1932

Abstract

Approximately 1.1. billion people worldwide live with some form of disability, and assistive technology has the potential to increase their overall quality of life. However, the end users’ perspective and needs are often not sufficiently considered during the development of this technology, leading to frustration and nonuse of existing devices. Since its first competition in 2016, CYBATHLON has aimed to drive innovation in the field of assistive technology by motivating teams to involve end users more actively in the development process and to tailor novel devices to their actual daily-life needs. Competition tasks therefore represent unsolved daily-life challenges for people with disabilities and serve the purpose of benchmarking the latest developments from research laboratories and companies from around the world. This review describes each of the competition disciplines, their contributions to assistive technology, and remaining challenges in the user-centered development of this technology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-071822-095355
2023-05-03
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/control/6/1/annurev-control-071822-095355.html?itemId=/content/journals/10.1146/annurev-control-071822-095355&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    World Health Organ. 2011. World report on disability Rep., World Health Organ. Geneva, Switz: https://www.who.int/teams/noncommunicable-diseases/sensory-functions-disability-and-rehabilitation/world-report-on-disability
  2. 2.
    Howard J, Fisher Z, Kemp AH, Lindsay S, Tasker LH, Tree JJ. 2022. Exploring the barriers to using assistive technology for individuals with chronic conditions: a meta-synthesis review. Disabil. Rehabil. Assist. Technol. 17:390–408
    [Google Scholar]
  3. 3.
    Riener R. 2016. The Cybathlon promotes the development of assistive technology for people with physical disabilities. J. NeuroEng. Rehab. 13:49
    [Google Scholar]
  4. 4.
    Wolf P, Riener R. 2018. Cybathlon: how to promote the development of assistive technologies. Sci. Robot. 3:eaat7174
    [Google Scholar]
  5. 5.
    CYBATHLON 2022. CYBATHLON 20212024: races & rules Doc. Version 3.0.1 CYBATHLON, ETH Zurich Zurich, Switz: https://cybathlon.ethz.ch/documents/races-and-rules/CYBATHLON%202024/CYBATHLON_RacesAndRules_2024.pdf
    [Google Scholar]
  6. 6.
    Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH et al. 2000. Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8:164–73
    [Google Scholar]
  7. 7.
    Millán JDR, Rupp R, Mueller-Putz G, Murray-Smith R, Giugliemma C et al. 2010. Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Front. Neurosci. 4:161
    [Google Scholar]
  8. 8.
    Chaudhary U, Birbaumer N, Ramos-Murguialday A. 2016. Brain-computer interfaces for communication and rehabilitation. Nat. Rev. Neurol. 12:513–25
    [Google Scholar]
  9. 9.
    Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B et al. 1999. A spelling device for the paralysed. Nature 398:297–98
    [Google Scholar]
  10. 10.
    Leeb R, Tonin L, Rohm M, Desideri L, Carlson T, Millán JDR. 2015. Towards independence: a BCI telepresence robot for people with severe motor disabilities. Proc. IEEE 103:969–82
    [Google Scholar]
  11. 11.
    Tonin L, Millán JDR. 2021. Noninvasive brain-machine interfaces for robotic devices. Annu. Rev. Control Robot. Auton. Syst. 4:191–214
    [Google Scholar]
  12. 12.
    Waldert S, Pistohl T, Braun C, Ball T, Aertsen A, Mehring C. 2009. A review on directional information in neural signals for brain-machine interfaces. J. Physiol. Paris 103:244–54
    [Google Scholar]
  13. 13.
    Hwang H-J, Kim S, Choi S, Im C-H. 2013. EEG-based brain-computer interfaces: a thorough literature survey. Int. J. Hum. Comput. Interact. 29:814–26
    [Google Scholar]
  14. 14.
    Novak D, Sigrist R, Gerig NJ, Wyss D, Bauer R et al. 2018. Benchmarking brain-computer interfaces outside the laboratory: the Cybathlon 2016. Front. Neurosci. 11:756
    [Google Scholar]
  15. 15.
    Perdikis S, Tonin L, Millán JDR. 2017. Brain racers. IEEE Spectr. 54:944–51
    [Google Scholar]
  16. 16.
    Perdikis S, Tonin L, Saeedi S, Schneider C, Millán JDR. 2018. The Cybathlon BCI race: successful longitudinal mutual learning with two tetraplegic users. PLOS Biol. 16:e2003787
    [Google Scholar]
  17. 17.
    Statthaler K, Schwarz A, Steyrl D, Kobler R, Höller MK et al. 2017. Cybathlon experiences of the Graz BCI racing team Mirage91 in the brain-computer interface discipline. J. NeuroEng. Rehabil. 14:129
    [Google Scholar]
  18. 18.
    Turi F, Clerc M, Papadopoulo T. 2021. Long multi-stage training for a motor-impaired user in a BCI competition. Front. Hum. Neurosci. 15:647908
    [Google Scholar]
  19. 19.
    Benaroch C, Sadatnejad K, Roc A, Appriou A, Monseigne T et al. 2021. Long-term BCI training of a tetraplegic user: adaptive Riemannian classifiers and user training. Front. Hum. Neurosci. 15:635653
    [Google Scholar]
  20. 20.
    Hehenberger L, Kobler RJ, Lopes-Dias C, Srisrisawang N, Tumfart P et al. 2021. Long-term mutual training for the CYBATHLON BCI race with a tetraplegic pilot: a case study on inter-session transfer and intra-session adaptation. Front. Hum. Neurosci. 15:635777
    [Google Scholar]
  21. 21.
    Robinson N, Chouhan T, Mihelj E, Kratka P, Debraine F et al. 2021. Design considerations for long term non-invasive brain computer interface training with tetraplegic CYBATHLON pilot. Front. Hum. Neurosci. 15:648275
    [Google Scholar]
  22. 22.
    Tortora S, Beraldo G, Bettella F, Formaggio E, Rubega M et al. 2022. Neural correlates of user learning during long-term BCI training for the Cybathlon competition. J. NeuroEng. Rehabil. 19:69
    [Google Scholar]
  23. 23.
    Tonin L, Bauer FC, Millán JDR. 2020. The role of the control framework for continuous teleoperation of a brain-machine interface-driven mobile robot. IEEE Trans. Robot. 36:78–91
    [Google Scholar]
  24. 24.
    Beraldo G, Tonin L, Menegatti E 2021. Shared intelligence for user-supervised robots: from user's commands to robot's actions. AIxIA 2020 – Advances in Artificial Intelligence M Baldoni, S Bandini 457–65. Cham, Switz.: Springer
    [Google Scholar]
  25. 25.
    Perdikis S, Millán JDR. 2020. Brain-machine interfaces: a tale of two learners. IEEE Syst. Man Cybern. Mag. 6:312–19
    [Google Scholar]
  26. 26.
    Dangi S, Orsborn AL, Moorman HG, Carmena JM. 2013. Design and analysis of closed-loop decoder adaptation algorithms for brain-machine interfaces. Neural Comput. 25:1693–731
    [Google Scholar]
  27. 27.
    Orsborn AL, Moorman HG, Overduin SA, Shanechi MM, Dimitrov DF, Carmena JM. 2014. Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic control. Neuron 82:1380–93
    [Google Scholar]
  28. 28.
    McFarland DJ, Wolpaw JR. 2018. Brain-computer interface use is a skill that user and system acquire together. PLOS Biol. 16:e2006719
    [Google Scholar]
  29. 29.
    Tonin L, Beraldo G, Tortora S, Menegatti E. 2022. ROS-Neuro: an open-source platform for neurorobotics. Front. Neurorobot. 16:886050
    [Google Scholar]
  30. 30.
    Beraldo G, Tortora S, Menegatti E, Tonin L. 2020. ROS-Neuro: implementation of a closed-loop BMI based on motor imagery. 2020 IEEE International Conference on Systems, Man, and Cybernetics2031–37. Piscataway, NJ: IEEE
    [Google Scholar]
  31. 31.
    Tonin L, Beraldo G, Tortora S, Tagliapietra L, Millán JDR, Menegatti E. 2019. ROS-Neuro: a common middleware for BMI and robotics. The acquisition and recorder packages. 2019 IEEE International Conference on Systems, Man, and Cybernetics2767–72. Piscataway, NJ: IEEE
    [Google Scholar]
  32. 32.
    Fattal C, Sijobert B, Daubigney A, Lucas B, Azevedo-Coste C. 2017. The feasibility of training with FES-assisted cycling: psychological, physical and physiological consideration. Ann. Phys. Rehabil. Med. 60:Suppl.e15
    [Google Scholar]
  33. 33.
    Fattal C, Sijobert B, Daubigney A, Fachin-Martins E, Lucas B et al. 2018. Training with FES-assisted cycling in a subject with spinal cord injury: psychological, physical and physiological considerations. J. Spinal Cord Med. 43:402–13
    [Google Scholar]
  34. 34.
    Tong RKY, Wang X, Leung KWC, Lee GTY, Lau CCY et al. 2017. How to prepare a person with complete spinal cord injury to use surface electrodes for FES trike cycling. 2017 International Conference on Rehabilitation Robotics801–5. Piscataway, NJ: IEEE
    [Google Scholar]
  35. 35.
    Rabelo M, de Moura Jucá RVB, Lima LAO, Resende-Martins H, APL et al. 2018. Overview of FES-assisted cycling approaches and their benefits on functional rehabilitation and muscle atrophy. Muscle Atrophy J Xiao 561–83. Singapore: Springer
    [Google Scholar]
  36. 36.
    Azevedo Coste C, Wolf P 2018. FES-cycling at Cybathlon 2016: overview on teams and results. Artif. Organs 42:336–41
    [Google Scholar]
  37. 37.
    Kim Y, Lee SR, Kim SJ, Rosa T, Gong Y et al. 2021. Toward sustainable and accessible mobility: a functional electrical stimulation-based robotic bike with a fatigue-compensation algorithm and mechanism for Cybathlon 2020. IEEE Robot. Autom. Mag. 28:42–12
    [Google Scholar]
  38. 38.
    Wiesener C, Schauer T. 2017. The Cybathlon RehaBike: inertial-sensor-driven functional electrical stimulation cycling by Team Hasomed. IEEE Robot. Autom. Mag. 24:449–57
    [Google Scholar]
  39. 39.
    Laubacher M, Aksöz EA, Bersch I, Hunt KJ. 2017. The road to Cybathlon 2016 – functional electrical stimulation cycling Team IRPT/SPZ. Eur. J. Transl. Myol. 27:7086
    [Google Scholar]
  40. 40.
    Baptista RS, Moreira MCC, Pinheiro LDM, Pereira TR, Carmona GG et al. 2022. User-centered design and spatially-distributed sequential electrical stimulation in cycling for individuals with paraplegia. J. NeuroEng. Rehabil. 19:45
    [Google Scholar]
  41. 41.
    Ceroni I, Ferrante S, Conti F, No SJ, Dalla Gasperina S et al. 2021. Comparing fatigue reducing stimulation strategies during cycling induced by functional electrical stimulation: a case study with one spinal cord injured subject. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society6394–97. Piscataway, NJ: IEEE
    [Google Scholar]
  42. 42.
    Gelenitis K, Foglyano K, Lombardo L, Triolo R. 2021. Selective neural stimulation methods improve cycling exercise performance after spinal cord injury: a case series. J. NeuroEng. Rehabil. 18:117
    [Google Scholar]
  43. 43.
    McDaniel J, Lombardo LM, Foglyano KM, Marasco PD, Triolo RJ. 2017. Cycle training using implanted neural prostheses: Team Cleveland. Eur. J. Transl. Myol. 27:7087
    [Google Scholar]
  44. 44.
    Wiesener C, Ruppin S, Schauer T. 2016. Robust discrimination of flexion and extension phases for mobile functional electrical stimulation (FES) induced cycling in paraplegics. IFAC-PapersOnLine 49:32210–15
    [Google Scholar]
  45. 45.
    Baptista R, Sijobert B, Coste CA. 2018. New approach of cycling phases detection to improve FES-pedaling in SCI individuals. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems5181–86. Piscataway, NJ: IEEE
    [Google Scholar]
  46. 46.
    Sijobert B, le Guillou R, Fattal C, Azevedo Coste C. 2019. FES-induced cycling in complete SCI: a simpler control method based on inertial sensors. Sensors 19:4268
    [Google Scholar]
  47. 47.
    Berkelmans R, Woods B. 2017. Strategies and performances of functional electrical stimulation cycling using the BerkelBike with spinal cord injury in a competition context (CYBATHLON). Eur. J. Transl. Myol. 27:7189
    [Google Scholar]
  48. 48.
    Woods B, Subramanian M, Shafti A, Faisal AA. 2018. Mechanomyography based closed-loop functional electrical stimulation cycling system. 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics179–84. Piscataway, NJ: IEEE
    [Google Scholar]
  49. 49.
    Schmoll M, le Guillou R, Fattal C, Coste CA. 2022. OIDA: an optimal interval detection algorithm for automatized determination of stimulation patterns for FES-cycling in individuals with SCI. J. NeuroEng. Rehabil. 19:39
    [Google Scholar]
  50. 50.
    Bo APL, da Fonseca LO, Guimaraes JA, Fachin-Martins E, Paredes MEG et al. 2017. Cycling with spinal cord injury: a novel system for cycling using electrical stimulation for individuals with paraplegia, and preparation for Cybathlon 2016. IEEE Robot. Autom. Mag. 24:458–65
    [Google Scholar]
  51. 51.
    da Fonseca LO, APL, Guimarães JA, Gutierrez ME, Fachin-Martins E. 2017. Cadence tracking and disturbance rejection in functional electrical stimulation cycling for paraplegic subjects: a case study. Artif. Organs 41:E185–95
    [Google Scholar]
  52. 52.
    McDaniel J, Lombardo LM, Foglyano KM, Marasco PD, Triolo RJ. 2017. Setting the pace: insights and advancements gained while preparing for an FES bike race. J. NeuroEng. Rehabil. 14:118
    [Google Scholar]
  53. 53.
    Wannawas N, Subramanian M, Faisal AA. 2021. Neuromechanics-based deep reinforcement learning of neurostimulation control in FES cycling. 2021 10th International IEEE/EMBS Conference on Neural Engineering381–84. Piscataway, NJ: IEEE
    [Google Scholar]
  54. 54.
    Hamdan PNF, Hamzaid NA, Abd Razak NA, Hasnan N 2022. Contributions of the Cybathlon championship to the literature on functional electrical stimulation cycling among individuals with spinal cord injury: a bibliometric review. J. Sport. Health Sci. 11:671–80
    [Google Scholar]
  55. 55.
    Farina D, Vujaklija I, Brånemark R, Bull AMJ, Dietl H et al. 2021. Toward higher-performance bionic limbs for wider clinical use. Nat. Biomed. Eng. 12:1647–48
    [Google Scholar]
  56. 56.
    Mendez V, Iberite F, Shokur S, Micera S. 2021. Current solutions and future trends for robotic prosthetic hands. Annu. Rev. Control Robot. Auton. Syst. 4:595–627
    [Google Scholar]
  57. 57.
    Sun H. 2018. Prosthetic configurations and imagination: dis/ability, body, and technology. Concentric 44:13–39
    [Google Scholar]
  58. 58.
    Schweitzer W, Thali MJ, Egger D. 2018. Case-study of a user-driven prosthetic arm design: bionic hand versus customized body-powered technology in a highly demanding work environment. J. NeuroEng. Rehabil. 15:1
    [Google Scholar]
  59. 59.
    Østlie K, Lesjø IM, Franklin RJ, Garfelt B, Skjeldal OH, Magnus P 2012. Prosthesis rejection in acquired major upper-limb amputees: a population-based survey. Disabil. Rehabil. Assist. Technol. 7:294–303
    [Google Scholar]
  60. 60.
    Piazza C, Catalano MG, Godfrey SB, Rossi M, Grioli G et al. 2017. The SoftHand Pro-H: a hybrid body-controlled, electrically powered hand prosthesis for daily living and working. IEEE Robot. Autom. Mag. 24:487–101
    [Google Scholar]
  61. 61.
    Earley EJ, Zbinden J, Munoz-Novoa M, Mastinu E, Smiles A, Ortiz-Catalan M. 2022. Competitive motivation increased home use and improved prosthesis self-perception after Cybathlon 2020 for neuromusculoskeletal prosthesis user. J. NeuroEng. Rehabil. 19:47
    [Google Scholar]
  62. 62.
    Murray L. 2021.. ‘ Bionic Olympics’ inspires future assistive technologies: the Swiss Federal Institute of Technology Zurich held its second ‘Cybathlon’ last year—a tournament which showcases life-changing technologies for people with disabilities. Eng. Technol. 16:560–63
    [Google Scholar]
  63. 63.
    Brazil R. 2018. The Cybathlon challenge. Phys. World 31:335
    [Google Scholar]
  64. 64.
    Seppich N, Tacca N, Chao K-Y, Akim M, Hidalgo-Carvajal D et al. 2022. CyberLimb: a novel robotic prosthesis concept with shared and intuitive control. J. NeuroEng. Rehabil. 19:41
    [Google Scholar]
  65. 65.
    Ienca M, Kressig RW, Jotterand F, Elger B. 2017. Proactive ethical design for neuroengineering, assistive and rehabilitation technologies: the Cybathlon lesson. J. NeuroEng. Rehab. 14:115
    [Google Scholar]
  66. 66.
    Godfrey SB, Rossi M, Piazza C, Catalano MG, Bianchi M et al. 2017. SoftHand at the CYBATHLON: a user's experience. J. NeuroEng. Rehabil. 14:124
    [Google Scholar]
  67. 67.
    Musolf BM, Earley EJ, Munoz-Novoa M, Ortiz-Catalan M. 2021. Analysis and design of a bypass socket for transradial amputations. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society4611–14. Piscataway, NJ: IEEE
    [Google Scholar]
  68. 68.
    Legrand M, Jarrassé N, Richer F, Morel G. 2020. A closed-loop and ergonomic control for prosthetic wrist rotation. 2020 IEEE International Conference on Robotics and Automation2763–69. Piscataway, NJ: IEEE
    [Google Scholar]
  69. 69.
    Raspopovic S, Valle G, Petrini FM. 2021. Sensory feedback for limb prostheses in amputees. Nat. Mater. 20:925–39
    [Google Scholar]
  70. 70.
    Ortiz-Catalan M, Håkansson B, Brånemark R. 2014. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci. Transl. Med. 6:257re6
    [Google Scholar]
  71. 71.
    Ortiz-Catalan M, Mastinu E, Sassu P, Aszmann O, Brånemark R. 2020. Self-contained neuromusculoskeletal arm prostheses. N. Engl. J. Med. 382:1732–38
    [Google Scholar]
  72. 72.
    Hargrove LJ, Young AJ, Simon AM, Fey NP, Lipschutz RD et al. 2015. Intuitive control of a powered prosthetic leg during ambulation: a randomized clinical trial. JAMA 313:2244–52
    [Google Scholar]
  73. 73.
    Hargrove LJ, Simon AM, Young AJ, Lipschutz RD, Finucane SB et al. 2013. Robotic leg control with EMG decoding in an amputee with nerve transfers. N. Engl. J. Med. 369:1237–42
    [Google Scholar]
  74. 74.
    Petrini FM, Bumbasirevic M, Valle G, Ilic V, Mijović P et al. 2019. Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain. Nat. Med. 25:1356–63
    [Google Scholar]
  75. 75.
    Maria PF, Giacomo V, Marko B, Federica B, Dario B et al. 2019. Enhancing functional abilities and cognitive integration of the lower limb prosthesis. Sci. Transl. Med. 11:eaav8939
    [Google Scholar]
  76. 76.
    Clites TR, Carty MJ, Ullauri JB, Carney ME, Mooney LM et al. 2018. Proprioception from a neurally controlled lower-extremity prosthesis. Sci. Transl. Med. 10:eaap8373
    [Google Scholar]
  77. 77.
    Valle G, Saliji A, Fogle E, Cimolato A, Petrini FM, Raspopovic S. 2022. Mechanisms of neuro-robotic prosthesis operation in leg amputees. Sci. Adv. 7:eabd8354
    [Google Scholar]
  78. 78.
    Risso G, Valle G, Iberite F, Strauss I, Stieglitz T et al. 2019. Optimal integration of intraneural somatosensory feedback with visual information: a single-case study. Sci. Rep. 9:7916
    [Google Scholar]
  79. 79.
    Risso G, Preatoni G, Valle G, Marazzi M, Bracher NM, Raspopovic S. 2022. Multisensory stimulation decreases phantom limb distortions and is optimally integrated. iScience 25:104129
    [Google Scholar]
  80. 80.
    Risso G, Valle G. 2022. Multisensory integration in bionics: relevance and perspectives. Curr. Phys. Med. Rehabil. Rep. 10:123–30
    [Google Scholar]
  81. 81.
    McDonald CL, Westcott-McCoy S, Weaver MR, Haagsma J, Kartin D. 2021. Global prevalence of traumatic non-fatal limb amputation. Prosthet. Orthot. Int. 45:105–14
    [Google Scholar]
  82. 82.
    von Kaeppler EP, Hetherington A, Donnelley CA, Ali SH, Shirley C et al. 2021. Impact of prostheses on quality of life and functional status of transfemoral amputees in Tanzania. Afr. J. Disabil. 10:a839
    [Google Scholar]
  83. 83.
    Nolan L, Wit A, Dudziñski K, Lees A, Lake M, Wychowañski M. 2003. Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture 17:142–51
    [Google Scholar]
  84. 84.
    Windrich M, Grimmer M, Christ O, Rinderknecht S, Beckerle P. 2016. Active lower limb prosthetics: a systematic review of design issues and solutions. BioMed. Eng. OnLine 15:Suppl. 3140
    [Google Scholar]
  85. 85.
    Össur. 2022. Total Knee® 2000. Össur https://www.ossur.com/en-us/prosthetics/knees/total-knee-2000
    [Google Scholar]
  86. 86.
    Proj. Circleg 2022. Product. Project Circleg https://projectcircleg.com/product
    [Google Scholar]
  87. 87.
    Rise Bionics 2022. Rise: bionics for all. Rise Bionics. http://risebionics.com
    [Google Scholar]
  88. 88.
    Cherelle P, Grosu V, Cestari M, Vanderborght B, Lefeber D. 2016. The AMP-Foot 3, new generation propulsive prosthetic feet with explosive motion characteristics: design and validation. BioMed. Eng. OnLine 15:145
    [Google Scholar]
  89. 89.
    Flynn LL, Geeroms J, van der Hoeven T, Vanderborght B, Lefeber D. 2018. VUB-CYBERLEGs CYBATHLON 2016 Beta-Prosthesis: case study in control of an active two degree of freedom transfemoral prosthesis. J. NeuroEng. Rehabil. 15:3
    [Google Scholar]
  90. 90.
    Gates DH, Aldridge JM, Wilken JM. 2013. Kinematic comparison of walking on uneven ground using powered and unpowered prostheses. Clin. Biomech. 28:467–72
    [Google Scholar]
  91. 91.
    Basla C, Chee L, Valle G, Raspopovic S. 2022. A non-invasive wearable sensory leg neuroprosthesis: mechanical, electrical and functional validation. J. Neural Eng. 19:016008
    [Google Scholar]
  92. 92.
    Crea S, Edin BB, Knaepen K, Meeusen R, Vitiello N. 2017. Time-discrete vibrotactile feedback contributes to improved gait symmetry in patients with lower limb amputations: case series. Phys. Ther. 97:198–207
    [Google Scholar]
  93. 93.
    Dietrich C, Nehrdich S, Seifert S, Blume KR, Miltner WHR et al. 2018. Leg prosthesis with somatosensory feedback reduces phantom limb pain and increases functionality. Front. Neurol. 9:270
    [Google Scholar]
  94. 94.
    Rouse EJ, Mooney LM, Herr HM. 2014. Clutchable series-elastic actuator: implications for prosthetic knee design. Int. J. Robot. Res. 33:1611–25
    [Google Scholar]
  95. 95.
    Cherelle P, Grosu V, Matthys A, Vanderborght B, Lefeber D. 2014. Design and validation of the Ankle Mimicking Prosthetic (AMP-) Foot 2.0. IEEE Trans. Neural Syst. Rehabil. Eng. 22:138–48
    [Google Scholar]
  96. 96.
    Wang Q, Yuan K, Zhu J, Wang L. 2015. Walk the walk: a lightweight active transtibial prosthesis. IEEE Robot. Autom. Mag. 22:480–89
    [Google Scholar]
  97. 97.
    Cempini M, Hargrove LJ, Lenzi T. 2017. Design, development, and bench-top testing of a powered polycentric ankle prosthesis. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems1064–69. Piscataway, NJ: IEEE
    [Google Scholar]
  98. 98.
    Lenzi T, Cempini M, Hargrove L, Kuiken T. 2018. Design, development, and testing of a lightweight hybrid robotic knee prosthesis. Int. J. Robot. Res. 37:953–76
    [Google Scholar]
  99. 99.
    Quintero D, Villarreal DJ, Lambert DJ, Kapp S, Gregg RD. 2018. Continuous-phase control of a powered knee-ankle prosthesis: amputee experiments across speeds and inclines. IEEE Trans. Robot. 34:686–701
    [Google Scholar]
  100. 100.
    Thatte N, Geyer H. 2016. Toward balance recovery with leg prostheses using neuromuscular model control. IEEE Trans. Biomed. Eng. 63:904–13
    [Google Scholar]
  101. 101.
    Zhao H, Horn J, Reher J, Paredes V, Ames AD. 2016. Multicontact locomotion on transfemoral prostheses via hybrid system models and optimization-based control. IEEE Trans. Autom. Sci. Eng. 13:502–13
    [Google Scholar]
  102. 102.
    Dollar AM, Herr H. 2008. Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans. Robot. 24:144–58
    [Google Scholar]
  103. 103.
    Kalita B, Narayan J, Dwivedy SK. 2021. Development of active lower limb robotic-based orthosis and exoskeleton devices: a systematic review. Int. J. Soc. Robot. 13:775–93
    [Google Scholar]
  104. 104.
    Bogue R. 2022. Exoskeletons: a review of recent progress. Ind. Robot 49:813–18
    [Google Scholar]
  105. 105.
    Tabti N, Kardofaki M, Alfayad S, Chitour Y, Ouezdou FB, Dychus E. 2019. A brief review of the electronics, control system architecture, and human interface for commercial lower limb medical exoskeletons stabilized by aid of crutches. 2019 28th IEEE International Conference on Robot and Human Interactive Communication Piscataway, NJ: IEEE https://doi.org/10.1109/RO-MAN46459.2019.8956311
    [Google Scholar]
  106. 106.
    Jeong M, Woo H, Kong K. 2020. A study on weight support and balance control method for assisting squat movement with a wearable robot, Angel-suit. Int. J. Control Autom. Syst. 18:114–23
    [Google Scholar]
  107. 107.
    Vouga T, Baud R, Fasola J, Bouri M, Bleuler H. 2017. TWIICE—a lightweight lower-limb exoskeleton for complete paraplegics. 2017 International Conference on Rehabilitation Robotics1639–45. Piscataway, NJ: IEEE
    [Google Scholar]
  108. 108.
    Gurriet T, Finet S, Boeris G, Duburcq A, Hereid A et al. 2018. Towards restoring locomotion for paraplegics: realizing dynamically stable walking on exoskeletons. 2018 IEEE International Conference on Robotics and Automation2804–11. Piscataway, NJ: IEEE
    [Google Scholar]
  109. 109.
    Baud R, Fasola J, Vouga T, Ijspeert A, Bouri M. 2019. Bio-inspired standing balance controller for a full-mobilization exoskeleton. 2019 IEEE 16th International Conference on Rehabilitation Robotics849–54. Piscataway, NJ: IEEE
    [Google Scholar]
  110. 110.
    Liu J, He Y, Li F, Cao W, Wu X. 2022. Kinematics study of a 10 degrees-of-freedom lower extremity exoskeleton for crutch-less walking rehabilitation. Technol. Health Care 30:747–55
    [Google Scholar]
  111. 111.
    Karacan K, Meyer JT, Bozma HI, Gassert R, Samur E. 2020. An environment recognition and parameterization system for shared-control of a powered lower-limb exoskeleton. 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics623–28. Piscataway, NJ: IEEE
    [Google Scholar]
  112. 112.
    Sanchez-Villamañan MDC, Gonzalez-Vargas J, Torricelli D, Moreno JC, Pons JL. 2019. Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles. J. NeuroEng. Rehabil. 16:55
    [Google Scholar]
  113. 113.
    Schrade SO, Dätwyler K, Stücheli M, Studer K, Türk DA et al. 2018. Development of VariLeg, an exoskeleton with variable stiffness actuation: first results and user evaluation from the CYBATHLON 2016. J. NeuroEng. Rehabil. 15:18
    [Google Scholar]
  114. 114.
    World Health Organ. 2008. Guidelines on the provision of manual wheelchairs in less resourced settings Rep. World Health Organ. Geneva, Switz:.
  115. 115.
    Sivakanthan S, Candiotti JL, Sundaram SA, Duvall JA, Sergeant JJG et al. 2022. Mini-review: robotic wheelchair taxonomy and readiness. Neurosci. Lett. 772:136482
    [Google Scholar]
  116. 116.
    Alqasemi RM, McCaffrey EJ, Edwards KD, Dubey RV. 2005. Analysis, evaluation and development of wheelchair-mounted robotic arms. 9th International Conference on Rehabilitation Robotics469–72. Piscataway, NJ: IEEE
    [Google Scholar]
  117. 117.
    Schrock P, Farelo F, Alqasemi R, Dubey R. 2009. Design, simulation and testing of a new modular wheelchair mounted robotic arm to perform activities of daily living. 2009 IEEE International Conference on Rehabilitation Robotics518–23. Piscataway, NJ: IEEE
    [Google Scholar]
  118. 118.
    Edwards K, Alqasemi R, Dubey R. 2006. Design, construction and testing of a wheelchair-mounted robotic arm. 2006 IEEE International Conference on Robotics and Automation3165–70. Piscataway, NJ: IEEE
    [Google Scholar]
  119. 119.
    Prior SD. 1993. Investigations into the design of a wheelchair-mounted rehabilitation robotic manipulator PhD Thesis: Middlesex Univ. London, UK:
  120. 120.
    Maheu V, Archambault PS, Frappier J, Routhier F. 2011. Evaluation of the JACO robotic arm: clinico-economic study for powered wheelchair users with upper-extremity disabilities. 2011 IEEE International Conference on Rehabilitation Robotics Piscataway, NJ: IEEE https://doi.org/10.1109/ICORR.2011.5975397
    [Google Scholar]
  121. 121.
    Kinova 2022. Assistive technologies. Kinova https://assistive.kinovarobotics.com
    [Google Scholar]
  122. 122.
    Chi M, Liu Y, Yao Y, Liu Y, Li S et al. 2021. Development and evaluation of demonstration information recording approach for wheelchair mounted robotic arm. Complex Intell. Syst. 8:2843–57
    [Google Scholar]
  123. 123.
    Podobnik J, Rejc J, Slajpah S, Munih M, Mihelj M. 2017. All-terrain wheelchair: increasing personal mobility with a powered wheel-track hybrid wheelchair. IEEE Robot. Autom. Mag. 24:426–36
    [Google Scholar]
  124. 124.
    Ishigami G, Nojima H, Matsuno F, Komukai Y, Yoshida H et al. 2020. Powered wheelchair with enhanced maneuverability and traversability for challenging tasks. Cybathlon Symposium: 17–18 September 202072 Zurich: ETH Zurich Abstr. )
    [Google Scholar]
  125. 125.
    Nakajima S. 2017. A new personal mobility vehicle for daily life: improvements on a new RT-Mover that enable greater mobility are showcased at the Cybathlon. IEEE Robot. Autom. Mag. 24:437–48
    [Google Scholar]
  126. 126.
    Torrent J, Nicolet M, Gostelli Y. 2020. Eye-driving powered wheelchair: beginner learning curve estimation. Cybathlon Symposium: 17–18 September 202073 Zurich: ETH Zurich Abstr. )
    [Google Scholar]
  127. 127.
    Amer SG, Ramadan RA, Kamh SA, Elshahed MA. 2021. Wheelchair control system based eye gaze. Int. J. Adv. Comput. Sci. Appl. 12:889–94
    [Google Scholar]
  128. 128.
    Araujo JM, Zhang G, Hansen JPP, Puthusserypady S. 2020. Exploring eye-gaze wheelchair control. ETRA ’20 Adjunct: ACM Symposium on Eye Tracking Research and Applications pap. 16 New York: ACM
    [Google Scholar]
  129. 129.
    Sunny MSH, Zarif MII, Rulik I, Sanjuan J, Rahman MH et al. 2021. Eye-gaze control of a wheelchair mounted 6DOF assistive robot for activities of daily living. J. NeuroEng. Rehabil. 18:173
    [Google Scholar]
  130. 130.
    Voznenko TI, Chepin EV, Urvanov GA. 2018. The control system based on extended BCI for a robotic wheelchair. Procedia Comput. Sci. 123:522–27
    [Google Scholar]
  131. 131.
    Tang J, Liu Y, Hu D, Zhou Z. 2018. Towards BCI-actuated smart wheelchair system. BioMed. Eng. OnLine 17:111
    [Google Scholar]
  132. 132.
    Li Y, Pan J, Wang F, Yu Z 2013. A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control. IEEE Trans. Biomed. Eng. 60:3156–66
    [Google Scholar]
  133. 133.
    Leeb R, Friedman D, Müller-Putz GR, Scherer R, Slater M, Pfurtscheller G. 2007. Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic. Comput. Intell. Neurosci. 2007:079642
    [Google Scholar]
  134. 134.
    Reardon S. 2016. Faster higher stronger: the Cybathlon is a cyborg Olympics that will help disabled people to navigate the most difficult course of all: the everyday world. Nature 536:20–22
    [Google Scholar]
  135. 135.
    Meyer JT, Weber S, Jäger L, Sigrist R, Gassert R, Lambercy O. 2022. A survey on the influence of CYBATHLON on the development and acceptance of advanced assistive technologies. J. NeuroEng. Rehabil. 19:38
    [Google Scholar]
  136. 136.
    Beer JM, Fisk AD, Rogers WA. 2014. Toward a framework for levels of robot autonomy in human-robot interaction. J. Hum. Robot Interact. 3:74–99
    [Google Scholar]
  137. 137.
    Simon AM, Lock BA, Stubblefield KA. 2012. Patient training for functional use of pattern recognition-controlled prostheses. J. Prosthet. Orthot. 24:56–64
    [Google Scholar]
  138. 138.
    Caserta G, Boccardo N, Freddolini M, Barresi G, Marinelli A et al. 2022. Benefits of the Cybathlon 2020 experience for a prosthetic hand user: a case study on the Hannes system. J. NeuroEng. Rehabil. 19:68
    [Google Scholar]
/content/journals/10.1146/annurev-control-071822-095355
Loading
/content/journals/10.1146/annurev-control-071822-095355
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error