1932

Abstract

This review deals with the control of parabolic trough collector (PTC) solar power plants. After a brief introduction, we present a description of PTC plants. We then provide a short literature review and describe some of our experiences. We also describe new control trends in PTC plants. Recent research has focused on () new control methods using mobile sensors mounted on drones and unmanned ground vehicles as an integral part of the control systems; () spatially distributed solar irradiance estimation methods using a variable fleet of sensors mounted on drones and unmanned ground vehicles; () strategies to achieve thermal balance in large-scale fields; () new model predictive control algorithms using mobile solar sensor estimates and predictions for safer and more efficient plant operation, which allow the effective integration of solar energy and combine coalitional and artificial intelligence techniques; and () fault detection and diagnosis methods to ensure safe operation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-071023-103936
2024-07-10
2025-04-26
Loading full text...

Full text loading...

/deliver/fulltext/control/7/1/annurev-control-071023-103936.html?itemId=/content/journals/10.1146/annurev-control-071023-103936&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Solangi KH, Islam MR, Saidur R, Rahim NA, Fayaz H. 2011.. A review on global solar energy policy. . Renew. Sustain. Energy Rev. 15:(4):214963
    [Crossref] [Google Scholar]
  2. 2.
    Heeckt C, Kolaric S. 2020.. Urban sustainability in Europe: What is driving cities' environmental changes? Rep. 16/2020 , Eur. Environ. Agency, Copenhagen, Den:.
    [Google Scholar]
  3. 3.
    Bos K, Gupta J. 2018.. Climate change: the risks of stranded fossil fuel assets and resources to the developing world. . Third World Q. 39:(3):43653
    [Crossref] [Google Scholar]
  4. 4.
    Jacob J, Pandey AK, Rahim NA, Selvaraj J, Samykano M, et al. 2021.. Concentrated photovoltaic thermal (CPVT) systems: recent advancements in clean energy applications, thermal management and storage. . J. Energy Storage 45::103369
    [Crossref] [Google Scholar]
  5. 5.
    Azam A, Rafiq M, Shafique M, Zhang H, Yuan J. 2021.. Analyzing the effect of natural gas, nuclear energy and renewable energy on GDP and carbon emissions: a multi-variate panel data analysis. . Energy 219::119592
    [Crossref] [Google Scholar]
  6. 6.
    Şen Z. 2004.. Solar energy in progress and future research trends. . Prog. Energy Combust. Sci. 30:(4):367416
    [Crossref] [Google Scholar]
  7. 7.
    Ajbar W, Parrales A, Huicochea A, Hernández JA. 2022.. Different ways to improve parabolic trough solar collectors' performance over the last four decades and their applications: a comprehensive review. . Renew. Sustain. Energy Rev. 156::111947
    [Crossref] [Google Scholar]
  8. 8.
    Islam MT, Huda N, Abdullah AB, Saidur R. 2018.. A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: current status and research trends. . Renew. Sustain. Energy Rev. 91::9871018
    [Crossref] [Google Scholar]
  9. 9.
    Branco AF, Morato MM, Andrade GA, Normey-Rico JE. 2019.. Tools for the control of modern solar-thermal heating plants. . In SBAI 2019: Anais do 14° Simpósio Brasileiro de Automação Inteligente, pap. 104234 . Campinas:: Soc. Brasil. Autom.
    [Google Scholar]
  10. 10.
    Natl. Acad. Eng. 2023.. Make solar energy economical. . NAE Grand Challenges in Engineering. http://www.engineeringchallenges.org/challenges/solar.aspx
    [Google Scholar]
  11. 11.
    Camacho EF, Berenguel M. 2012.. Control of solar energy systems. . IFAC Proc. Vol. 45:(15):84855
    [Crossref] [Google Scholar]
  12. 12.
    Fathabadi H. 2020.. Novel low-cost parabolic trough solar collector with tpct heat pipe and solar tracker: performance and comparing with commercial flat-plate and evacuated tube solar collectors. . Solar Energy 195::21022
    [Crossref] [Google Scholar]
  13. 13.
    Gallego AJ, Camacho EF. 2012.. Estimation of effective solar irradiation using an unscented Kalman filter in a parabolic-trough field. . Solar Energy 86:(12):351218
    [Crossref] [Google Scholar]
  14. 14.
    Camacho EF, Berenguel M, Rubio FR. 1997.. Advanced Control of Solar Plants. London:: Springer
    [Google Scholar]
  15. 15.
    Goswami DY. 2022.. Principles of Solar Engineering. Boca Raton, FL:: CRC
    [Google Scholar]
  16. 16.
    Rubio F, Camacho EF, Carmona R. 2006.. Control de campos de colectores solares. . RIAI Rev. Iberoam. Autom. Inform. Ind. 3::2645
    [Google Scholar]
  17. 17.
    Berenguel M, Arahal MR, Camacho EF. 1998.. Modelling the free response of a solar plant for predictive control. . Control Eng. Pract. 6:(10):125766
    [Crossref] [Google Scholar]
  18. 18.
    Sánchez AJ, Gallego AJ, Escaño JM, Camacho EF. 2018.. Event-based MPC for defocusing and power production of a parabolic trough plant under power limitation. . Solar Energy 174::57081
    [Crossref] [Google Scholar]
  19. 19.
    Andrade G, Pagano D, Alvarez JD, Berenguel M. 2013.. A practical NMPC with robustness of stability applied to distributed solar power plants. . Solar Energy 92::10622
    [Crossref] [Google Scholar]
  20. 20.
    Li L, Li Y, He YL. 2020.. Flexible and efficient feedforward control of concentrating solar collectors. . Appl. Therm. Eng. 171::115053
    [Crossref] [Google Scholar]
  21. 21.
    Torrico BC, Roca L, Normey-Rico JE, Guzman JL, Yebra L. 2010.. Robust nonlinear predictive control applied to a solar collector field in a solar desalination plant. . IEEE Trans. Control Syst. Technol. 18:(6):143039
    [Google Scholar]
  22. 22.
    Navas SJ, Rubio FR, Ollero P, Lemos JM. 2018.. Optimal control applied to distributed solar collector fields with partial radiation. . Solar Energy 159::81119
    [Crossref] [Google Scholar]
  23. 23.
    Stuetzle T, Blair N, Mitchell JW, Beckman WA. 2004.. Automatic control of a 30 MWe SEGS VI parabolic trough plant. . Solar Energy 76:(1–3):18793
    [Crossref] [Google Scholar]
  24. 24.
    Lima DM, Normey-Rico JE, Santos TLM. 2016.. Temperature control in a solar collector field using filtered dynamic matrix control. . ISA Trans. 62::3949
    [Crossref] [Google Scholar]
  25. 25.
    He G, Chen Q, Kang C, Xia Q. 2016.. Optimal offering strategy for concentrating solar power plants in joint energy, reserve and regulation markets. . IEEE Trans. Sustain. Energy 7:(3):124554
    [Crossref] [Google Scholar]
  26. 26.
    Rohani S, Fluri T, Dinter F, Nitz P. 2017.. Modelling and simulation of parabolic trough plants based on real operating data. . Solar Energy 158::84560
    [Crossref] [Google Scholar]
  27. 27.
    Schott Solar. 2013.. Schott PTR®70 receiver: the 4th generation. Broch. , Schott Solar, Mainz, Ger.: https://shorturl.at/gkI04
    [Google Scholar]
  28. 28.
    Therminol. 2023.. Therminol VP-1 heat transfer fluid. . Therminol. https://www.therminol.com/product/71093459
    [Google Scholar]
  29. 29.
    Sánchez AJ, Gallego AJ, Escaño JM, Camacho EF. 2019.. Adaptive incremental state space MPC for collector defocusing of a parabolic trough plant. . Solar Energy 184::10514
    [Crossref] [Google Scholar]
  30. 30.
    Haykin S. 2004.. Kalman Filtering and Neural Networks. New York:: Wiley & Sons
    [Google Scholar]
  31. 31.
    Sánchez AJ, Gallego AJ, Escaño JM, Camacho EF. 2020.. Parabolic trough collector defocusing analysis: two control stages versus four control stages. . Solar Energy 209::3041
    [Crossref] [Google Scholar]
  32. 32.
    Sánchez AJ, Gallego AJ, Escaño JM, Camacho EF. 2021.. Hierarchical set-point optimization and feedforward strategy for collector defocusing of a solar plant. . Solar Energy 220::28294
    [Crossref] [Google Scholar]
  33. 33.
    Tschopp D, Tianb Z, Berberichc M, Fand J, Perersd B, Furbod S. 2020.. Large-scale solar thermal systems in leading countries: a review and comparative study of Denmark, China, Germany and Austria. . Appl. Energy 270::114997
    [Crossref] [Google Scholar]
  34. 34.
    Awan AB, Khan M, Zubair M, Bellos E. 2020.. Commercial parabolic trough CSP plants: research trends and technological advancements. . Solar Energy 211::142258
    [Crossref] [Google Scholar]
  35. 35.
    Lemos JM, Neves-Silva R, Igreja JM. 2014.. Adaptive Control of Solar Energy Collector Systems. Cham, Switz.:: Springer
    [Google Scholar]
  36. 36.
    Camacho EF, Gallego AJ. 2013.. Optimal operation in solar trough plants: a case study. . Solar Energy 95::10617
    [Crossref] [Google Scholar]
  37. 37.
    Navas SJ, Ollero P, Rubio FR. 2017.. Optimum operating temperature of parabolic trough solar fields. . Solar Energy 158::295302
    [Crossref] [Google Scholar]
  38. 38.
    Borge-Diez D, Rosales-Asensio E, Palmero-Marrero AI, Acikkalp E. 2022.. Optimization of CSP plants with thermal energy storage for electricity price stability in spot markets. . Energies 15:(5):1672
    [Crossref] [Google Scholar]
  39. 39.
    Velarde P, Gallego AJ, Bordons C, Camacho EF. 2023.. Scenario-based model predictive control for energy scheduling in a parabolic trough concentrating solar plant with thermal storage. . Renew. Energy 206::122838
    [Crossref] [Google Scholar]
  40. 40.
    Rohania S, Fluria T, Dinterb F, Nitza P. 2017.. Modelling and simulation of parabolic trough plants based on real operating data. . Solar Energy 158::84560
    [Crossref] [Google Scholar]
  41. 41.
    Gallego AJ, Macías M, de Castilla F, Sánchez AJ, Camacho EF. 2022.. Model predictive control of the Mojave solar trough plants. . Control Eng. Pract. 123::105140
    [Crossref] [Google Scholar]
  42. 42.
    Stuetzle T, Blair N, Mitchell JW, Beckman WA. 2004.. Automatic control of a 30 MWe SEGS VI parabolic trough plant. . Solar Energy 76::18793
    [Crossref] [Google Scholar]
  43. 43.
    Gallego AJ, Macias M, de Castilla F, Camacho EF. 2019.. Mathematical modeling of the Mojave solar plants. . Energies 12:(21):4197
    [Crossref] [Google Scholar]
  44. 44.
    Camacho EF. 2022.. Optimal control of thermal solar energy systems. . CORDIS. https://cordis.europa.eu/project/id/789051
    [Google Scholar]
  45. 45.
    DJI Enterp. 2023.. DJI Dock: for roads less traveled. . DJI Enterprise. https://enterprise.dji.com/dock
    [Google Scholar]
  46. 46.
    Nelson JR, Grubesic TH. 2020.. The use of lidar versus unmanned aerial systems (UAS) to assess rooftop solar energy potential. . Sustain. Cities Soc. 61::102353
    [Crossref] [Google Scholar]
  47. 47.
    Lee DH, Park JH. 2019.. Developing inspection methodology of solar energy plants by thermal infrared sensor on board unmanned aerial vehicles. . Energies 12:(15):2928
    [Crossref] [Google Scholar]
  48. 48.
    Vega Díaz JJ, Vlaminck M, Lefkaditis D, Orjuela Vargas SA, Luong H. 2020.. Solar panel detection within complex backgrounds using thermal images acquired by UAVs. . Sensors 20:(21):6219
    [Crossref] [Google Scholar]
  49. 49.
    Bemposta Rosende S, Sánchez-Soriano J, Gómez Muñoz CQ, Fernández Andrés J. 2020.. Remote management architecture of UAV fleets for maintenance, surveillance, and security tasks in solar power plants. . Energies 13:(21):5712
    [Crossref] [Google Scholar]
  50. 50.
    Milidonis K, Eliades A, Grigoriev V, Blanco M. 2023.. Unmanned aerial vehicles (UAVs) in the planning, operation and maintenance of concentrating solar thermal systems: a review. . Solar Energy 254::18294
    [Crossref] [Google Scholar]
  51. 51.
    Martin JG, García RA, Camacho EF. 2021.. Event-MILP-based task allocation for heterogeneous robotic sensor network for thermosolar plants. . J. Intell. Robot. Syst. 102::1
    [Crossref] [Google Scholar]
  52. 52.
    Martin JG, Frejo JRD, García RA, Camacho EF. 2021.. Multi-robot task allocation problem with multiple nonlinear criteria using branch and bound and genetic algorithms. . Intell. Serv. Robot. 14:(5):70727
    [Crossref] [Google Scholar]
  53. 53.
    Aguilar-López JM, García RA, Bordons C, Camacho EF. 2022.. Development of the energy consumption model of a quadrotor using voltage data from experimental flights. . In 2022 IEEE 17th International Conference on Control & Automation (ICCA), pp. 43237. Piscataway, NJ:: IEEE
    [Google Scholar]
  54. 54.
    Aguilar-López JM, García Rodríguez RA, Camacho EF. 2021.. Algoritmo para la detección de formas aplicable a la estimación solar. . Rev. Iberoam. Autom. Inform. Ind. 18:(3):27787
    [Crossref] [Google Scholar]
  55. 55.
    Aguilar-López JM, García RA, Sánchez AJ, Gallego AJ, Camacho EF. 2022.. Mobile sensor for clouds shadow detection and direct normal irradiance estimation. . Solar Energy 237::47082
    [Crossref] [Google Scholar]
  56. 56.
    Martin JG, Maestre JM, Camacho EF. 2021.. Spatial irradiance estimation in a thermosolar power plant by a mobile robot sensor network. . Solar Energy 220::73544
    [Crossref] [Google Scholar]
  57. 57.
    Camacho EF, Berenguel M, Gallego AJ. 2014.. Control of thermal solar energy plants. . J. Process Control 24:(2):33240
    [Crossref] [Google Scholar]
  58. 58.
    Power Technol. 2019.. The Andasol Solar Power Station Project. . Power Technology. https://www.power-technology.com/projects/andasolsolarpower
    [Google Scholar]
  59. 59.
    Natl. Renew. Energy Lab. 2022.. Mojave Solar Project CSP Project. . National Renewable Energy Laboratory. https://solarpaces.nrel.gov/project/mojave-solar-project
    [Google Scholar]
  60. 60.
    Natl. Renew. Energy Lab. 2022.. Solana Generating Station CSP Project. . National Renewable Energy Laboratory. https://solarpaces.nrel.gov/project/solana-generating-station
    [Google Scholar]
  61. 61.
    Sánchez AJ, Gallego AJ, Escaño JM, Camacho EF. 2018.. Temperature homogenization of a solar trough field for performance improvement. . Solar Energy 165::19
    [Crossref] [Google Scholar]
  62. 62.
    Sánchez AJ, Gallego AJ, Escaño JM, Camacho EF. 2019.. Thermal balance of large scale parabolic trough plants: a case study. . Solar Energy 190::6981
    [Crossref] [Google Scholar]
  63. 63.
    Frejo JRD, Camacho EF. 2020.. Centralized and distributed model predictive control for the maximization of the thermal power of solar parabolic-trough plants. . Solar Energy 204::19099
    [Crossref] [Google Scholar]
  64. 64.
    Ma L, Wang Z, Lei D, Xu L. 2019.. Establishment, validation, and application of a comprehensive thermal hydraulic model for a parabolic trough solar field. . Energies 12::3161
    [Crossref] [Google Scholar]
  65. 65.
    Gallego AJ, Sánchez AJ, Escaño JME, Camacho EF. 2022.. Nonlinear model predictive control for thermal balance in solar trough plants. . Eur. J. Control 67::100717
    [Crossref] [Google Scholar]
  66. 66.
    Masero E, Frejo JRD, Maestre JM, Camacho EF. 2021.. A light clustering model predictive control approach to maximize thermal power in solar parabolic-trough plants. . Solar Energy 214::53141
    [Crossref] [Google Scholar]
  67. 67.
    Masero E, Maestre JM, Camacho EF. 2022.. Market-based clustering of model predictive controllers for maximizing collected energy by parabolic-trough solar collector fields. . Appl. Energy 306::117936
    [Crossref] [Google Scholar]
  68. 68.
    Sánchez-Amores A, Martinez-Piazuelo J, Maestre JM, Ocampo-Martinez C, Camacho EF, Quijano N. 2023.. Coalitional model predictive control of parabolic-trough solar collector fields with population-dynamics assistance. . Appl. Energy 334::120740
    [Crossref] [Google Scholar]
  69. 69.
    Chanfreut P, Maestre JM, Gallego AJ, Annaswamy AM, Camacho EF. 2023.. Clustering-based model predictive control of solar parabolic trough plants. . Renew. Energy 216::118978
    [Crossref] [Google Scholar]
  70. 70.
    Chanfreut P, Maestre JM, Krishnamoorthy D, Camacho EF. 2023.. ALADIN-based distributed model predictive control with dynamic partitioning: an application to solar parabolic trough plants. . arXiv:2305.02821 [eess.SY]
  71. 71.
    Gil P, Henriques J, Dourado A. 2001.. Recurrent neural networks and feedback linearization for a solar power plant control. Paper presented at the European Symposium on Intelligent Technologies Hybrid Systems and Their Implementations on Smart Adaptive Systems, Tenerife, Spain:, Dec. 13–14
    [Google Scholar]
  72. 72.
    Kalogirou SA, Neocleous CC, Schizas CN. 1998.. Artificial neural networks for modelling the starting-up of a solar steam-generator. . Appl. Energy 60:(2):89100
    [Crossref] [Google Scholar]
  73. 73.
    Kalogirou SA, Mathioulakis E, Belessiotis V. 2014.. Artificial neural networks for the performance prediction of large solar systems. . Renew. Energy 63::9097
    [Crossref] [Google Scholar]
  74. 74.
    Ghritlahre HK, Prasad RK. 2018.. Application of ANN technique to predict the performance of solar collector systems—a review. . Renew. Sustain. Energy Rev. 84::7588
    [Crossref] [Google Scholar]
  75. 75.
    Bayas A, Škrjanc I, Sáez D. 2018.. Design of fuzzy robust control strategies for a distributed solar collector field. . Appl. Soft Comput. 71::100919
    [Crossref] [Google Scholar]
  76. 76.
    Escaño JM, Gallego AJ, Sánchez AJ, Yebra LJ, Camacho EF. 2021.. Nonlinear fuzzy model predictive control of the TCP-100 parabolic trough plant. . In Joint Proceedings of the 19th World Congress of the International Fuzzy Systems Association (IFSA), the 12th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), and the 11th International Summer School on Aggregation Operators (AGOP), pp. 23541. Dordrecht, Neth.:: Atlantis
    [Google Scholar]
  77. 77.
    Henriques J, Gil P, Dourado A. 2002.. Neural output regulation for a solar power plant. . IFAC Proc. Vol. 35:(1):30712
    [Crossref] [Google Scholar]
  78. 78.
    Flores A, Sáez D, Araya J, Berenguel M, Cipriano A. 2005.. Fuzzy predictive control of a solar power plant. . IEEE Trans. Fuzzy Syst. 13:(1):5868
    [Crossref] [Google Scholar]
  79. 79.
    Correa-Jullian C, Droguett EL, Cardemil JM. 2020.. Operation scheduling in a solar thermal system: a reinforcement learning-based framework. . Appl. Energy 268::114943
    [Crossref] [Google Scholar]
  80. 80.
    Cervantes-Bobadilla M, Hernández-Pérez JA, Juárez-Romero D, Bassam A, García-Morales J, et al. 2021.. Control scheme formulation for a parabolic trough collector using inverse artificial neural networks and particle swarm optimization. . J. Braz. Soc. Mech. Sci. Eng. 43:(4):176
    [Crossref] [Google Scholar]
  81. 81.
    Ruiz-Moreno S, Frejo JRD, Camacho EF. 2021.. Model predictive control based on deep learning for solar parabolic-trough plants. . Renew. Energy 180::193202
    [Crossref] [Google Scholar]
  82. 82.
    Masero E, Ruiz-Moreno S, Frejo JRD, Maestre JM, Camacho EF. 2023.. A fast implementation of coalitional model predictive controllers based on machine learning: application to solar power plants. . Eng. Appl. Artif. Intell. 118::105666
    [Crossref] [Google Scholar]
  83. 83.
    Miljković D. 2011.. Fault detection methods: a literature survey. . In 2011 Proceedings of the 34th International Convention MIPRO, pp. 75055. Piscataway, NJ:: IEEE
    [Google Scholar]
  84. 84.
    Park YJ, Fan SKS, Hsu CY. 2020.. A review on fault detection and process diagnostics in industrial processes. . Processes 8:(9):1123
    [Crossref] [Google Scholar]
  85. 85.
    Amin AA, Hasan KM. 2019.. A review of fault tolerant control systems: advancements and applications. . Measurement 143::5868
    [Crossref] [Google Scholar]
  86. 86.
    de Keizer AC, Vajen K, Jordan U. 2011.. Review of long-term fault detection approaches in solar thermal systems. . Solar Energy 85:(7):143039
    [Crossref] [Google Scholar]
  87. 87.
    Faure G, Vallée M, Paulus C, Tran T. 2020.. Fault detection and diagnosis for large solar thermal systems: a review of fault types and applicable methods. . Solar Energy 197::47284
    [Crossref] [Google Scholar]
  88. 88.
    Faure G, Vallée M, Tran-Quoc T, Lamaison N, Paulus C. 2018.. A methodology to analyse fault effect on large solar thermal system behaviour. Paper presented at the the 31st International Conference on Efficiency, Cost, Optimization , Simulation and Environmental Impact of Energy Systems, Guimarães, Port.:, June 17–22
    [Google Scholar]
  89. 89.
    de Keizer AC, Vajen K, Jordan U. 2008.. Monitoring and failure detection for large scale solar thermal systems: a simulation based approach. Paper presented at 9th Gleisdorf Solar International Symposium, Gleisdorf, Austria:, Sept. 3–5
    [Google Scholar]
  90. 90.
    Ruiz-Moreno S, Gallego AJ, Sánchez AJ, Camacho EF. 2023.. A cascade neural network methodology for fault detection and diagnosis in solar thermal plants. . Renew. Energy 211::7686
    [Crossref] [Google Scholar]
  91. 91.
    Correa-Jullian C, Cardemil JM, Droguett EL, Behzad M. 2019.. Assessment of deep learning algorithms for fault diagnosis in solar thermal systems. . In Proceedings of the 2019 IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry. Freiburg im Breisgau, Ger.:: Int. Solar Energy Soc. https://doi.org/10.18086/swc.2019.08.03
    [Google Scholar]
  92. 92.
    Zahra T, Mourad LM, Ahmed AH. 2020.. Robust fuzzy sliding mode observer for faults detection in solar power plant application. . Instrum. Mes. Métrol. 19:(4):28187
    [Google Scholar]
  93. 93.
    Ruiz-Moreno S, Sánchez AJ, Gallego AJ, Camacho EF. 2022.. A deep learning-based strategy for fault detection and isolation in parabolic-trough collectors. . Renew. Energy 186::691703
    [Crossref] [Google Scholar]
  94. 94.
    Ruiz-Moreno S, Gallego AJ, Sánchez AJ, Camacho EF. 2022.. Deep learning-based fault detection and isolation in solar plants for highly dynamic days. . In 2022 International Conference on Control, Automation and Diagnosis. Piscataway, NJ:: IEEE. https://doi.org/10.1109/ICCAD55197.2022.9853987
    [Google Scholar]
  95. 95.
    Brenner A, Kahn J, Hirsch T, Röger M, Pitz-Paal R. 2023.. Soiling determination for parabolic trough collectors based on operational data analysis and machine learning. . Solar Energy 259::25776
    [Crossref] [Google Scholar]
  96. 96.
    Cardoso A, Gil P, Henriques J, Carvalho P, Duarte-Ramos H, Dourado A. 2004.. Experiments with a fault tolerant adaptive controller on a solar power plant. Paper presented at the 6th Portuguese Conference on Automatic Control, Faro, Port.:, June 7–9
    [Google Scholar]
  97. 97.
    Sánchez AJ, Escaño JM, Canty N, Gallego AJ, Camacho EF. 2015.. Solar radiation estimator and fault tolerant model predictive control of a parabolic-trough field. . In 2015 26th Irish Signals and Systems Conference. Piscataway, NJ:: IEEE. https://doi.org/10.1109/ISSC.2015.7163786
    [Google Scholar]
  98. 98.
    Sánchez AJ, Escaño JM, Gallego AJ, Camacho EF. 2016.. Fault tolerant MPC of a solar trough field based on classification and regression trees. . In 2016 3rd Conference on Control and Fault-Tolerant Systems, pp. 15257. Piscataway, NJ:: IEEE
    [Google Scholar]
/content/journals/10.1146/annurev-control-071023-103936
Loading
/content/journals/10.1146/annurev-control-071023-103936
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error