1932

Abstract

Recent years have seen significant progress in the realm of robot autonomy, accompanied by the expanding reach of robotic technologies. However, the emergence of new deployment domains brings unprecedented challenges in ensuring safe operation of these systems, which remains as crucial as ever. While traditional model-based safe control methods struggle with generalizability and scalability, emerging data-driven approaches tend to lack well-understood guarantees, which can result in unpredictable catastrophic failures. Successful deployment of the next generation of autonomous robots will require integrating the strengths of both paradigms. This article provides a review of safety filter approaches, highlighting important connections between existing techniques and proposing a unified technical framework to understand, compare, and combine them. The new unified view exposes a shared modular structure across a range of seemingly disparate safety filter classes and naturally suggests directions for future progress toward more scalable synthesis, robust monitoring, and efficient intervention.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-071723-102940
2024-07-10
2025-02-09
Loading full text...

Full text loading...

/deliver/fulltext/control/7/1/annurev-control-071723-102940.html?itemId=/content/journals/10.1146/annurev-control-071723-102940&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ames AD, Grizzle JW, Tabuada P. 2014.. Control barrier function based quadratic programs with application to adaptive cruise control. . In 53rd IEEE Conference on Decision and Control, pp. 627178. Piscataway, NJ:: IEEE
    [Google Scholar]
  2. 2.
    Wabersich KP, Zeilinger MN. 2021.. A predictive safety filter for learning-based control of constrained nonlinear dynamical systems. . Automatica 129::109597
    [Crossref] [Google Scholar]
  3. 3.
    Bansal S, Chen M, Herbert S, Tomlin CJ. 2017.. Hamilton-Jacobi reachability: a brief overview and recent advances. . In 2017 IEEE 56th Annual Conference on Decision and Control, pp. 224253. Piscataway, NJ:: IEEE
    [Google Scholar]
  4. 4.
    Robey A, Hu H, Lindemann L, Zhang H, Dimarogonas DV, et al. 2020.. Learning control barrier functions from expert demonstrations. . In 2020 59th IEEE Conference on Decision and Control, pp. 371724. Piscataway, NJ:: IEEE
    [Google Scholar]
  5. 5.
    Hsu KC, Nguyen DP, Fisac JF. 2023.. ISAACS: iterative soft adversarial actor-critic for safety. . In Proceedings of the 5th Annual Learning for Dynamics and Control Conference, ed. N Matni, M Morari, GJ Pappas , pp. 90103. Proc. Mach. Learn. Res. 211. N.p. : PMLR
    [Google Scholar]
  6. 6.
    Bansal S, Tomlin CJ. 2021.. DeepReach: a deep learning approach to high-dimensional reachability. . In 2021 IEEE International Conference on Robotics and Automation, pp. 181724. Piscataway, NJ:: IEEE
    [Google Scholar]
  7. 7.
    Chen M, Tomlin CJ. 2018.. Hamilton–Jacobi reachability: some recent theoretical advances and applications in unmanned airspace management. . Annu. Rev. Control Robot. Auton. Syst. 1::33358
    [Crossref] [Google Scholar]
  8. 8.
    Ames AD, Coogan S, Egerstedt M, Notomista G, Sreenath K, Tabuada P. 2019.. Control barrier functions: theory and applications. . In 2019 18th European Control Conference, pp. 342031. Piscataway, NJ:: IEEE
    [Google Scholar]
  9. 9.
    Hewing L, Wabersich KP, Menner M, Zeilinger MN. 2020.. Learning-based model predictive control: toward safe learning in control. . Annu. Rev. Control Robot. Auton. Syst. 3::26996
    [Crossref] [Google Scholar]
  10. 10.
    Rosolia U, Zhang X, Borrelli F. 2018.. Data-driven predictive control for autonomous systems. . Annu. Rev. Control Robot. Auton. Syst. 1::25986
    [Crossref] [Google Scholar]
  11. 11.
    Mesbah A. 2016.. Stochastic model predictive control: an overview and perspectives for future research. . IEEE Control Syst. Mag. 36:(6):3044
    [Crossref] [Google Scholar]
  12. 12.
    Mesbah A. 2018.. Stochastic model predictive control with active uncertainty learning: a survey on dual control. . Annu. Rev. Control 45::10717
    [Crossref] [Google Scholar]
  13. 13.
    Fazlyab M, Morari M, Pappas GJ. 2021.. An introduction to neural network analysis via semidefinite programming. . In 2021 60th IEEE Conference on Decision and Control, pp. 634150. Piscataway, NJ:: IEEE
    [Google Scholar]
  14. 14.
    Dawson C, Gao S, Fan C. 2023.. Safe control with learned certificates: a survey of neural Lyapunov, barrier, and contraction methods for robotics and control. . IEEE Trans. Robot. 39:(3):174967
    [Crossref] [Google Scholar]
  15. 15.
    Brunke L, Greeff M, Hall AW, Yuan Z, Zhou S, et al. 2022.. Safe learning in robotics: from learning-based control to safe reinforcement learning. . Annu. Rev. Control Robot. Auton. Syst. 5::41144
    [Crossref] [Google Scholar]
  16. 16.
    Mitchell IM, Kaynama S, Chen M, Oishi M. 2013.. Safety preserving control synthesis for sampled data systems. . Nonlinear Anal. Hybrid Syst. 10::6382
    [Crossref] [Google Scholar]
  17. 17.
    Sunberg Z, Kochenderfer MJ. 2022.. Improving automated driving through POMDP planning with human internal states. . IEEE Trans. Intell. Transp. Syst. 23:(11):2007383
    [Crossref] [Google Scholar]
  18. 18.
    Hu H, Isele D, Bae S, Fisac JF. 2023.. Active uncertainty reduction for safe and efficient interaction planning: a shielding-aware dual control approach. . Int. J. Robot. Res. https://doi.org/10.1177/02783649231215371
    [Google Scholar]
  19. 19.
    Trautman P, Krause A. 2010.. Unfreezing the robot: navigation in dense, interacting crowds. . In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 797803. Piscataway, NJ:: IEEE
    [Google Scholar]
  20. 20.
    Reuters. 2018.. Waymo's self driving minivans struggles to merge in left lane. . Daily Mail. https://www.dailymail.co.uk/video/sciencetech/video-1752896/Video-Waymos-self-driving-minivans-struggles-merge-left-lane.html
    [Google Scholar]
  21. 21.
    Natl. Transp. Saf. Board. 2020.. Collision between a sport utility vehicle operating with partial driving automation and a crash attenuator: Mountain View, California, March 23, 2018. Highw. Accid. Rep. NTSB/HAR-20/01 , Natl. Transp. Saf. Board, Washington, DC:
    [Google Scholar]
  22. [Google Scholar]
  23. 23.
    Makansi O, Cicek Ö, Marrakchi Y, Brox T. 2021.. On exposing the challenging long tail in future prediction of traffic actors. . In 2021 IEEE/CVF International Conference on Computer Vision, pp. 1312737. Piscataway, NJ:: IEEE
    [Google Scholar]
  24. 24.
    SAE Int. 2021.. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. Stand. J3016 , SAE Int., Warrendale, PA:
    [Google Scholar]
  25. 25.
    Fraade-Blanar L, Blumenthal MS, Anderson JM, Kalra N. 2018.. Measuring automated vehicle safety: forging a framework. Res. Memo. RM-1391 , RAND Corp., Santa Monica, CA:
    [Google Scholar]
  26. 26.
    Aubin JP, Bayen AM, Saint-Pierre P. 2011.. Viability Theory: New Directions. Berlin:: Springer
    [Google Scholar]
  27. 27.
    Isaacs R. 1954.. Differential games I: introduction. Rep. , RAND Corp., Santa Monica, CA:
    [Google Scholar]
  28. 28.
    Lygeros J, Tomlin C, Sastry S. 1999.. Controllers for reachability specifications for hybrid systems. . Automatica 35:(3):34970
    [Crossref] [Google Scholar]
  29. 29.
    Patsko V, Turova V. 2001.. Level sets of the value function in differential games with the homicidal chauffeur dynamics. . Int. Game Theory Rev. 3:(1):67112
    [Crossref] [Google Scholar]
  30. 30.
    Evans LC, Souganidis PE. 1984.. Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations. . Indiana Univ. Math. J. 33:(5):77397
    [Crossref] [Google Scholar]
  31. 31.
    Mitchell I, Bayen A, Tomlin C. 2005.. A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. . IEEE Trans. Autom. Control 50:(7):94757
    [Crossref] [Google Scholar]
  32. 32.
    Fisac JF, Chen M, Tomlin CJ, Sastry SS. 2015.. Reach-avoid problems with time-varying dynamics, targets and constraints. . In HSCC '15: 18th International Conference on Hybrid Systems: Computation and Control, pp. 1120. New York:: ACM
    [Google Scholar]
  33. 33.
    Crandall MG, Lions PL. 1983.. Viscosity solutions of Hamilton-Jacobi equations. . Trans. Am. Math. Soc. 277:(1):142
    [Crossref] [Google Scholar]
  34. 34.
    Chen M, Tam Q, Livingston SC, Pavone M. 2018.. Signal temporal logic meets reachability: connections and applications. . In Algorithmic Foundations of Robotics XIII, ed. M Morales, L Tapia, G Sánchez-Ante, S Hutchinson , pp. 581601. Cham, Switz.:: Springer
    [Google Scholar]
  35. 35.
    Chen M, Herbert SL, Vashishtha MS, Bansal S, Tomlin CJ. 2018.. Decomposition of reachable sets and tubes for a class of nonlinear systems. . IEEE Trans. Autom. Control 63:(11):367588
    [Crossref] [Google Scholar]
  36. 36.
    Herbert SL, Bansal S, Ghosh S, Tomlin CJ. 2019.. Reachability-based safety guarantees using efficient initializations. . In 2019 IEEE 58th Conference on Decision and Control, pp. 481016. Piscataway, NJ:: IEEE
    [Google Scholar]
  37. 37.
    Bui M, Lu M, Hojabr R, Chen M, Shriraman A. 2020.. Real-time formal verification of autonomous systems with an FPGA. . arXiv:2012.04011 [eess.SY]
  38. 38.
    Fisac JF, Lugovoy NF, Rubies-Royo V, Ghosh S, Tomlin CJ. 2019.. Bridging Hamilton-Jacobi safety analysis and reinforcement learning. . In 2019 International Conference on Robotics and Automation, pp. 855056. Piscataway, NJ:: IEEE
    [Google Scholar]
  39. 39.
    Hsu KC, Rubies-Royo V, Tomlin CJ, Fisac JF. 2021.. Safety and liveness guarantees through reach-avoid reinforcement learning. . In Robotics: Science and Systems XVII, ed. D Shell, M Toussaint, MA Hsieh, pap. 77. N.p.:: Robot. Sci. Syst. Found.
    [Google Scholar]
  40. 40.
    Rubies-Royo V, Fridovich-Keil D, Herbert S, Tomlin CJ. 2019.. A classification-based approach for approximate reachability. . In 2019 International Conference on Robotics and Automation, pp. 7697704. Piscataway, NJ:: IEEE
    [Google Scholar]
  41. 41.
    Fridovich-Keil D, Tomlin CJ. 2021.. Approximate solutions to a class of reachability games. . In 2021 IEEE International Conference on Robotics and Automation, pp. 1261017. Piscataway, NJ:: IEEE
    [Google Scholar]
  42. 42.
    Anthony DR, Nguyen DP, Fridovich-Keil D, Fisac JF. 2022.. Back to the future: efficient, time-consistent solutions in reach-avoid games. . In 2022 International Conference on Robotics and Automation, pp. 683036. Piscataway, NJ:: IEEE
    [Google Scholar]
  43. 43.
    Singh S, Chen M, Herbert SL, Tomlin CJ, Pavone M. 2020.. Robust tracking with model mismatch for fast and safe planning: an SOS optimization approach. . In Algorithmic Foundations of Robotics XIII, ed. M Morales, L Tapia, G Sánchez-Ante, S Hutchinson , pp. 54564. Cham, Switz:.: Springer
    [Google Scholar]
  44. 44.
    Rosolia U, Borrelli F. 2017.. Learning model predictive control for iterative tasks. a data-driven control framework. . IEEE Trans. Autom. Control 63:(7):188396
    [Crossref] [Google Scholar]
  45. 45.
    Fridovich-Keil D, Fisac JF, Tomlin CJ. 2019.. Safely probabilistically complete real-time planning and exploration in unknown environments. . In 2019 International Conference on Robotics and Automation, Montreal, pp. 747076. Piscataway, NJ:: IEEE
    [Google Scholar]
  46. 46.
    Wieland P, Allgöwer F. 2007.. Constructive safety using control barrier functions. . IFAC Proc. Vol. 40:(12):46267
    [Crossref] [Google Scholar]
  47. 47.
    Ames AD, Xu X, Grizzle JW, Tabuada P. 2017.. Control barrier function based quadratic programs for safety critical systems. . IEEE Trans. Autom. Control 62:(8):386176
    [Crossref] [Google Scholar]
  48. 48.
    Sontag ED. 1983.. A Lyapunov-like characterization of asymptotic controllability. . SIAM J. Control Optim. 21:(3):46271
    [Crossref] [Google Scholar]
  49. 49.
    Sontag ED. 1989.. A `universal' construction of Artstein's theorem on nonlinear stabilization. . Syst. Control Lett. 13:(2):11723
    [Crossref] [Google Scholar]
  50. 50.
    Artstein Z. 1983.. Stabilization with relaxed controls. . Nonlinear Anal. Theory Methods Appl. 7:(11):116373
    [Crossref] [Google Scholar]
  51. 51.
    Agrawal A, Sreenath K. 2017.. Discrete control barrier functions for safety-critical control of discrete systems with application to bipedal robot navigation. . In Robotics: Science and Systems XIII, ed. N Amato, S Srinivasa, N Ayanian, S Kuindersma, pap. 73 . N.p.:: Robot. Sci. Syst. Found.
    [Google Scholar]
  52. 52.
    Dean S, Taylor A, Cosner R, Recht B, Ames A. 2020.. Guaranteeing safety of learned perception modules via measurement-robust control barrier functions. . In Proceedings of the 2020 Conference on Robot Learning, ed. J Kober, F Ramos, C Tomlin , pp. 65470. Proc. Mach. Learn. Res. 155. N.p. : PMLR
    [Google Scholar]
  53. 53.
    Cosner RK, Rodriguez IDJ, Molnar TG, Ubellacker W, Yue Y, et al. 2022.. Self-supervised online learning for safety-critical control using stereo vision. . In 2022 International Conference on Robotics and Automation, pp. 1148793. Piscataway, NJ:: IEEE
    [Google Scholar]
  54. 54.
    Lyu Y, Luo W, Dolan JM. 2021.. Probabilistic safety-assured adaptive merging control for autonomous vehicles. . In 2021 IEEE International Conference on Robotics and Automation, pp. 1076470. Piscataway, NJ:: IEEE
    [Google Scholar]
  55. 55.
    Alan A, Taylor AJ, He CR, Orosz G, Ames AD. 2022.. Safe controller synthesis with tunable input-to-state safe control barrier functions. . IEEE Control Syst. Lett. 6::90813
    [Crossref] [Google Scholar]
  56. 56.
    Xu X, Grizzle JW, Tabuada P, Ames AD. 2017.. Correctness guarantees for the composition of lane keeping and adaptive cruise control. . IEEE Trans. Autom. Sci. Eng. 15:(3):121629
    [Crossref] [Google Scholar]
  57. 57.
    Wang L, Han D, Egerstedt M. 2018.. Permissive barrier certificates for safe stabilization using sum-of-squares. . In 2018 Annual American Control Conference, pp. 58590. Piscataway, NJ:: IEEE
    [Google Scholar]
  58. 58.
    Lindemann L, Hu H, Robey A, Zhang H, Dimarogonas D, et al. 2021.. Learning hybrid control barrier functions from data. . In Proceedings of the 2020 Conference on Robot Learning, ed. J Kober, F Ramos, C Tomlin , pp. 135170. Proc. Mach. Learn. Res. 155. N.p. : PMLR
    [Google Scholar]
  59. 59.
    Robey A, Lindemann L, Tu S, Matni N. 2021.. Learning robust hybrid control barrier functions for uncertain systems. . IFAC-PapersOnLine 54:(5):16
    [Crossref] [Google Scholar]
  60. 60.
    Bastani O. 2021.. Safe reinforcement learning with nonlinear dynamics via model predictive shielding. . In 2021 American Control Conference, pp. 348894. Piscataway, NJ:: IEEE
    [Google Scholar]
  61. 61.
    Kousik S, Vaskov S, Johnson-Roberson M, Vasudevan R. 2017.. Safe trajectory synthesis for autonomous driving in unforeseen environments. . In Proceedings of the ASME 2017 Dynamic Systems and Control Conference, Vol. 1, pap. V001T44A005 . New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  62. 62.
    Vaskov S, Kousik S, Larson H, Bu F, Ward JR, et al. 2019.. Towards provably not-at-fault control of autonomous robots in arbitrary dynamic environments. . In Robotics: Science and Systems XV, ed. A Bicchi, H Kress-Gazit, S Hutchinson, pap. 51. N.p. : Robot. Sci. Syst. Found.
    [Google Scholar]
  63. 63.
    Kousik S, Vaskov S, Bu F, Johnson-Roberson M, Vasudevan R. 2020.. Bridging the gap between safety and real-time performance in receding-horizon trajectory design for mobile robots. . Int. J. Robot. Res. 39:(12):141969
    [Crossref] [Google Scholar]
  64. 64.
    Kochdumper N, Althoff M. 2020.. Reachability analysis for hybrid systems with nonlinear guard sets. . In HSCC '20: Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, pp. 110. New York:: ACM
    [Google Scholar]
  65. 65.
    Althoff M, Dolan JM. 2014.. Online verification of automated road vehicles using reachability analysis. . IEEE Trans. Robot. 30:(4):90318
    [Crossref] [Google Scholar]
  66. 66.
    Althoff M, Frehse G, Girard A. 2021.. Set propagation techniques for reachability analysis. . Annu. Rev. Control Robot. Auton. Syst. 4::36995
    [Crossref] [Google Scholar]
  67. 67.
    Zhang H, Weng TW, Chen PY, Hsieh CJ, Daniel L. 2018.. Efficient neural network robustness certification with general activation functions. . In Advances in Neural Information Processing Systems 31, ed. S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, R Garnett , pp. 493948. Red Hook, NY:: Curran
    [Google Scholar]
  68. 68.
    Dutta S, Chen X, Sankaranarayanan S. 2019.. Reachability analysis for neural feedback systems using regressive polynomial rule inference. . In HSCC '19: Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, pp. 15768. New York:: ACM
    [Google Scholar]
  69. 69.
    Hu H, Fazlyab M, Morari M, Pappas GJ. 2020.. Reach-SDP: reachability analysis of closed-loop systems with neural network controllers via semidefinite programming. . In 2020 59th IEEE Conference on Decision and Control, pp. 592934. Piscataway, NJ:: IEEE
    [Google Scholar]
  70. 70.
    Everett M, Habibi G, Sun C, How JP. 2021.. Reachability analysis of neural feedback loops. . IEEE Access 9::16393853
    [Crossref] [Google Scholar]
  71. 71.
    Blanchini F. 1999.. Set invariance in control. . Automatica 35:(11):174767
    [Crossref] [Google Scholar]
  72. 72.
    Mayne D, Rawlings J, Rao C, Scokaert P. 2000.. Constrained model predictive control: stability and optimality. . Automatica 36:(6):789814
    [Crossref] [Google Scholar]
  73. 73.
    Mayne D, Seron M, Raković S. 2005.. Robust model predictive control of constrained linear systems with bounded disturbances. . Automatica 41:(2):21924
    [Crossref] [Google Scholar]
  74. 74.
    Singh S, Majumdar A, Slotine JJ, Pavone M. 2017.. Robust online motion planning via contraction theory and convex optimization. . In 2017 IEEE International Conference on Robotics and Automation, pp. 588390. Piscataway, NJ:: IEEE
    [Google Scholar]
  75. 75.
    Villanueva ME, Quirynen R, Diehl M, Chachuat B, Houska B. 2017.. Robust MPC via min–max differential inequalities. . Automatica 77::31121
    [Crossref] [Google Scholar]
  76. 76.
    Hu H, Feng X, Quirynen R, Villanueva ME, Houska B. 2018.. Real-time tube MPC applied to a 10-state quadrotor model. . In 2018 Annual American Control Conference, pp. 313540. Piscataway, NJ:: IEEE
    [Google Scholar]
  77. 77.
    Chen M, Herbert SL, Hu H, Pu Y, Fisac JF, et al. 2021.. FaSTrack: a modular framework for real-time motion planning and guaranteed safe tracking. . IEEE Trans. Autom. Control 66:(12):586176
    [Crossref] [Google Scholar]
  78. 78.
    Wabersich KP, Zeilinger MN. 2018.. Linear model predictive safety certification for learning-based control. . In 2018 IEEE Conference on Decision and Control, pp. 713035. Piscataway, NJ:: IEEE
    [Google Scholar]
  79. 79.
    Li S, Bastani O. 2020.. Robust model predictive shielding for safe reinforcement learning with stochastic dynamics. . In 2020 IEEE International Conference on Robotics and Automation, pp. 716672. Piscataway, NJ:: IEEE
    [Google Scholar]
  80. 80.
    Bastani O, Li S, Xu A. 2021.. Safe reinforcement learning via statistical model predictive shielding. . In Robotics: Science and Systems XVII, ed. D Shell, M Toussaint, MA Hsieh, pap. 26. N.p. : Robot. Sci. Syst. Found.
    [Google Scholar]
  81. 81.
    Wabersich KP, Hewing L, Carron A, Zeilinger MN. 2022.. Probabilistic model predictive safety certification for learning-based control. . IEEE Trans. Autom. Control 67:(1):17688
    [Crossref] [Google Scholar]
  82. 82.
    Srinivasan K, Eysenbach B, Ha S, Tan J, Finn C. 2020.. Learning to be safe: deep RL with a safety critic. . arXiv:2010.14603 [cs.LG]
  83. 83.
    Thananjeyan B, Balakrishna A, Nair S, Luo M, Srinivasan K, et al. 2021.. Recovery RL: safe reinforcement learning with learned recovery zones. . IEEE Robot. Autom. Lett. 6:(3):491522
    [Crossref] [Google Scholar]
  84. 84.
    Hsu KC, Ren AZ, Nguyen DP, Majumdar A, Fisac JF. 2023.. Sim-to-lab-to-real: safe reinforcement learning with shielding and generalization guarantees. . Artif. Intell. 314::103811
    [Crossref] [Google Scholar]
  85. 85.
    Bharadhwaj H, Kumar A, Rhinehart N, Levine S, Shkurti F, Garg A. 2021.. Conservative safety critics for exploration. . In Proceedings of the 2021 International Conference on Learning Representations. La Jolla, CA:: Int. Conf. Learn. Represent. https://openreview.net/forum?id=iaO86DUuKi
    [Google Scholar]
  86. 86.
    Borquez J, Nakamura K, Bansal S. 2023.. Parameter-conditioned reachable sets for updating safety assurances online. . In 2023 IEEE International Conference on Robotics and Automation, pp. 1055359. Piscataway, NJ:: IEEE
    [Google Scholar]
  87. 87.
    Lin A, Bansal S. 2023.. Generating formal safety assurances for high-dimensional reachability. . In 2023 IEEE International Conference on Robotics and Automation, pp. 1052531. Piscataway, NJ:: IEEE
    [Google Scholar]
  88. 88.
    Li J, Lee D, Sojoudi S, Tomlin CJ. 2022.. Infinite-horizon reach-avoid zero-sum games via deep reinforcement learning. . arXiv:2203.10142 [eess.SY]
  89. 89.
    Akametalu AK, Fisac JF, Gillula JH, Kaynama S, Zeilinger MN, Tomlin CJ. 2014.. Reachability-based safe learning with Gaussian processes. . In 53rd IEEE Conference on Decision and Control, pp. 142431. Piscataway, NJ:: IEEE
    [Google Scholar]
  90. 90.
    Fisac JF, Akametalu AK, Zeilinger MN, Kaynama S, Gillula J, Tomlin CJ. 2019.. A general safety framework for learning-based control in uncertain robotic systems. . IEEE Trans. Autom. Control 64:(7):273752
    [Crossref] [Google Scholar]
  91. 91.
    Volvo. 2023.. Volvo Cars' new XC60 SUV will automatically steer you out of trouble. . Volvo. https://www.multivu.com/players/uk/8050851-volvo-cars-xc60-suv-automatically-steer/
    [Google Scholar]
  92. [Google Scholar]
  93. 93.
    Dawson C, Qin Z, Gao S, Fan C. 2022.. Safe nonlinear control using robust neural Lyapunov-barrier functions. . In Proceedings of the 5th Conference on Robot Learning, ed. A Faust, D Hsu, G Neumann , pp. 172435. Proc. Mach. Learn. Res. 164. N.p. : PMLR
    [Google Scholar]
  94. 94.
    Berkenkamp F, Turchetta M, Schoellig A, Krause A. 2017.. Safe model-based reinforcement learning with stability guarantees. . In Advances in Neural Information Processing Systems 30, ed. I Guyon, U Von Luxburg, S Bengio, H Wallach, R Fergus , et al., pp. 90919, Red Hook, NY:: Curran
    [Google Scholar]
  95. 95.
    So O, Fan C. 2023.. Solving stabilize-avoid optimal control via epigraph form and deep reinforcement learning. . arXiv:2305.14154 [cs.RO]
  96. 96.
    Leung K, Schmerling E, Zhang M, Chen M, Talbot J, et al. 2020.. On infusing reachability-based safety assurance within planning frameworks for human-robot vehicle interactions. . Int. J. Robot. Res. 39:(10–11):132645
    [Crossref] [Google Scholar]
  97. 97.
    Nakamura K, Bansal S. 2023.. Online update of safety assurances using confidence-based predictions. . In 2023 IEEE International Conference on Robotics and Automation, pp. 1276571. Piscataway, NJ:: IEEE
    [Google Scholar]
  98. 98.
    Bajcsy A, Bansal S, Ratner E, Tomlin CJ, Dragan AD. 2020.. A robust control framework for human motion prediction. . IEEE Robot. Autom. Lett. 6:(1):2431
    [Crossref] [Google Scholar]
  99. 99.
    Fisac J, Bajcsy A, Herbert S, Fridovich-Keil D, Wang S, et al. 2018.. Probabilistically safe robot planning with confidence-based human predictions. . In Robotics: Science and Systems XIV, ed. H Kress-Gazit, S Srinivasa, T Howard, N Atanasov, pap. 69. N.p. : Robot. Sci. Syst. Found.
    [Google Scholar]
  100. 100.
    Fridovich-Keil D, Bajcsy A, Fisac JF, Herbert SL, Wang S, et al. 2020.. Confidence-aware motion prediction for real-time collision avoidance. . Int. J. Robot. Res. 39:(2–3):25065
    [Crossref] [Google Scholar]
  101. 101.
    Tian R, Sun L, Bajcsy A, Tomizuka M, Dragan AD. 2022.. Safety assurances for human-robot interaction via confidence-aware game-theoretic human models. . In 2022 International Conference on Robotics and Automation, pp. 1122935. Piscataway, NJ:: IEEE
    [Google Scholar]
  102. 102.
    Hansen EA, Bernstein DS, Zilberstein S. 2004.. Dynamic programming for partially observable stochastic games. . In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 4, pp. 70915. Palo Alto, CA:: AAAI Press
    [Google Scholar]
  103. 103.
    Feldbaum AA. 1960.. Dual control theory. I. . Avtom. Telemekh. 21:(9):124049
    [Google Scholar]
  104. 104.
    Tian R, Sun L, Tomizuka M, Isele D. 2021.. Anytime game-theoretic planning with active reasoning about humans' latent states for human-centered robots. . In 2021 IEEE International Conference on Robotics and Automation, pp. 450915. Piscataway, NJ:: IEEE
    [Google Scholar]
  105. 105.
    Bonzanini AD, Paulson JA, Mesbah A. 2020.. Safe learning-based model predictive control under state-and input-dependent uncertainty using scenario trees. . In 2020 59th IEEE Conference on Decision and Control, pp. 244854. Piscataway, NJ:: IEEE
    [Google Scholar]
  106. 106.
    Zhang Z, Fisac JF. 2021.. Safe occlusion-aware autonomous driving via game-theoretic active perception. . In Robotics: Science and Systems XVII, ed. D Shell, M Toussaint, MA Hsieh, pap. 66. N.p. : Robot. Sci. Syst. Found.
    [Google Scholar]
  107. 107.
    Hu H, Zhang Z, Nakamura K, Bajcsy AV, Fisac JF. 2023.. Learning-aware safety for interactive autonomy. . In Proceedings of the 7th Conference on Robot Learning. Forthcoming
    [Google Scholar]
  108. 108.
    Schildbach G, Borrelli F. 2015.. Scenario model predictive control for lane change assistance on highways. . In 2015 IEEE Intelligent Vehicles Symposium, pp. 61116. Piscataway, NJ:: IEEE
    [Google Scholar]
  109. 109.
    Bernardini D, Bemporad A. 2011.. Stabilizing model predictive control of stochastic constrained linear systems. . IEEE Trans. Autom. Control 57:(6):146880
    [Crossref] [Google Scholar]
  110. 110.
    Farina M, Giulioni L, Scattolini R. 2016.. Stochastic linear model predictive control with chance constraints—a review. . J. Process Control 44::5367
    [Crossref] [Google Scholar]
  111. 111.
    Hu H, Nakamura K, Fisac JF. 2022.. SHARP: shielding-aware robust planning for safe and efficient human-robot interaction. . IEEE Robot. Autom. Lett. 7:(2):559198
    [Crossref] [Google Scholar]
  112. 112.
    Brechtel S, Gindele T, Dillmann R. 2014.. Probabilistic decision-making under uncertainty for autonomous driving using continuous POMDPs. . In 17th International IEEE Conference on Intelligent Transportation Systems, pp. 39299. Piscataway, NJ:: IEEE
    [Google Scholar]
  113. 113.
    Bouton M, Nakhaei A, Fujimura K, Kochenderfer MJ. 2018.. Scalable decision making with sensor occlusions for autonomous driving. . In 2018 IEEE International Conference on Robotics and Automation, pp. 207681. Piscataway, NJ:: IEEE
    [Google Scholar]
  114. 114.
    Hubmann C, Quetschlich N, Schulz J, Bernhard J, Althoff D, Stiller C. 2019.. A POMDP maneuver planner for occlusions in urban scenarios. . In 2019 IEEE Intelligent Vehicles Symposium, pp. 217279. Piscataway, NJ:: IEEE
    [Google Scholar]
  115. 115.
    Koschi M, Althoff M. 2020.. Set-based prediction of traffic participants considering occlusions and traffic rules. . IEEE Trans. Intell. Vehicles 6:(2):24965
    [Crossref] [Google Scholar]
  116. 116.
    Laine F, Chiu CY, Tomlin C. 2020.. Eyes-closed safety kernels: safety of autonomous systems under loss of observability. . In Robotics: Science and Systems XVI, ed. M Toussaint, A Bicchi, T Hermans, pap. 96. N.p. : Robot. Sci. Syst. Found.
    [Google Scholar]
  117. 117.
    Packer C, Rhinehart N, McAllister RT, Wright MA, Wang X, et al. 2023.. Is anyone there? Learning a planner contingent on perceptual uncertainty. . In Proceedings of the 6th Conference on Robot Learning, ed. K Liu, D Kulic, J Ichnowski , pp. 160717. Proc. Mach. Learn. Res. 205. N.p. : PMLR
    [Google Scholar]
  118. 118.
    Choi JJ, Lee D, Sreenath K, Tomlin CJ, Herbert SL. 2021.. Robust control barrier–value functions for safety-critical control. . In 2021 60th IEEE Conference on Decision and Control, pp. 681421. Piscataway, NJ:: IEEE
    [Google Scholar]
  119. 119.
    Tonkens S, Herbert S. 2022.. Refining control barrier functions through Hamilton-Jacobi reachability. . In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1335562. Piscataway, NJ:: IEEE
    [Google Scholar]
  120. 120.
    Kumar AR, Hsu KC, Ramadge PJ, Fisac JF. 2023.. Fast, smooth, and safe: implicit control barrier functions through reach-avoid differential dynamic programming. . IEEE Control Syst. Lett. 7::299499
    [Crossref] [Google Scholar]
  121. 121.
    Chen Y, Jankovic M, Santillo M, Ames AD. 2021.. Backup control barrier functions: formulation and comparative study. . In 2021 60th IEEE Conference on Decision and Control, pp. 683541. Piscataway, NJ:: IEEE
    [Google Scholar]
  122. 122.
    Singletary A, Swann A, Chen Y, Ames AD. 2022.. Onboard safety guarantees for racing drones: high-speed geofencing with control barrier functions. . IEEE Robot. Autom. Lett. 7::2897904
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-control-071723-102940
Loading
/content/journals/10.1146/annurev-control-071723-102940
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error