
  146. 146. 
    Hudak PL, Amadio PC, Bombardier C. 1996. Development of an upper extremity outcome measure: the DASH (Disabilities of the Arm, Shoulder, and Head). Am. J. Ind. Med. 29:602–8
    [Google Scholar]
  147. 147. 
    Beaton DE, Wright JG, Katz JN, Amadio P, Bombardier C et al. 2005. Development of the QuickDASH: comparison of three item-reduction approaches. J. Bone Jt. Surg. A 87:1038–46
    [Google Scholar]
  148. 148. 
    Harper A, Power M, Orley J, Herrman H, Schofield H et al. 1998. Development of the World Health Organization WHOQOL-BREF quality of life assessment. Psychol. Med. 28:551–58
    [Google Scholar]
  149. 149. 
    Burckhardt CS, Anderson KL. 2003. The Quality of Life Scale (QOLS): reliability, validity, and utilization. Health Qual. Life Outcomes 1:60
    [Google Scholar]
  150. 150. 
    Heinemann AW, Bode RK, O'Reilly C. 2003. Development and measurement properties of the Orthotics and Prosthetics User's Survey (OPUS): a comprehensive set of clinical outcome instruments. Prosthet. Orthot. Int. 27:191–206
    [Google Scholar]
  151. 151. 
    Lendaro E, Middleton A, Brown S, Ortiz-Catalan M. 2020. Out of the clinic, into the home: the in-home use of phantom motor execution aided by machine learning and augmented reality for the treatment of phantom limb pain. J. Pain Res. 13:195–209
    [Google Scholar]
  152. 152. 
    Johansson RS, Flanagan JR. 2009. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10:345–59
    [Google Scholar]
  153. 153. 
    Taub E, Uswatte G, Pidikiti R. 1999. Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation—a clinical review. J. Rehabil. Res. Dev. 36:237–51
    [Google Scholar]
  154. 154. 
    Mathiowetz V, Volland G, Kashman N, Weber K. 1985. Adult norms for the Box and Block Test of manual dexterity. Am. J. Occup. Ther. 39:386–91
    [Google Scholar]
  155. 155. 
    Hebert JS, Lewicke J. 2012. Case report of modified box and blocks test with motion capture to measure prosthetic function. J. Rehabil. Res. Dev. 49:1163–74
    [Google Scholar]
  156. 156. 
    Hebert JS, Lewicke J, Williams TR, Vette AH. 2014. Normative data for modified box and blocks test measuring upper-limb function via motion capture. J. Rehabil. Res. Dev. 51:919–31
    [Google Scholar]
  157. 157. 
    Mathiowetz V, Weber K, Kashman N, Volland G. 1985. Adult norms for the Nine Hole Peg Test of finger dexterity. Occup. Ther. J. Res. 5:24–38
    [Google Scholar]
  158. 158. 
    Lambercy O, Fluet MC, Lamers I, Kerkhofs L, Feys P, Gassert R. 2013. Assessment of upper limb motor function in patients with multiple sclerosis using the Virtual Peg Insertion Test: a pilot study. 2013 IEEE International Conference on Rehabilitation Robotics Piscataway, NJ: IEEE https://doi.org/10.1109/ICORR.2013.6650494
    [Crossref] [Google Scholar]
  159. 159. 
    Kyberd P, Hussaini A, Maillet G. 2018. Characterisation of the Clothespin Relocation Test as a functional assessment tool. J. Rehabil. Assist. Technol. Eng. 5: https://doi.org/10.1177/2055668317750810
    [Crossref] [Google Scholar]
  160. 160. 
    Yozbatiran N, Der-Yeghiaian L, Cramer SC. 2008. A standardized approach to performing the action research arm test. Neurorehabil. Neural Repair 22:78–90
    [Google Scholar]
  161. 161. 
    Light CM, Chappell PH, Kyberd PJ. 2002. Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: normative data, reliability, and validity. Arch. Phys. Med. Rehabil. 83:776–83
    [Google Scholar]
  162. 162. 
    Thumser ZC, Slifkin AB, Beckler DT, Marasco PD. 2018. Fitts’ law in the control of isometric grip force with naturalistic targets. Front. Psychol. 9:560
    [Google Scholar]
  163. 163. 
    Risso G, Valle G, Iberite F, Strauss I, Stieglitz T, Controzzi M. 2019. Optimal integration of intraneural somatosensory feedback with visual information: a single-case study. Sci. Rep. 9:7916
    [Google Scholar]
  164. 164. 
    Schiefer M, Tan D, Sidek SM, Tyler DJ. 2015. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J. Neural Eng. 13:016001
    [Google Scholar]
  165. 165. 
    Deeny S, Chicoine C, Hargrove L, Parrish T, Jayaraman A. 2014. A simple ERP method for quantitative analysis of cognitive workload in myoelectric prosthesis control and human-machine interaction. PLOS ONE 9:e112091
    [Google Scholar]
  166. 166. 
    Petrini FM, Bumbasirevic M, Valle G, Ilic V, Mijović P et al. 2019. Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain. Nat. Med. 25:1356–63
    [Google Scholar]
  167. 167. 
    Ephraim PL, Wegener ST, MacKenzie EJ, Dillingham TR, Pezzin LE. 2005. Phantom pain, residual limb pain, and back pain in amputees: results of a national survey. Arch. Phys. Med. Rehabil. 86:1910–19
    [Google Scholar]
  168. 168. 
    Melzack R. 2005. The McGill Pain Questionnaire: from description to measurement. Anesthesiology 103:199–202
    [Google Scholar]
  169. 169. 
    Bouhassira D, Attal N, Fermanian J, Alchaar H, Gautron M et al. 2004. Development and validation of the Neuropathic Pain Symptom Inventory. Pain 108:248–57
    [Google Scholar]
  170. 170. 
    Rognini G, Rossini PM, Strauss I, D'Anna E, Mange R et al. 2018. Multisensory bionic limb to achieve prosthesis embodiment and reduce distorted phantom limb perceptions. J. Neurol. Neurosurg. Psychiatry 90:833–36
    [Google Scholar]
  171. 171. 
    Marasco PD, Hebert JS, Sensinger JW, Shell CE, Schofield JS et al. 2018. Illusory movement perception improves motor control for prosthetic hands. Sci. Transl. Med. 10:eaao6990
    [Google Scholar]
  172. 172. 
    Botvinick M, Cohen J. 1998. Rubber hands ‘feel’ touch that eyes see. Nature 391:756
    [Google Scholar]
  173. 173. 
    Di Pino G, Romano D, Spaccasassi C, Mioli A, D'Alonzo M et al. 2020. Sensory- and action-oriented embodiment of neurally-interfaced robotic hand prostheses. Front. Neurosci. 14:389
    [Google Scholar]
  174. 174. 
    Blustein D, Wilson A, Sensinger J 2018. Assessing the quality of supplementary sensory feedback using the crossmodal congruency task. Sci. Rep. 8:6203
    [Google Scholar]
  175. 175. 
    Canzoneri E, Marzolla M, Amoresano A, Verni G, Serino A. 2013. Amputation and prosthesis implantation shape body and peripersonal space representations. Sci. Rep. 3:2844
    [Google Scholar]
  176. 176. 
    Lundborg G. 2000. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J. Hand. Surg. 25:391–414
    [Google Scholar]
  177. 177. 
    Bernardon L, Gazarian A, Petruzzo P, Packham T, Guillot M et al. 2015. Bilateral hand transplantation: functional benefits assessment in five patients with a mean follow-up of 7.6 years (range 4–13 years). J. Plast. Reconstr. Aesthet. Surg. 68:1171–83
    [Google Scholar]
  178. 178. 
    Schultz AE, Marasco PD, Kuiken TA. 2009. Vibrotactile detection thresholds for chest skin of amputees following targeted reinnervation surgery. Brain Res 1251:121–29
    [Google Scholar]
  179. 179. 
    Geng W, Du Y, Jin W, Wei W, Hu Y, Li J 2016. Gesture recognition by instantaneous surface EMG images. Sci. Rep. 6:36571
    [Google Scholar]
  180. 180. 
    Navarro X, Calvet S, Rodríguez FJ, Stieglitz T, Blau C et al. 1998. Stimulation and recording from regenerated peripheral nerves through polyimide sieve electrodes. J. Peripher. Nerv. Syst. 3:91–101
    [Google Scholar]
  181. 181. 
    Valle G, Petrini FM, Strauss I, Iberite F, D'Anna E et al. 2018. Comparison of linear frequency and amplitude modulation for intraneural sensory feedback in bidirectional hand prostheses. Sci. Rep. 8:16666
    [Google Scholar]
  182. 182. 
    George JA, Davis TS, Brinton MR, Clark GA. 2019. Intuitive neuromyoelectric control of a dexterous bionic arm using a modified Kalman filter. J. Neurosci. Methods 330:108462
    [Google Scholar]
  183. 183. 
    Maravita A, Spence C, Driver J. 2003. Multisensory integration and the body schema: close to hand and within reach. Curr. Biol. 13:R531–39
    [Google Scholar]
  184. 184. 
    Hahne JM, Schweisfurth MA, Koppe M, Farina D. 2018. Simultaneous control of multiple functions of bionic hand prostheses: performance and robustness in end users. Sci. Robot. 3:eaat3630
    [Google Scholar]
/content/journals/10.1146/annurev-control-071020-104336
Loading
/content/journals/10.1146/annurev-control-071020-104336
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error