1932

Abstract

In this review, we present a comprehensive perspective on communication-aware robotics, an area that considers realistic communication environments and aims to jointly optimize communication and navigation. The main focus of the article is theoretical characterization and understanding of performance guarantees. We begin by summarizing the best prediction an unmanned vehicle can have of the channel quality at unvisited locations. We then consider the case of a single robot, showing how it can mathematically characterize the statistics of its traveled distance until connectivity and further plan its path to reach a connected location with optimality guarantees, in real channel environments and with minimum energy consumption. We then move to the case of multiple robots, showing how they can utilize their motions to enable robust information flow. We consider two specific robotic network configurations—robotic beamformers and robotic routers—and mathematically characterize properties of the co-optimum motion–communication decisions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-071420-080708
2021-05-03
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/control/4/1/annurev-control-071420-080708.html?itemId=/content/journals/10.1146/annurev-control-071420-080708&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Fukuda T, Nakagawa S. 1987. A dynamically reconfigurable robotic system (concept of a system and optimal configurations). IECON'87: Industrial Applications of Robotics and Machine Vision588–95 Bellingham, WA: Soc. Photo-Opt. Instrum. Eng.
    [Google Scholar]
  2. 2. 
    Kantaros Y, Zavlanos MM. 2016. Distributed communication-aware coverage control by mobile sensor networks. Automatica 63:209–20
    [Google Scholar]
  3. 3. 
    Daniel K, Rohde S, Goddemeier N, Wietfeld C. 2010. A communication aware steering strategy avoiding self-separation of flying robot swarms. 2010 5th IEEE International Conference on Intelligent Systems254–59 Piscataway, NJ: IEEE
    [Google Scholar]
  4. 4. 
    Ghaffarkhah A, Mostofi Y. 2014. Dynamic networked coverage of time-varying environments in the presence of fading communication channels. ACM Trans. Sensor Netw. 10:45
    [Google Scholar]
  5. 5. 
    Stachura M, Frew E. 2017. Communication-aware information-gathering experiments with an unmanned aircraft system. J. Field Robot. 34:736–56
    [Google Scholar]
  6. 6. 
    Kemna S, Caron DA, Sukhatme GS. 2016. Adaptive informative sampling with autonomous underwater vehicles: acoustic versus surface communications. OCEANS 2016 MTS/IEEE Monterey Piscataway, NJ: IEEE https://doi.org/10.1109/OCEANS.2016.7761128
    [Crossref] [Google Scholar]
  7. 7. 
    Hollinger GA, Singh S. 2012. Multirobot coordination with periodic connectivity: theory and experiments. IEEE Trans. Robot. 28:967–73
    [Google Scholar]
  8. 8. 
    Ghaffarkhah A, Mostofi Y. 2012. Path planning for networked robotic surveillance. IEEE Trans. Signal Process. 60:3560–75
    [Google Scholar]
  9. 9. 
    Stachura M, Frew EW. 2011. Cooperative target localization with a communication-aware unmanned aircraft system. AIAA J. Guid. Control Dyn. 34:1352–62
    [Google Scholar]
  10. 10. 
    Bethke B, How J, Vian J. 2009. Multi-UAV persistent surveillance with communication constraints and health management. Proceedings of the AIAA Guidance, Navigation, and Control Conference pap 2009–5654 Reston, VA: Am. Inst. Aeronaut. Astronaut.
    [Google Scholar]
  11. 11. 
    Beard RW, McLain TW. 2003. Multiple UAV cooperative search under collision avoidance and limited range communication constraints. 42nd IEEE International Conference on Decision and Control, Vol. 125–30 Piscataway, NJ: IEEE
    [Google Scholar]
  12. 12. 
    Ghaffarkhah A, Mostofi Y. 2011. Communication-aware motion planning in mobile networks. IEEE Trans. Autom. Control 56:2478–85
    [Google Scholar]
  13. 13. 
    Zavlanos MM, Egerstedt MB, Pappas GJ. 2011. Graph-theoretic connectivity control of mobile robot networks. Proc. IEEE 99:1525–40
    [Google Scholar]
  14. 14. 
    Zavlanos MM, Pappas GJ. 2008. Distributed connectivity control of mobile networks. IEEE Trans. Robot. 24:1416–28
    [Google Scholar]
  15. 15. 
    Esposito JM, Dunbar TW. 2006. Maintaining wireless connectivity constraints for swarms in the presence of obstacles. Proceedings of the 2006 IEEE International Conference on Robotics and Automation946–51 Piscataway, NJ: IEEE
    [Google Scholar]
  16. 16. 
    Ren W, Beard RW. 2005. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50:655–61
    [Google Scholar]
  17. 17. 
    Goddemeier N, Behnke D, Wietfeld C. 2013. Impact of communication constraints on consensus finding in multi-agent systems. 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications2464–68 Piscataway, NJ: IEEE
    [Google Scholar]
  18. 18. 
    Paull L, Huang G, Seto M, Leonard JJ. 2015. Communication-constrained multi-AUV cooperative SLAM. 2015 IEEE International Conference on Robotics and Automation509–16 Piscataway, NJ: IEEE
    [Google Scholar]
  19. 19. 
    Giamou M, Khosoussi K, How JP. 2018. Talk resource-efficiently to me: optimal communication planning for distributed loop closure detection. 2018 IEEE International Conference on Robotics and Automation3841–48 Piscataway, NJ: IEEE
    [Google Scholar]
  20. 20. 
    Ponda S, Redding J, Choi HL, How JP, Vavrina M, Vian J. 2010. Decentralized planning for complex missions with dynamic communication constraints. 2010 American Control Conference3998–4003 Piscataway, NJ: IEEE
    [Google Scholar]
  21. 21. 
    Ponda SS, Johnson LB, Kopeikin AN, Choi HL, How JP. 2012. Distributed planning strategies to ensure network connectivity for dynamic heterogeneous teams. IEEE J. Sel. Areas Commun. 30:861–69
    [Google Scholar]
  22. 22. 
    Zavlanos MM, Ribeiro A, Pappas GJ. 2012. Network integrity in mobile robotic networks. IEEE Trans. Autom. Control 58:3–18
    [Google Scholar]
  23. 23. 
    Kantaros Y, Zavlanos MM. 2016. Global planning for multi-robot communication networks in complex environments. IEEE Trans. Robot. 32:1045–61
    [Google Scholar]
  24. 24. 
    Das SM, Hu YC, Lee CSG, Lu YH. 2007. Mobility-aware ad hoc routing protocols for networking mobile robot teams. J. Commun. Netw. 9:296–311
    [Google Scholar]
  25. 25. 
    Dantu K, Sukhatme GS. 2009. Connectivity versus control: using directional and positional cues to stabilize routing in robot networks. 2009 Second International Conference on Robot Communication and Coordination Piscataway, NJ: IEEE https://doi.org/10.4108/ICST.ROBOCOMM2009.5846
    [Crossref] [Google Scholar]
  26. 26. 
    Lindhé M, Johansson K. 2009. Using robot mobility to exploit multipath fading. IEEE Wireless Commun 16:30–37
    [Google Scholar]
  27. 27. 
    Zeng Y, Zhang R. 2017. Energy-efficient UAV communication with trajectory optimization. IEEE Trans. Wireless Commun. 16:3747–60
    [Google Scholar]
  28. 28. 
    Muralidharan A, Mostofi Y. 2020. Statistics of the distance traveled until successful connectivity for unmanned vehicles. Auton. Robots 44:25–42
    [Google Scholar]
  29. 29. 
    Jiang F, Swindlehurst AL. 2012. Optimization of UAV heading for the ground-to-air uplink. IEEE J. Sel. Areas Commun. 30:993–1005
    [Google Scholar]
  30. 30. 
    Muralidharan A, Mostofi Y. 2017. Path planning for a connectivity seeking robot. 2017 IEEE Globecom Workshops Piscataway, NJ: IEEE https://doi.org/10.1109/GLOCOMW.2017.8269061
    [Crossref] [Google Scholar]
  31. 31. 
    Muralidharan A, Mostofi Y. 2019. Path planning for minimizing the expected cost until success. IEEE Trans. Robot. 35:466–81
    [Google Scholar]
  32. 32. 
    Muralidharan A, Mostofi Y. 2017. First passage distance to connectivity for mobile robots. 2017 American Control Conference1517–23 Piscataway, NJ: IEEE
    [Google Scholar]
  33. 33. 
    Stump E, Jadbabaie A, Kumar V. 2008. Connectivity management in mobile robot teams. 2008 IEEE International Conference on Robotics and Automation1525–30 Piscataway, NJ: IEEE
    [Google Scholar]
  34. 34. 
    Dixon C, Frew E. 2012. Optimizing cascaded chains of unmanned aircraft acting as communication relays. IEEE J. Sel. Areas Commun. 30:883–98
    [Google Scholar]
  35. 35. 
    Yan Y, Mostofi Y. 2012. Robotic router formation in realistic communication environments. IEEE Trans. Robot. 28:810–27
    [Google Scholar]
  36. 36. 
    Chatzipanagiotis N, Zavlanos MM. 2016. Distributed scheduling of network connectivity using mobile access point robots. IEEE Trans. Robot. 32:1333–46
    [Google Scholar]
  37. 37. 
    Zeng Y, Zhang R, Lim TJ. 2016. Throughput maximization for UAV-enabled mobile relaying systems. IEEE Trans. Commun. 64:4983–96
    [Google Scholar]
  38. 38. 
    Fink J, Ribeiro A, Kumar V. 2013. Robust control of mobility and communications in autonomous robot teams. IEEE Access 1:290–309
    [Google Scholar]
  39. 39. 
    Kim Y, Mesbahi M. 2005. On maximizing the second smallest eigenvalue of a state-dependent graph Laplacian. 2005 American Control Conference99–103 Piscataway, NJ: IEEE
    [Google Scholar]
  40. 40. 
    Zhan P, Yu K, Swindlehurst AL 2011. Wireless relay communications with unmanned aerial vehicles: performance and optimization. IEEE Trans. Aerospace Electron. Syst. 47:2068–85
    [Google Scholar]
  41. 41. 
    Schouwenaars T, Stubbs A, Paduano J, Feron E. 2006. Multivehicle path planning for non-line of sight communication. J. Field Robot. 23:269–90
    [Google Scholar]
  42. 42. 
    Chatzipanagiotis N, Liu Y, Petropulu A, Zavlanos M. 2012. Controlling groups of mobile beamformers. 2012 51st IEEE Conference on Decision and Control1984–89 Piscataway, NJ: IEEE
    [Google Scholar]
  43. 43. 
    Kalogerias DS, Petropulu AP. 2016. Mobile beamforming and spatially controlled relay communications. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing6405–9 Piscataway, NJ: IEEE
    [Google Scholar]
  44. 44. 
    Kalogerias DS, Petropulu AP. 2018. Spatially controlled relay beamforming. IEEE Trans. Signal Process. 66:6418–33
    [Google Scholar]
  45. 45. 
    Muralidharan A, Mostofi Y. 2017. Energy optimal distributed beamforming using unmanned vehicles. IEEE Trans. Control Netw. Syst. 5:1529–40
    [Google Scholar]
  46. 46. 
    Muralidharan A, Mostofi Y. 2016. Distributed beamforming using mobile robots. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing6385–89 Piscataway, NJ: IEEE
    [Google Scholar]
  47. 47. 
    Yan Y, Mostofi Y. 2016. Efficient clustering and path planning strategies for robotic data collection using space-filling curves. IEEE Trans. Control Netw. Syst. 4:838–49
    [Google Scholar]
  48. 48. 
    Tekdas O, Isler V, Lim JH, Terzis A. 2009. Using mobile robots to harvest data from sensor fields. IEEE Wireless Commun 16:22–28
    [Google Scholar]
  49. 49. 
    Hollinger G, Choudhary S, Qarabaqi P, Murphy C, Mitra U et al. 2012. Underwater data collection using robotic sensor networks. IEEE J. Sel. Areas Commun. 30:899–911
    [Google Scholar]
  50. 50. 
    Yan Y, Mostofi Y. 2014. To go or not to go: on energy-aware and communication-aware robotic operation. IEEE Trans. Control Netw. Syst. 1:218–31
    [Google Scholar]
  51. 51. 
    Carfang AJ, Frew EW, Kingston DB. 2014. Cascaded optimization of aircraft trajectories for persistent data ferrying. AIAA J. Aerosp. Inf. Syst. 11:807–20
    [Google Scholar]
  52. 52. 
    Say S, Inata H, Liu J, Shimamoto S. 2016. Priority-based data gathering framework in UAV-assisted wireless sensor networks. IEEE Sens. J. 16:5785–94
    [Google Scholar]
  53. 53. 
    Sugihara R, Gupta RK. 2011. Path planning of data mules in sensor networks. ACM Trans. Sens. Netw. 8:1
    [Google Scholar]
  54. 54. 
    Bhadauria D, Tekdas O, Isler V. 2011. Robotic data mules for collecting data over sparse sensor fields. J. Field Robot. 28:388–404
    [Google Scholar]
  55. 55. 
    Mozaffari M, Saad W, Bennis M, Debbah M. 2017. Wireless communication using unmanned aerial vehicles (UAVs): optimal transport theory for hover time optimization. IEEE Trans. Wireless Commun. 16:8052–66
    [Google Scholar]
  56. 56. 
    Alzenad M, El-Keyi A, Yanikomeroglu H. 2017. 3-D placement of an unmanned aerial vehicle base station for maximum coverage of users with different QoS requirements. IEEE Wireless Commun. Lett. 7:38–41
    [Google Scholar]
  57. 57. 
    Malmirchegini M, Mostofi Y. 2012. On the spatial predictability of communication channels. IEEE Trans. Wireless Commun. 11:964–78
    [Google Scholar]
  58. 58. 
    Ghaffarkhah A, Mostofi Y. 2010. Channel learning and communication-aware motion planning in mobile networks. 2010 American Control Conference5413–20 Piscataway, NJ: IEEE
    [Google Scholar]
  59. 59. 
    Caccamo S, Parasuraman R, Freda L, Gianni M, Ögren P. 2017. RCAMP: a resilient communication-aware motion planner for mobile robots with autonomous repair of wireless connectivity. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems2010–17 Piscataway, NJ: IEEE
    [Google Scholar]
  60. 60. 
    Carfang AJ, Wagle N, Frew EW. 2015. Integrating nonparametric learning with path planning for data-ferry communications. J. Aerosp. Inf. Syst. 12:784–99
    [Google Scholar]
  61. 61. 
    Kalogerias DS, Petropulu AP. 2015. Nonlinear spatiotemporal channel gain map tracking in mobile cooperative networks. 2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications660–64 Piscataway, NJ: IEEE
    [Google Scholar]
  62. 62. 
    Parasuraman R, Oegren P, Min BC. 2018. Kalman filter based spatial prediction of wireless connectivity for autonomous robots and connected vehicles. 2018 IEEE 88th Vehicular Technology Conference Piscataway, NJ: IEEE https://doi.org/10.1109/VTCFall.2018.8690611
    [Crossref] [Google Scholar]
  63. 63. 
    Narayanan VK, Miyashita T, Horikawa Y, Hagita N. 2018. A transient-goal driven communication-aware navigation strategy for large human-populated environments. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems Piscataway, NJ: IEEE https://doi.org/10.1109/IROS.2018.8593827
    [Crossref] [Google Scholar]
  64. 64. 
    Nurellari E, Licea DB, Ghogho M. 2019. Optimum trajectory planning for robotic data ferries in delay tolerant wireless sensor networks. 2019 27th European Signal Processing Conference Piscataway, NJ: IEEE https://doi.org/10.23919/EUSIPCO.2019.8902955
    [Crossref] [Google Scholar]
  65. 65. 
    Yan Y, Mostofi Y. 2013. Co-optimization of communication and motion planning of a robotic operation under resource constraints and in fading environments. IEEE Trans. Wireless Commun 12:1562–72
    [Google Scholar]
  66. 66. 
    Ali U, Cai H, Mostofi Y, Wardi Y. 2018. Motion-communication co-optimization with cooperative load transfer in mobile robotics: an optimal control perspective. IEEE Trans. Control Netw. Syst. 6:621–32
    [Google Scholar]
  67. 67. 
    Cai H, Mostofi Y. 2019. Human-robot collaborative site inspection under resource constraints. IEEE Trans. Robot. 35:200–15
    [Google Scholar]
  68. 68. 
    Rappaport TS. 1996. Wireless Communications: Principles and Practice Upper Saddle River, NJ: Prentice Hall
    [Google Scholar]
  69. 69. 
    Hashemi H. 1994. A study of temporal and spatial variations of the indoor radio propagation channel. 5th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications127–34 Piscataway, NJ: IEEE
    [Google Scholar]
  70. 70. 
    Siegert AJ. 1951. On the first passage time probability problem. Phys. Rev. 81:617–23
    [Google Scholar]
  71. 71. 
    Dudley RM. 2002. Real Analysis and Probability Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  72. 72. 
    Papoulis A, Pillai SU. 2002. Probability, Random Variables, and Stochastic Processes Boston: McGraw-Hill
    [Google Scholar]
  73. 73. 
    Mehr C, McFadden J. 1965. Certain properties of Gaussian processes and their first-passage times. J. R. Stat. Soc. B 27:505–22
    [Google Scholar]
  74. 74. 
    Ricciardi LM, Sato S. 1988. First-passage-time density and moments of the Ornstein-Uhlenbeck process. J. Appl. Probab. 25:43–57
    [Google Scholar]
  75. 75. 
    Di Nardo E, Nobile A, Pirozzi E, Ricciardi L. 2001. A computational approach to first-passage-time problems for Gauss–Markov processes. Adv. Appl. Probab. 33:453–82
    [Google Scholar]
  76. 76. 
    Cover TM, Thomas JA. 2012. Elements of Information Theory New York: Wiley & Sons
    [Google Scholar]
  77. 77. 
    Robert CP. 1996. Intrinsic losses. Theory Decis 40:191–214
    [Google Scholar]
  78. 78. 
    Smith W, Cox D. 2004. Urban propagation modeling for wireless systems Tech. Rep., Def. Tech. Inf. Cent Fort Belvoir, VA:
    [Google Scholar]
  79. 79. 
    Fudenberg D, Tirole J. 1991. Game Theory Cambridge, MA: MIT Press
    [Google Scholar]
  80. 80. 
    Monderer D, Shapley L. 1996. Potential games. Games Econ. Behav. 14:124–43
    [Google Scholar]
  81. 81. 
    Marden JR, Shamma JS. 2012. Revisiting log-linear learning: asynchrony, completeness and payoff-based implementation. Games Econ. Behav. 75:788–808
    [Google Scholar]
  82. 82. 
    Tse D, Viswanath P. 2005. Fundamentals of Wireless Communication Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  83. 83. 
    Mudumbai R, Brown DIII, Madhow U, Poor H. 2009. Distributed transmit beamforming: challenges and recent progress. IEEE Commun. Mag. 47:2102–10
    [Google Scholar]
  84. 84. 
    Ochiai H, Mitran P, Poor H, Tarokh V. 2005. Collaborative beamforming for distributed wireless ad hoc sensor networks. IEEE Trans. Signal Process. 53:4110–24
    [Google Scholar]
  85. 85. 
    Karanam CR, Korany B, Mostofi Y. 2018. Magnitude-based angle-of-arrival estimation, localization, and target tracking. 2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks254–65 Piscataway, NJ: IEEE
    [Google Scholar]
  86. 86. 
    De Gennaro MC, Jadbabaie A 2006. Decentralized control of connectivity for multi-agent systems. 45th IEEE Conference on Decision and Control3628–33 Piscataway, NJ: IEEE
    [Google Scholar]
  87. 87. 
    Dai R, Maximoff J, Mesbahi M. 2013. Optimal trajectory generation for establishing connectivity in proximity networks. IEEE Trans. Aerosp. Electron. Syst. 49:1968–81
    [Google Scholar]
/content/journals/10.1146/annurev-control-071420-080708
Loading
/content/journals/10.1146/annurev-control-071420-080708
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error