1932

Abstract

Simultaneous localization and mapping (SLAM) is the process of constructing a global model of an environment from local observations of it; this is a foundational capability for mobile robots, supporting such core functions as planning, navigation, and control. This article reviews recent progress in SLAM, focusing on advances in the expressive capacity of the environmental models used in SLAM systems (representation) and the performance of the algorithms used to estimate these models from data (inference). A prominent theme of recent SLAM research is the pursuit of environmental representations (including learned representations) that go beyond the classical attributes of geometry and appearance to model properties such as hierarchical organization, affordance, dynamics, and semantics; these advances equip autonomous agents with a more comprehensive understanding of the world, enabling more versatile and intelligent operation. A second major theme is a revitalized interest in the mathematical properties of the SLAM estimation problem itself (including its computational and information-theoretic performance limits); this work has led to the development of novel classes of certifiable and robust inference methods that dramatically improve the reliability of SLAM systems in real-world operation. We survey these advances with an emphasis on their ramifications for achieving robust, long-duration autonomy, and conclude with a discussion of open challenges and a perspective on future research directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-072720-082553
2021-05-03
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/control/4/1/annurev-control-072720-082553.html?itemId=/content/journals/10.1146/annurev-control-072720-082553&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Thrun S, Burgard W, Fox D. 2005. Probabilistic Robotics Cambridge, MA: MIT Press
    [Google Scholar]
  2. 2. 
    Durrant-Whyte H, Bailey T. 2006. Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13:299–110
    [Google Scholar]
  3. 3. 
    Bailey T, Durrant-Whyte H. 2006. Simultaneous localization and mapping (SLAM): part II. IEEE Robot. Autom. Mag. 13:3108–17
    [Google Scholar]
  4. 4. 
    Stachniss C, Leonard JJ, Thrun S 2016. Simultaneous localization and mapping. Springer Handbook of Robotics B Siciliano, O Khatib 1153–76 Cham, Switz: Springer
    [Google Scholar]
  5. 5. 
    Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D et al. 2016. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Robot. 32:1309–32
    [Google Scholar]
  6. 6. 
    Engel J, Schöps J, Cremers D 2014. LSD-SLAM: Large-Scale Direct Monocular SLAM. Computer Vision – ECCV 2014: 13th European Conference D Fleet, T Pajdla, B Schiele, T Tuytelaars 834–49 Cham, Switz: Springer
    [Google Scholar]
  7. 7. 
    Mur-Artal R, Tardós JD. 2017. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33:1255–62
    [Google Scholar]
  8. 8. 
    Whelan T, Leutenegger S, Salas-Moreno RF, Glocker B, Davison AJ 2015. ElasticFusion: dense SLAM without a pose graph. Robotics: Science and Systems XI LE Kavraki, D Hsu, J Buchli, pap. 1 N.p: Robot. Sci. Syst. Found.
    [Google Scholar]
  9. 9. 
    Dellaert F, Kaess M. 2017. Factor graphs for robot perception. Found. Trends Robot. 6:1–139
    [Google Scholar]
  10. 10. 
    Huang S, Dissanayake G. 2016. A critique of current developments in simultaneous localization and mapping. Int. J. Adv. Robot. Syst. 13: https://doi.org/10.1177/1729881416669482
    [Crossref] [Google Scholar]
  11. 11. 
    Sipser M. 2012. Introduction to the Theory of Computation Boston: Cengage Learn.
    [Google Scholar]
  12. 12. 
    Kuipers B. 2000. The spatial semantic hierarchy. Artif. Intell. 119:191–233
    [Google Scholar]
  13. 13. 
    Koller D, Friedman N. 2009. Probabilistic Graphical Models: Principles and Techniques Cambridge, MA: MIT Press
    [Google Scholar]
  14. 14. 
    Rosen DM, Kaess M, Leonard JJ. 2014. RISE: an incremental trust-region method for robust online sparse least-squares estimation. IEEE Trans. Robot. 30:1091–108
    [Google Scholar]
  15. 15. 
    Lowry S, Sünderhauf N, Newman P, Leonard JJ, Cox D et al. 2016. Visual place recognition: a survey. IEEE Trans. Robot. 32:1–19
    [Google Scholar]
  16. 16. 
    Grisetti G, Kümmerle R, Stachniss C, Burgard W. 2010. A tutorial on graph-based SLAM. IEEE Intell. Transp. Syst. Mag. 2:431–43
    [Google Scholar]
  17. 17. 
    Kaess M, Ranganathan A, Dellaert F. 2008. iSAM: incremental smoothing and mapping. IEEE Trans. Robot. 24:1365–78
    [Google Scholar]
  18. 18. 
    Kaess M, Johannsson H, Roberts R, Ila V, Leonard JJ, Dellaert F. 2012. iSAM2: incremental smoothing and mapping using the Bayes tree. Int. J. Robot. Res. 31:216–35
    [Google Scholar]
  19. 19. 
    Kümmerle R, Grisetti G, Strasdat H, Konolige K, Burgard W. 2011. g2o: a general framework for graph optimization. 2011 IEEE International Conference on Robotics and Automation3607–13 Piscataway, NJ: IEEE
    [Google Scholar]
  20. 20. 
    Huang G. 2019. Visual-inertial navigation: a concise review. 2019 International Conference on Robotics and Automation9572–82 Piscataway, NJ: IEEE
    [Google Scholar]
  21. 21. 
    Huber P. 2004. Robust Statistics Hoboken, NJ: Wiley
    [Google Scholar]
  22. 22. 
    Ferguson T. 1996. A Course in Large Sample Theory Boca Raton, FL: Chapman & Hall/CRC
    [Google Scholar]
  23. 23. 
    Nocedal J, Wright S 2006. Numerical Optimization New York: Springer. , 2nd. ed.
    [Google Scholar]
  24. 24. 
    Grisetti G, Stachniss C, Burgard W. 2009. Nonlinear constraint network optimization for efficient map learning. IEEE Trans. Intell. Transp. Syst. 10:428–39
    [Google Scholar]
  25. 25. 
    Williams S, Indelman V, Kaess M, Roberts R, Leonard JJ, Dellaert F. 2014. Concurrent filtering and smoothing: a parallel architecture for real-time navigation and full smoothing. Int. J. Robot. Res. 33:1544–68
    [Google Scholar]
  26. 26. 
    Rosen DM, Carlone L, Bandeira A, Leonard JJ. 2019. SE-Sync: a certifiably correct algorithm for synchronization over the special Euclidean group. Int. J. Robot. Res. 38:95–125
    [Google Scholar]
  27. 27. 
    Rosen DM, Carlone L, Bandeira A, Leonard JJ 2016. A certifiably correct algorithm for synchronization over the special Euclidean group. Algorithmic Foundations of Robotics XII: Proceedings of the Twelfth Workshop on the Algorithmic Foundations of Robotics K Goldberg, P Abbeel, K Bekris, L Miller 64–79 Cham, Switz: Springer
    [Google Scholar]
  28. 28. 
    Martinec D, Pajdla T. 2007. Robust rotation and translation estimation in multiview reconstruction. 2007 IEEE Conference on Computer Vision and Pattern Recognition Piscataway, NJ: IEEE http://doi.org/10.1109/CVPR.2007.383115
    [Crossref] [Google Scholar]
  29. 29. 
    Liu M, Huang S, Dissanayake G, Wang H. 2012. A convex optimization based approach for pose SLAM problems. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems1898–903 Piscataway, NJ: IEEE
    [Google Scholar]
  30. 30. 
    Carlone L, Tron R, Daniilidis K, Dellaert F. 2015. Initialization techniques for 3D SLAM: a survey on rotation estimation and its use in pose graph optimization. 2015 IEEE International Conference on Robotics and Automation4597–604 Piscataway, NJ: IEEE
    [Google Scholar]
  31. 31. 
    Rosen DM, DuHadway C, Leonard JJ. 2015. A convex relaxation for approximate global optimization in simultaneous localization and mapping. 2015 IEEE International Conference on Robotics and Automation5822–29 Piscataway, NJ: IEEE
    [Google Scholar]
  32. 32. 
    Arrigoni F, Rossi B, Fusiello A. 2016. Spectral synchronization of multiple views in SE(3). SIAM J. Imaging Sci. 9:1963–90
    [Google Scholar]
  33. 33. 
    Bandeira A, Boumal N, Singer A. 2016. Tightness of the maximum likelihood semidefinite relaxation for angular synchronization. Math. Program. 163:145–67
    [Google Scholar]
  34. 34. 
    Hartley R, Trumpf J, Dai Y, Li H. 2013. Rotation averaging. Int. J. Comput. Vis. 103:267–305
    [Google Scholar]
  35. 35. 
    Bandeira A. 2016. A note on probably certifiably correct algorithms. C. R. Math. 354:329–33
    [Google Scholar]
  36. 36. 
    Carlone L, Dellaert F. 2015. Duality-based verification techniques for 2D SLAM. 2015 IEEE International Conference on Robotics and Automation4589–96 Piscataway, NJ: IEEE
    [Google Scholar]
  37. 37. 
    Carlone L, Rosen DM, Calafiore G, Leonard JJ, Dellaert F. 2015. Lagrangian duality in 3D SLAM: verification techniques and optimal solutions. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems125–32 Piscataway, NJ: IEEE
    [Google Scholar]
  38. 38. 
    Carlone L, Calafiore GC, Tommolillo C, Dellaert F. 2016. Planar pose graph optimization: duality, optimal solutions, and verification. IEEE Trans. Robot. 32:545–65
    [Google Scholar]
  39. 39. 
    Boyd S, Vandenberghe L. 2004. Convex Optimization Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  40. 40. 
    Rosen DM. 2019. Towards provably robust machine perception Paper presented at the RSS Pioneers Workshop, Robotics: Science and Systems XV, Freiburg im Breisgau, Ger., June 22–26
    [Google Scholar]
  41. 41. 
    Lasserre J. 2010. Moments, Positive Polynomials and Their Applications London: Imp. Coll. Press
    [Google Scholar]
  42. 42. 
    Kahl F, Henrion D. 2007. Globally optimal estimates for geometric reconstruction problems. Int. J. Comput. Vision 74:3–15
    [Google Scholar]
  43. 43. 
    Eriksson A, Olsson C, Kahl F, Chin TJ. 2018. Rotation averaging and strong duality. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition127–35 Piscataway, NJ: IEEE
    [Google Scholar]
  44. 44. 
    Dellaert F, Rosen DM, Wu J, Mahony R, Carlone L 2020. Shonan rotation averaging: global optimality by surfing SO(p)n. Computer Vision – ECCV 2020: 16th European Conference, Part VI A Vedaldi, H Bischof, T Brox, J-M Frahm 292–308 Cham, Switz: Springer
    [Google Scholar]
  45. 45. 
    Briales J, Kneip L, Gonzalez-Jimenez J. 2018. A certifiably globally optimal solution to the non-minimal relative pose problem. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition145–54 Piscataway, NJ: IEEE
    [Google Scholar]
  46. 46. 
    Giamou M, Ma Z, Peretroukhin V, Kelly J. 2019. Certifiably globally optimal extrinsic calibration from per-sensor egomotion. IEEE Robot. Autom. Lett. 4:367–74
    [Google Scholar]
  47. 47. 
    Briales J, Gonzalez-Jimenez J. 2017. Convex global 3D registration with Lagrangian duality. 2017 IEEE Conference on Computer Vision and Pattern Recognition5612–21 Piscataway, NJ: IEEE
    [Google Scholar]
  48. 48. 
    Yang H, Shi J, Carlone L. 2020. TEASER: fast and certifiable point cloud registration. IEEE Trans. Robot In press. https://doi.org/10.1109/TRO.2020.3033695
    [Crossref] [Google Scholar]
  49. 49. 
    Hu S, Carlone L. 2019. Accelerated inference in Markov random fields via smooth Riemannian optimization. IEEE Robot. Autom. Lett. 4:1295–302
    [Google Scholar]
  50. 50. 
    Yang H, Carlone L. 2020. In perfect shape: certifiably optimal 3D shape reconstruction from 2D landmarks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition618–27 Piscataway, NJ: IEEE
    [Google Scholar]
  51. 51. 
    Briales J, Gonzalez-Jimenez J. 2017. Cartan-Sync: fast and global SE(d)-synchronization. IEEE Robot. Autom. Lett. 2:2127–34
    [Google Scholar]
  52. 52. 
    Fan T, Wang H, Rubenstein M, Murphey T. 2019. Efficient and guaranteed planar pose graph optimization using the complex number representation. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems1904–11 Piscataway, NJ: IEEE
    [Google Scholar]
  53. 53. 
    Mangelson J, Liu J, Eustice R, Vasudevan R. 2019. Guaranteed globally optimal planar pose graph and landmark SLAM via sparse-bounded sums-of-squares programming. 2019 International Conference on Robotics and Automation9306–12 Piscataway, NJ: IEEE
    [Google Scholar]
  54. 54. 
    Fan T, Murphey T. 2019. Generalized proximal methods for pose-graph optimization Paper presented at the 19th International Symposium of Robotics Research Hanoi, Vietnam: Oct. 6–10
    [Google Scholar]
  55. 55. 
    Tian Y, Khosoussi K, How J. 2019. Block-coordinate minimization for large SDPs with block-diagonal constraints. arXiv:1903.00597 [math.OC]
  56. 56. 
    Tian Y, Khosoussi K, Rosen DM, How JP. 2020. Distributed certifiably correct pose-graph optimization. arXiv:1911.03721 [math.OC]
  57. 57. 
    Fischler M, Bolles R. 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24:381–95
    [Google Scholar]
  58. 58. 
    Latif Y, Cadena C, Neira J. 2013. Robust loop closing over time for pose graph SLAM. Int. J. Robot. Res. 32:1611–26
    [Google Scholar]
  59. 59. 
    Mangelson J, Dominic D, Eustice R, Vasudevan R. 2018. Pairwise consistent measurement set maximization for robust multi-robot map merging. 2018 IEEE International Conference on Robotics and Automation2916–23 Piscataway, NJ: IEEE
    [Google Scholar]
  60. 60. 
    Huber P. 1964. Robust estimation of a location parameter. Ann. Math. Stat. 35:73–101
    [Google Scholar]
  61. 61. 
    Sünderhauf N, Protzel P. 2012. Switchable constraints for robust pose graph SLAM. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems1879–84 Piscataway, NJ: IEEE
    [Google Scholar]
  62. 62. 
    Agarwal P, Tipaldi G, Spinello L, Stachniss C, Burgard W. 2014. Dynamic covariance scaling for robust map optimization. 2013 IEEE International Conference on Robotics and Automation62–69 Piscataway, NJ: IEEE
    [Google Scholar]
  63. 63. 
    Olson E, Agarwal P. 2013. Inference on networks of mixtures for robust robot mapping. Int. J. Robot. Res. 32:826–40
    [Google Scholar]
  64. 64. 
    Yang H, Carlone L 2020. One ring to rule them all: certifiably robust geometric perception with outliers. Advances in Neural Information Processing 33 H Larochelle, M Ranzato, R Hadsell, MF Balcan, H Lin pp. 1884659 Red Hook, NY: Curran
    [Google Scholar]
  65. 65. 
    Yang H, Antonante P, Tzoumas V, Carlone L. 2020. Graduated non-convexity for robust spatial perception: from non-minimal solvers to global outlier rejection. IEEE Robot. Autom. Lett. 5:1127–34
    [Google Scholar]
  66. 66. 
    Chung F. 1997. Spectral Graph Theory Providence, RI: Am. Math. Soc.
    [Google Scholar]
  67. 67. 
    Singer A. 2011. Angular synchronization by eigenvectors and semidefinite programming. Appl. Comput. Harmon. Anal. 30:20–36
    [Google Scholar]
  68. 68. 
    Boumal N, Singer A, Absil PA, Blondel V. 2014. Cramér-Rao bounds for synchronization of rotations. Inform. Inference 3:1–39
    [Google Scholar]
  69. 69. 
    Khosoussi K, Giamou M, Sukhatme G, Huang S, Dissanayake G, How J. 2019. Reliable graphs for SLAM. Int. J. Robot. Res. 38:260–98
    [Google Scholar]
  70. 70. 
    Majumdar A, Hall G, Ahmadi A. 2020. Recent scalability improvements for semidefinite programming with applications in machine learning, control, and robotics. Annu. Rev. Control Robot. Auton. Syst. 3:331–60
    [Google Scholar]
  71. 71. 
    Rosen DM. 2020. Scalable low-rank semidefinite programming for certifiably correct machine perception Paper presented at the 14th International Workshop on the Algorithmic Foundations of Robotics, Oulu, Finl .
    [Google Scholar]
  72. 72. 
    Cifuentes D, Harris C, Sturmfels B. 2020. The geometry of SDP-exactness in quadratic optimization. Math. Program. 182:399–428
    [Google Scholar]
  73. 73. 
    Fourie D, Leonard JJ, Kaess M. 2016. A nonparametric belief solution to the Bayes tree. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems2189–96 Piscataway, NJ: IEEE
    [Google Scholar]
  74. 74. 
    Hsiao M, Kaess M. 2019. MH-iSAM2: multi-hypothesis iSAM using Bayes tree and hypo-tree. 2019 International Conference on Robotics and Automation1274–80 Piscataway, NJ: IEEE
    [Google Scholar]
  75. 75. 
    Bernreiter L, Gawel A, Sommer H, Nieto J, Siegwart R, Lerma CC. 2019. Multiple hypothesis semantic mapping for robust data association. IEEE Robot. Autom. Lett. 4:3255–62
    [Google Scholar]
  76. 76. 
    Krizhevsky A, Sutskever I, Hinton GE 2012. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems 25 F Pereira, CJC Burges, L Bottou, KQ Weinberger 1097–105 Red Hook, NY: Curran
    [Google Scholar]
  77. 77. 
    Redmon J, Divvala S, Girshick R, Farhadi A. 2016. You only look once: unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition779–88 Piscataway, NJ: IEEE
    [Google Scholar]
  78. 78. 
    Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. 2009. ImageNet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition248–55 Piscataway, NJ: IEEE
    [Google Scholar]
  79. 79. 
    Sünderhauf N, Brock O, Scheirer W, Hadsell R, Fox D et al. 2018. The limits and potentials of deep learning for robotics. Int. J. Robot. Res. 37:405–20
    [Google Scholar]
  80. 80. 
    Davison AJ. 2018. FutureMapping: the computational structure of spatial AI systems. arXiv:1803.11288 [cs.AI]
  81. 81. 
    Davison AJ, Ortiz J. 2019. FutureMapping 2: Gaussian belief propagation for spatial AI. arXiv:1910.14139 [cs.AI]
  82. 82. 
    Nicholson O. 2020. SLAMcore debuts full-stack spatial AI SDK in industry competition. SLAMcore Blog Apr. 30. https://blog.slamcore.com/sdk-debut
    [Google Scholar]
  83. 83. 
    Bohg J, Hausman K, Sankaran B, Brock O, Kragic D et al. 2017. Interactive perception: leveraging action in perception and perception in action. IEEE Trans. Robot. 33:1273–91
    [Google Scholar]
  84. 84. 
    Lowe DG. 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60:91–110
    [Google Scholar]
  85. 85. 
    Bay H, Ess A, Tuytelaars T, Van Gool L. 2008. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 110:346–59
    [Google Scholar]
  86. 86. 
    Rublee E, Rabaud V, Konolige K, Bradski G. 2011. ORB: an efficient alternative to SIFT or SURF. 2011 International Conference on Computer Vision2564–71 Piscataway, NJ: IEEE
    [Google Scholar]
  87. 87. 
    Mur-Artal R, Montiel JMM, Tardós JD. 2015. ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31:1147–63
    [Google Scholar]
  88. 88. 
    Engel J, Koltun V, Cremers D. 2017. Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40:611–25
    [Google Scholar]
  89. 89. 
    Wang R, Schworer M, Cremers D. 2017. Stereo DSO: large-scale direct sparse visual odometry with stereo cameras. 2017 IEEE International Conference on Computer Vision3923–31 Piscataway, NJ: IEEE
    [Google Scholar]
  90. 90. 
    Gao X, Wang R, Demmel N, Cremers D. 2018. LDSO: Direct Sparse Odometry with loop closure. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems2198–204 Piscataway, NJ: IEEE
    [Google Scholar]
  91. 91. 
    Moravec H, Elfes A. 1985. High resolution maps from wide angle sonar. 1985 IEEE International Conference on Robotics and Automation, Vol. 2116–121 Piscataway, NJ: IEEE
    [Google Scholar]
  92. 92. 
    Hornung A, Wurm KM, Bennewitz M, Stachniss C, Burgard W. 2013. OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robots 34:189–206
    [Google Scholar]
  93. 93. 
    Rosinol A, Abate M, Chang Y, Carlone L. 2020. Kimera: an open-source library for real-time metric-semantic localization and mapping. 2020 IEEE International Conference on Robotics and Automation1689–96 Piscataway, NJ: IEEE
    [Google Scholar]
  94. 94. 
    Newcombe RA, Davison AJ, Izadi S, Kohli P, Hilliges O et al. 2011. KinectFusion: real-time dense surface mapping and tracking. 2011 10th IEEE International Symposium on Mixed and Augmented Reality127–36 Piscataway, NJ: IEEE
    [Google Scholar]
  95. 95. 
    Whelan T, McDonald JB, Kaess M, Fallon MF, Johannsson H, Leonard JJ. 2012. Kintinuous: spatially extended KinectFusion Paper presented at RGB-D: Advanced Reasoning with Depth Cameras Robotics: Science and Systems VIII, Sydney July 9–13
    [Google Scholar]
  96. 96. 
    Sünderhauf N, Dayoub F, McMahon S, Eich M, Upcroft B, Milford M. 2015. SLAM – quo vadis? In support of object oriented and semantic SLAM Paper presented at The Problem of Mobile Sensors: Setting Future Goals and Indicators of Progress for SLAM Robotics: Science and Systems XI, Rome July 13–17
    [Google Scholar]
  97. 97. 
    Moravec H, Blackwell M. 1992. Learning sensor models for evidence grids. 1991 Annual Research Review8–15 Pittsburgh, PA: Carnegie Mellon Univ. Robot. Inst.
    [Google Scholar]
  98. 98. 
    Bowman SL, Atanasov N, Daniilidis K, Pappas GJ. 2017. Probabilistic data association for semantic SLAM. 2017 IEEE International Conference on Robotics and Automation1722–29 Piscataway, NJ: IEEE
    [Google Scholar]
  99. 99. 
    Atanasov N, Zhu M, Daniilidis K, Pappas GJ 2014. Semantic localization via the matrix permanent. Robotics: Science and Systems X D Fox, LE Kavraki, H Kurniawati, pap. 43 N.p.: Robot. Sci. Syst. Found.
    [Google Scholar]
  100. 100. 
    Doherty KJ, Fourie D, Leonard JJ. 2019. Multimodal semantic SLAM with probabilistic data association. 2019 International Conference on Robotics and Automation2419–25 Piscataway, NJ: IEEE
    [Google Scholar]
  101. 101. 
    Doherty KJ, Baxter D, Schneeweiss E, Leonard JJ. 2020. Probabilistic data association via mixture models for robust semantic SLAM. 2020 IEEE International Conference on Robotics and Automation1098–104 Piscataway, NJ: IEEE
    [Google Scholar]
  102. 102. 
    McCormac J, Handa A, Davison A, Leutenegger S. 2017. SemanticFusion: dense 3D semantic mapping with convolutional neural networks. 2017 IEEE International Conference on Robotics and Automation4628–35 Piscataway, NJ: IEEE
    [Google Scholar]
  103. 103. 
    Sengupta S, Sturgess P. 2015. Semantic octree: unifying recognition, reconstruction and representation via an octree constrained higher order MRF. 2015 IEEE International Conference on Robotics and Automation1874–79 Piscataway, NJ: IEEE
    [Google Scholar]
  104. 104. 
    Salas-Moreno RF, Newcombe RA, Strasdat H, Kelly PH, Davison AJ. 2013. SLAM++: simultaneous localisation and mapping at the level of objects. 2013 IEEE Conference on Computer Vision and Pattern Recognition1352–59 Piscataway, NJ: IEEE
    [Google Scholar]
  105. 105. 
    Civera J, Gálvez-López D, Riazuelo L, Tardós JD, Montiel J. 2011. Towards semantic SLAM using a monocular camera. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems1277–84 Piscataway, NJ: IEEE
    [Google Scholar]
  106. 106. 
    Castle RO, Gawley DJ, Klein G, Murray DW. 2007. Towards simultaneous recognition, localization and mapping for hand-held and wearable cameras. 2007 IEEE International Conference on Robotics and Automation4102–7 Piscataway, NJ: IEEE
    [Google Scholar]
  107. 107. 
    Nicholson L, Milford M, Sünderhauf N. 2018. QuadricSLAM: dual quadrics from object detections as landmarks in object-oriented SLAM. IEEE Robot. Autom. Lett. 4:1–8
    [Google Scholar]
  108. 108. 
    Sünderhauf N, Milford M. 2017. Dual quadrics from object detection bounding boxes as landmark representations in SLAM. arXiv:1708.00965 [cs.RO]
  109. 109. 
    Ok K, Liu K, Frey K, How JP, Roy N. 2019. Robust object-based SLAM for high-speed autonomous navigation. 2019 International Conference on Robotics and Automation669–75 Piscataway, NJ: IEEE
    [Google Scholar]
  110. 110. 
    Yang S, Scherer S. 2019. CubeSLAM: monocular 3-D object SLAM. IEEE Trans. Robot. 35:925–38
    [Google Scholar]
  111. 111. 
    Sucar E, Wada K, Davison A. 2020. Neural object descriptors for multi-view shape reconstruction. arXiv:2004.04485 [cs.CV]
  112. 112. 
    Bescos B, Fácil JM, Civera J, Neira J. 2018. DynaSLAM: tracking, mapping, and inpainting in dynamic scenes. IEEE Robot. Autom. Lett. 3:4076–83
    [Google Scholar]
  113. 113. 
    Wang CC, Thorpe C, Thrun S, Hebert M, Durrant-Whyte H. 2007. Simultaneous localization, mapping and moving object tracking. Int. J. Robot. Res. 26:889–916
    [Google Scholar]
  114. 114. 
    Schorghuber M, Steininger D, Cabon Y, Humenberger M, Gelautz M. 2019. SLAMANTIC - leveraging semantics to improve VSLAM in dynamic environments. 2019 IEEE/CVF International Conference on Computer Vision Workshop3759–68 Piscataway, NJ: IEEE
    [Google Scholar]
  115. 115. 
    Zhang J, Henein M, Mahony R, Ila V 2020. VDO-SLAM: a visual dynamic object-aware SLAM system. arXiv:2005.11052 [cs.RO]
  116. 116. 
    Henein M, Zhang J, Mahony R, Ila V 2020. Dynamic SLAM: the need for speed. arXiv:2002.08584 [cs.RO]
  117. 117. 
    Rosen DM, Mason J, Leonard JJ. 2016. Towards lifelong feature-based mapping in semi-static environments. 2016 IEEE International Conference on Robotics and Automation1063–70 Piscataway, NJ: IEEE
    [Google Scholar]
  118. 118. 
    Krajník T, Fentanes JP, Santos JM, Duckett T. 2017. Fremen: frequency map enhancement for long-term mobile robot autonomy in changing environments. IEEE Trans. Robot. 33:964–77
    [Google Scholar]
  119. 119. 
    Bore N, Ekekrantz J, Jensfelt P, Folkesson J. 2018. Detection and tracking of general movable objects in large three-dimensional maps. IEEE Trans. Robot. 35:231–47
    [Google Scholar]
  120. 120. 
    Zeng Z, Röfer A, Jenkins OC. 2020. Semantic linking maps for active visual object search. 2020 IEEE International Conference on Robotics and Automation1984–90 Piscataway, NJ: IEEE
    [Google Scholar]
  121. 121. 
    Halodová L, Dvořráková E, Majer F, Vintr T, Mozos OM et al. 2019. Predictive and adaptive maps for long-term visual navigation in changing environments. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems7033–39 Piscataway, NJ: IEEE
    [Google Scholar]
  122. 122. 
    Berrio JS, Ward J, Worrall S, Nebot E. 2019. Updating the visibility of a feature-based map for long-term maintenance. 2019 IEEE Intelligent Vehicles Symposium1173–79 Piscataway, NJ: IEEE
    [Google Scholar]
  123. 123. 
    Pannen D, Liebner M, Hempel W, Burgard W. 2020. How to keep HD maps for automated driving up to date. 2020 IEEE International Conference on Robotics and Automation2288–94 Piscataway, NJ: IEEE
    [Google Scholar]
  124. 124. 
    Newcombe RA, Fox D, Seitz SM. 2015. DynamicFusion: reconstruction and tracking of non-rigid scenes in real-time. 2015 IEEE Conference on Computer Vision and Pattern Recognition343–52 Piscataway, NJ: IEEE
    [Google Scholar]
  125. 125. 
    Song J, Zhao L, Huang S, Dissanayake G. 2019. An observable time series based SLAM algorithm for deforming environment. arXiv:1906.08563 [cs.RO]
  126. 126. 
    Mu B, Giamou M, Paull L, Agha-Mohammadi AA, Leonard JJ, How J. 2016. Information-based active SLAM via topological feature graphs. 2016 IEEE 55th Conference on Decision and Control5583–90 Piscataway, NJ: IEEE
    [Google Scholar]
  127. 127. 
    Stein GJ, Bradley C, Preston V, Roy N 2020. Enabling topological planning with monocular vision. arXiv:2003.14368 [cs.RO]
  128. 128. 
    Chaplot DS, Salakhutdinov R, Gupta A, Gupta S. 2020. Neural topological SLAM for visual navigation. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition12872–881 Piscataway, NJ: IEEE
    [Google Scholar]
  129. 129. 
    Rosinol A, Gupta A, Abate M, Shi J, Carlone L 2020. 3D dynamic scene graphs: actionable spatial perception with places, objects, and humans. Robotics: Science and Systems XVI M Toussaint, A Bicchi, T Hermans, pap. 79 N.p: Robot. Sci. Syst. Found.
    [Google Scholar]
  130. 130. 
    Armeni I, He ZY, Gwak J, Zamir AR, Fischer M et al. 2019. 3D scene graph: a structure for unified semantics, 3D space, and camera. 2019 IEEE/CVF International Conference on Computer Vision5663–72 Piscataway, NJ: IEEE
    [Google Scholar]
  131. 131. 
    Bear DM, Fan C, Mrowca D, Li Y, Alter S et al. 2020. Learning physical graph representations from visual scenes. arXiv:2006.12373 [cs.CV]
  132. 132. 
    DeTone D, Malisiewicz T, Rabinovich A. 2017. Toward geometric deep SLAM. arXiv:1707.07410 [cs.CV]
  133. 133. 
    DeTone D, Malisiewicz T, Rabinovich A. 2018. Self-improving visual odometry. arXiv:1812.03245 [cs.CV]
  134. 134. 
    Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B et al. 2016. End to end learning for self-driving cars. arXiv:1604.07316 [cs.CV]
  135. 135. 
    Pillai S, Leonard JJ 2015. Monocular SLAM supported object recognition. Robotics: Science and Systems XI LE Kavraki, D Hsu, J Buchli, pap. 34 N.p: Robot. Sci. Syst. Found.
    [Google Scholar]
  136. 136. 
    Pillai S, Leonard JJ. 2017. Towards visual ego-motion learning in robots. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems5533–40 Piscataway, NJ: IEEE
    [Google Scholar]
  137. 137. 
    Pillai S, Leonard JJ. 2017. Self-supervised place recognition in mobile robots Paper presented at the Learning for Localization and Mapping Workshop IEEE/RSJ International Conference on Intelligent Robots and Systems Vancouver, Can: Sept. 24–28
    [Google Scholar]
  138. 138. 
    Zhi S, Bloesch M, Leutenegger S, Davison AJ. 2019. SceneCode: monocular dense semantic reconstruction using learned encoded scene representations. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition11768–77 Piscataway, NJ: IEEE
    [Google Scholar]
  139. 139. 
    Czarnowski J, Laidlow T, Clark R, Davison AJ 2020. DeepFactors: real-time probabilistic dense monocular SLAM. IEEE Robot. Autom. Lett. 5:721–28
    [Google Scholar]
  140. 140. 
    Jatavallabhula KM, Iyer G, Paull L. 2019. gradSLAM: dense SLAM meets automatic differentiation. arXiv:1910.10672 [cs.RO]
  141. 141. 
    Zhang J, Tai L, Boedecker J, Burgard W, Liu M. 2017. Neural SLAM: learning to explore with external memory. arXiv:1706.09520 [cs.LG]
  142. 142. 
    Mirowski P, Grimes M, Malinowski M, Hermann KM, Anderson K et al. 2018. Learning to navigate in cities without a map. Advances in Neural Information Processing Systems 31 S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, R Garnett 2419–30 Red Hook, NY: Curran
    [Google Scholar]
  143. 143. 
    Gallego G, Delbruck T, Orchard G, Bartolozzi C, Taba B et al. 2019. Event-based vision: a survey. arXiv:1904.08405 [cs.CV]
  144. 144. 
    Sibley G, Mei C, Reid I, Newman P 2010. Planes, trains and automobiles—autonomy for the modern robot. 2010 IEEE International Conference on Robotics and Automation285–92 Piscataway, NJ: IEEE
    [Google Scholar]
  145. 145. 
    Marr D. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information New York: Freeman
    [Google Scholar]
  146. 146. 
    Assoc. Comput. Mach 2019. Fathers of the deep learning revolution receive ACM A.M. Turing Award Press Release, Mar. 27 Assoc. Comput. Mach New York: https://www.acm.org/media-center/2019/march/turing-award-2018
    [Google Scholar]
  147. 147. 
    Bajcsy R. 1988. Active perception. Proc. IEEE 76:966–1005
    [Google Scholar]
/content/journals/10.1146/annurev-control-072720-082553
Loading
/content/journals/10.1146/annurev-control-072720-082553
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error