1932

Abstract

Over the past decades, robotics has shown great potential to impact the built environment, from automation to differentiation and efficient construction. However, construction processes are highly complex and require tackling a multitude of problems, from safety and robustness to ease of control and interactivity. For this reason, the field of construction robotics is still evolving, requiring finding solutions for new challenges every day. The present review analyzes the role of robotics in construction and architecture over time and highlights current trends in shifting from pure automation toward collaborative and adaptive processes that have the potential to fully integrate robotics into a rigid and challenging industry, such as construction.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-080122-090049
2023-05-03
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/control/6/1/annurev-control-080122-090049.html?itemId=/content/journals/10.1146/annurev-control-080122-090049&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Manyika J, Ramaswamy S, Khanna S, Sarrazin H, Pinkus G et al. 2015. Digital America: a tale of the haves and have-mores Rep. McKinsey Glob. Inst. Washington, DC:
    [Google Scholar]
  2. 2.
    Int. Fed. Robot. 2021. World robotics 2021: industrial robots Rep. Int. Fed. Robot. Frankfurt, Ger.:
    [Google Scholar]
  3. 3.
    Bock T, Linner T. 2016. Site Automation: Automated/Robotic On-Site Factories New York: Cambridge Univ. Press
    [Google Scholar]
  4. 4.
    Zuse K. 1993. The Computer—My Life Berlin: Springer
    [Google Scholar]
  5. 5.
    Bock T, Lauer WV. 2010. Location Orientation Manipulator by Konrad Wachsmann, John Bollinger and Xavier Mendoza. Proceedings of the 27th International Symposium on Automation and Robotics in Construction T Brno 704–12. London: Int. Assoc. Autom. Robot. Constr.
    [Google Scholar]
  6. 6.
    Bock T, Linner T. 2016. Reinforcement production and positioning robots. Construction Robots: Elementary Technologies and Single-Task Construction Robots39–46. New York: Cambridge Univ. Press
    [Google Scholar]
  7. 7.
    Andres J, Bock T, Gebhart F, Steck W 1994. First results of the development of the masonry robot system ROCCO: a fault tolerant assembly tool. Automation and Robotics in Construction XI: Proceedings of the Eleventh International Symposium on Automation and Robotics in Construction DA Chamberlain 87–93. Amsterdam: Elsevier
    [Google Scholar]
  8. 8.
    Br. Pathé. 2014. Mechanical bricklayer (1967). YouTube https://www.youtube.com/watch?v=4MWald1Goqk
    [Google Scholar]
  9. 9.
    James HH. 1967. Brick-laying machine US Patent 3,659,392
    [Google Scholar]
  10. 10.
    Pritschow G, Dalacker M, Kurz J, Gaenssle M. 1996. Technological aspects in the development of a mobile bricklaying robot. Autom. Constr. 5:3–13
    [Google Scholar]
  11. 11.
    Bonwetsch T, Kobel D, Gramazio F, Kohler M 2006. The Informed Wall: applying additive digital fabrication techniques on architecture. Synthetic Landscapes: Proceedings of the 25th Annual Conference of the Association for Computer Aided Design in Architecture GA Luhan, P Anzalone, M Cabrinha, C Clarke 489–95. Dover, DE: Assoc. Comput. Aided Des. Archit.
    [Google Scholar]
  12. 12.
    Bonwetsch T, Bearth & Deplazes, Gramazio & Kohler 2008. Gantenbein vineyard façade, fläsch. SIGGRAPH ’08: ACM SIGGRAPH 2008 Art Gallery52 New York: ACM
    [Google Scholar]
  13. 13.
    Apolinarska AA. 2018. Complex timber structures from simple elements PhD Thesis ETH Zürich Zürich, Switz:.
    [Google Scholar]
  14. 14.
    Parascho S, Gandia A, Mirjan A, Gramazio F, Kohler M 2017. Cooperative fabrication of spatial metal structures. Fabricate 2017: Rethinking Design and Construction A Menges, B Sheil, R Glynn, M Skavara 24–29. London: UCL Press
    [Google Scholar]
  15. 15.
    Ariza I, Mirjan A, Gandia A, Casas G, Cros S et al. 2018. In place detailing: combining 3D printing and robotic assembly. Recalibration: On Imprecision and Infidelity: Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture P Anzalone, M Del Signore, AJ Wit 312–21. Dover, DE: Assoc. Comput. Aided Des. Archit.
    [Google Scholar]
  16. 16.
    Prado M. 2020. Skeletal composites: robotic fabrication processes for lightweight multi-nodal structural components. Constr. Robot. 4:217–26
    [Google Scholar]
  17. 17.
    Hack N, Lauer WV, Gramazio F, Kohler M 2014. Mesh mould: differentiation for enhanced performance. CAADRIA 2014: Rethinking Comprehensive Design: Speculative Counterculture N Gu, S Watanabe, H Erhan, MH Haeusler, W Huang, R Sosa 139–48. Hong Kong: Assoc. Comput.-Aided Archit. Des. Res. Asia
    [Google Scholar]
  18. 18.
    Anton A, Jipa M-A, Reiter L, Dillenburger B 2021. Fast complexity: additive manufacturing for bespoke concrete slabs. Second RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020 FP Bos, SS Lucas, RJM Wolfs, TAM Salet 1067–77. Cham, Switz.: Springer
    [Google Scholar]
  19. 19.
    Krieg OD, Dierichs K, Reichert S, Schwinn T, Menges A. 2011. Performative architectural morphology: robotically manufactured biomimetic finger-joined plate structures. eCAADe 2011: Respecting Fragile Places573–80. Ljubljana, Slov.: eCAADe
    [Google Scholar]
  20. 20.
    Thoma A, Jenny D, Helmreich M, Gandia A, Gramazio F, Kohler M 2020. Cooperative robotic fabrication of timber dowel assemblies. Research Culture in Architecture: Cross-Disciplinary Collaboration C Leopold, C Robeller, U Weber 77–88. Basel, Switz.: Birkäuser
    [Google Scholar]
  21. 21.
    Pawlofsky T, Weissmahr T. 2014. 7xstool. kkaarrlls http://www.kkaarrlls.com/index.php?feature=editions,7Xstool
    [Google Scholar]
  22. 22.
    Self M, Vercruysse E 2017. Infinite variations, radical strategies. Fabricate 2017: Rethinking Design and Construction A Menges, B Sheil, R Glynn, M Skavara 30–35. London: UCL Press
    [Google Scholar]
  23. 23.
    Pawlofsky T. 2014. Star puzzle cut by robot. Craftwise http://www.craftwise.ch/star-puzzle-cut-by-robot
    [Google Scholar]
  24. 24.
    Xydis A. 2018. RobArch 2018 workshop. Achilleas Xydis https://www.achilleasxydis.com/RobArch-2018-workshop
    [Google Scholar]
  25. 25.
    Fleischmann M, Menges A 2012. ICD/ITKE Research Pavilion: a case study of multi-disciplinary collaborative computational design. Computational Design Modelling: Proceedings of the Design Modeling Symposium, Berlin 2011 C Gengnagel, A Kilian, N Palz, F Scheurer 239–48. Berlin: Springer
    [Google Scholar]
  26. 26.
    Vestartas P, Rezaei Rad A, Weinand Y 2021. Robotically-fabricated nexorades from whole timber. Proceedings of the International fib Symposium on Conceptual Design of Structures C Fivet, P D'Acunto, M Fernández Ruiz, PO Ohlbrock 539–46. Lausanne, Switz.: italicfib
    [Google Scholar]
  27. 27.
    Bucklin O, Menges A, Amtsberg F, Drexler H, Rohr A, Krieg OD. 2022. Mono-material wood wall: novel building envelope using subtractive manufacturing of timber profiles to improve thermal performance and airtightness of solid wood construction. Energy Build. 254:111597
    [Google Scholar]
  28. 28.
    Brugnaro G, Hanna S. 2019. Adaptive robotic carving: training methods for the integration of material performances in timber manufacturing. Robotic Fabrication in Architecture, Art and Design 2018 J Willmann, P Block, M Hutter, K Byrne, T Schork 336–48. Cham, Switz.: Springer
    [Google Scholar]
  29. 29.
    Hack N, Lauer WV, Gramazio F, Kohler M. 2015. Mesh mould: robotically fabricated metal meshes as concrete formwork and reinforcement. FERRO-11: Proceedings of the 11th International Symposium on Ferrocement and 3rd ICTRC International Conference on Textile Reinforced Concrete W Brameshuber 347–59. Bagneux, Fr.: RILEM
    [Google Scholar]
  30. 30.
    Smigielska M. 2018. Application of machine learning within the integrative design and fabrication of robotic rod bending processes. Humanizing Digital Reality: Design Modelling Symposium Paris 2017 K De Rycke, C Gengnagel, O Baverel, J Burry, C Mueller et al.523–36. Singapore: Springer
    [Google Scholar]
  31. 31.
    Saunders A, Epps G 2016. Robotic lattice smock: a method for transposing pliable textile smocking techniques through robotic curved folding and bending of sheet metal. Robotic Fabrication in Architecture, Art and Design 2016 D Reinhardt, R Saunders, J Burry 78–91. Cham, Switz.: Springer
    [Google Scholar]
  32. 32.
    Moussavi SM, Svatoš-Ražnjević H, Körner A, Tahouni Y, Menges A, Knippers J. 2022. Design based on availability: generative design and robotic fabrication workflow for non-standardized sheet metal with variable properties. Int. J. Space Struct. 37:119–34
    [Google Scholar]
  33. 33.
    Kalo A, Newsum MJ. 2014. An investigation of robotic incremental sheet metal forming as a method for prototyping parametric architectural skins. Robotic Fabrication in Architecture, Art and Design 2014 W McGee, M Ponce de Leon 33–49. Cham, Switz.: Springer
    [Google Scholar]
  34. 34.
    Hu R, Iturralde K, Linner T, Zhao C, Pan W et al. 2020. A simple framework for the cost–benefit analysis of single-task construction robots based on a case study of a cable-driven facade installation robot. Buildings 11:8
    [Google Scholar]
  35. 35.
    García de Soto B, Agustí-Juan I, Hunhevicz J, Joss S, Graser K et al. 2018. Productivity of digital fabrication in construction: cost and time analysis of a robotically built wall. Autom. Constr. 92:297–311
    [Google Scholar]
  36. 36.
    Eversmann P, Gramazio F, Kohler M. 2017. Robotic prefabrication of timber structures: towards automated large-scale spatial assembly. Constr. Robot. 1:49–60
    [Google Scholar]
  37. 37.
    Rogeau N, Latteur P, Weinand Y. 2021. An integrated design tool for timber plate structures to generate joints geometry, fabrication toolpath, and robot trajectories. Autom. Constr. 130:103875
    [Google Scholar]
  38. 38.
    Robeller C, Weinand Y, Helm V, Thoma A, Gramazio F, Kohler M 2017. Robotic integral attachment. Fabricate 2017: Rethinking Design and Construction A Menges, B Sheil, R Glynn, M Skavara 92–97. London: UCL Press
    [Google Scholar]
  39. 39.
    Leung PYV, Apolinarska AA, Tanadini D, Gramazio F, Kohler M 2021. Automatic assembly of jointed timber structure using distributed robotic clamps. CAADRIA 2021: Projections A Globa, J van Ameijde, A Fingrut, N Kim, TT Sky 583–92. Hong Kong: Assoc. Comput.-Aided Archit. Des. Res. Asia
    [Google Scholar]
  40. 40.
    Thoma A, Adel A, Helmreich M, Wehrle T, Gramazio F, Kohler M. 2019. Robotic fabrication of bespoke timber frame modules. Robotic Fabrication in Architecture, Art and Design 2018 J Willmann, P Block, M Hutter, K Byrne, T Schork 447–58. Cham, Switz.: Springer
    [Google Scholar]
  41. 41.
    ABB Robot. 2021. Transforming construction with Autovol. YouTube https://www.youtube.com/watch?v=9rkLPEWwFv4
    [Google Scholar]
  42. 42.
    Søndergaard A, Amir O, Eversmann P, Piskorec L, Stan F et al. 2016. Topology optimization and robotic fabrication of advanced timber space-frame structures. Robotic Fabrication in Architecture, Art and Design 2016 D Reinhardt, R Saunders, J Burry 190–203. Cham, Switz.: Springer
    [Google Scholar]
  43. 43.
    Doerstelmann M, Knippers J, Menges A, Parascho S, Prado M, Schwinn T. 2015. ICD/ITKE Research Pavilion 2013–14: modular coreless filament winding based on beetle elytra. Archit. Design 85:54–59
    [Google Scholar]
  44. 44.
    Duque Estrada R, Kannenberg F, Wagner HJ, Yablonina M, Menges A 2020. Spatial winding: cooperative heterogeneous multi-robot system for fibrous structures. Constr. Robot. 4:205–15
    [Google Scholar]
  45. 45.
    Devadass PD 2016. Robotic fabrication of non-standard material. Posthuman Frontiers: Data, Designers, and Cognitive Machines: Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture K Velikov, S Ahlquist, M del Campo, G Thün 206–13. Dover, DE: Assoc. Comput. Aided Des. Archit.
    [Google Scholar]
  46. 46.
    Apolinarska AA, Bärtschi R, Furrer R, Gramazio F, Kohler M. 2016. Mastering the “sequential roof” computational methods for integrating design, structural analysis, and robotic fabrication. Advances in Architectural Geometry 2016240–58. Zürich: vdf Hochschulverlag AG an der ETH Zürich
    [Google Scholar]
  47. 47.
    Wagner HJ, Alvarez M, Groenewolt A, Menges A. 2020. Towards digital automation flexibility in large-scale timber construction: integrative robotic prefabrication and co-design of the BUGA Wood Pavilion. Constr. Robot. 4:187–204
    [Google Scholar]
  48. 48.
    ERNE 2022. Effizienz am Bau dank Digitaltechnologie. ERNE https://www.erne.net/de/leistungen/technologien/digitale-fertigung
    [Google Scholar]
  49. 49.
    Augustynowicz E, Smigielska M, Nikles D, Wehrle T, Wagner H, Michel R. 2021. Collaborative design of prefabricated façade systems. CoDeFa https://codefacades.ch
    [Google Scholar]
  50. 50.
    Linner T. 2013. Automated and robotic construction: integrated automated construction sites PhD Thesis Tech. Univ. München Munich, Ger:.
    [Google Scholar]
  51. 51.
    ETH Zürich 2014. RFL. ETH Zürich https://ita.arch.ethz.ch/archteclab/rfl.html
    [Google Scholar]
  52. [Google Scholar]
  53. 53.
    ICON Technol. 2020. Meet ICON's next generation Vulcan construction system. ICON Technology https://www.iconbuild.com/vulcan
    [Google Scholar]
  54. 54.
    Apis Cor. 2022. Home page. Apis Cor https://apis-cor.com
    [Google Scholar]
  55. 55.
    COBOD 2022. The BOD2. COBOD https://cobod.com/products/bod2
    [Google Scholar]
  56. 56.
    Keating SJ, Leland JC, Cai L, Oxman N. 2017. Toward site-specific and self-sufficient robotic fabrication on architectural scales. Sci. Robot. 2:eaam8986
    [Google Scholar]
  57. 57.
    Dörfler K, Ernst S, Piškorec L, Willmann J, Helm V et al. 2014. Remote material deposition. What's the Matter? Materiality and Materialism at the Age of Computation M Voyatzaki 361–77. N.p.: Eur. Netw. Heads Sch. Archit.
    [Google Scholar]
  58. 58.
    Jokic S, Novikov P, Maggs S, Sadan D, Jin S, Nan C. 2022. Minibuilders. Institute for Advanced Architecture of Catalonia http://robots.iaac.net
    [Google Scholar]
  59. 59.
    Leder S, Oguz OS, Kim HG, Hartmann VN, Toussaint M et al. 2020. Co-design in architecture: a modular material-robot kinematic construction system Paper presented at the IEEE International Conference on Intelligent Robots and Systems virtual, Oct. 25, 2020–Jan. 24, 2021
    [Google Scholar]
  60. 60.
    Kalousdian NK, Łochnicki G, Hartmann VN, Leder S, Oguz OS et al. 2022. Learning robotic manipulation of natural materials with variable properties for construction tasks. IEEE Robot. Autom. Lett. 7:5749–56
    [Google Scholar]
  61. 61.
    Kayser M, Cai L, Falcone S, Bader C, Inglessis N et al. 2018. Fiberbots: an autonomous swarm-based robotic system for digital fabrication of fiber-based composites. Constr. Robot. 2:67–79
    [Google Scholar]
  62. 62.
    [Google Scholar]
  63. 63.
    Han IX, Bruun EPG, Marsh S, Tavano M, Adriaenssens S, Parascho S 2020. From concept to construction: a transferable design and robotic fabrication method for a building-scale vault. Distributed Proximities: Proceedings of the 40th Annual Conference of the Association for Computer Aided Design in Architecture B Slocum, V Ago, S Doyle, A Marcu, M Yablonina, M del Campo 614–23. Dover, DE: Assoc. Comput. Aided Des. Archit.
    [Google Scholar]
  64. 64.
    Gramazio F, Kohler M, Helm V, Ercan S. 2012. Mobile robotic fabrication on construction sites: DimRob. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems4335–41. Piscataway, NJ: IEEE
    [Google Scholar]
  65. 65.
    Giftthaler M, Sandy T, Dörfler K, Brooks I, Buckingham M et al. 2017. Mobile robotic fabrication at 1:1 scale: the In situ Fabricator. Constr. Robot. 1:3–14
    [Google Scholar]
  66. 66.
    Dörfler K. 2018. Strategies for robotic in situ fabrication PhD Thesis ETH Zürich Zürich, Switz.:
    [Google Scholar]
  67. 67.
    Lundeen KM, Kamat VR, Menassa CC, McGee W. 2019. Autonomous motion planning and task execution in geometrically adaptive robotized construction work. Autom. Constr. 100:24–45
    [Google Scholar]
  68. 68.
    Mirjan A, Augugliaro F, D'Andrea R, Gramazio F, Kohler M 2016. Building a bridge with flying robots. Robotic Fabrication in Architecture, Art and Design 2016 D Reinhardt, R Saunders, J Burry 34–47. Cham, Switz.: Springer
    [Google Scholar]
  69. 69.
    Dielemans G, Dörfler K. 2021. Mobile additive manufacturing: a robotic system for cooperative on-site construction Paper presented at the International Conference on Intelligent Robots and Systems Prague, Czech Repub.: Sept. 27–Oct. 1
    [Google Scholar]
  70. 70.
    Johns RL, Wermelinger M, Mascaro R, Jud D, Gramazio F et al. 2020. Autonomous dry stone: on-site planning and assembly of stone walls with a robotic excavator. Constr. Robot. 4:127–40
    [Google Scholar]
  71. 71.
    Lussi M, Sandy T, Dorfler K, Hack N, Gramazio F et al. 2018. Accurate and adaptive in situ fabrication of an undulated wall using an on-board visual sensing system. 2018 IEEE International Conference on Robotics and Automation3532–39. Piscataway, NJ: IEEE
    [Google Scholar]
  72. 72.
    Yablonina M, Menges A. 2019. Towards the development of fabrication machine species for filament materials. Robotic Fabrication in Architecture, Art and Design 2018 J Willmann, P Block, M Hutter, K Byrne, T Schork 152–66. Cham, Switz.: Springer
    [Google Scholar]
  73. 73.
    Yablonina M 2021. Small robots and big projects. Realignments: Toward Critical Computation: Proceedings of 41st Conference of the Association for Computer Aided Design in Architecture K Dörfler, S Parascho, J Scott, B Bogosian, B Farahi, et al. 464–71. Dover, DE: Assoc. Comput. Aided Des. Archit.
    [Google Scholar]
  74. 74.
    Wagner HJ, Garufi D, Schwinn T, Wood D, Menges A. 2021. Three-dimensional fibre placement in wood for connections and reinforcements in timber structures. Proceedings of the IASS Annual Symposium 2020/21 and the 7th International Conference on Spatial Structures Madrid: Int. Assoc. Shell Spat. Struct.
    [Google Scholar]
  75. 75.
    Bock T, Linner T. 2016. Site Automation: Automated/Robotic On-Site Factories New York: Cambridge Univ. Press
    [Google Scholar]
  76. 76.
    Robert McNeel Assoc. 2022. Rhinoceros. Robert McNeel and Associates. https://www.rhino3d.com
    [Google Scholar]
  77. 77.
    Rutten D., Davidson S. 2022. Grasshopper: algorithmic modeling for Rhino. Grasshopper https://www.grasshopper3d.com
    [Google Scholar]
  78. 78.
    visose 2022. Robots. GitHub https://github.com/visose/Robots
    [Google Scholar]
  79. 79.
    Schwartz T. 2017. HAL | robot programming & control. Food4Rhino https://www.food4rhino.com/en/app/hal-robot-programming-control
    [Google Scholar]
  80. 80.
    Sheng Y-T, Wang S-Y, Frank F. 2016. Taco ABB. Food4Rhino https://www.food4rhino.com/en/app/taco-abb
    [Google Scholar]
  81. 81.
    Rust R, Casas G, Parascho S, Jenny D, Dörfler K et al. 2022. compas_fab. GitHub https://github.com/compas-dev/compas_fab
    [Google Scholar]
  82. 82.
    Fleischmann P, Casas G. 2022. compas_rrc_start. GitHub https://github.com/compas-rrc/compas_rrc_start
    [Google Scholar]
  83. 83.
    Vasey L, Prado M, Koslowski V 2015. Behavioral design and adaptive robotic fabrication of a fiber composite compression shell with pneumatic formwork. Computational Ecologies: Design in the Anthropocene: Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture L Combs, C Perry 297–310. Dover, DE: Assoc. Comput. Aided Des. Archit.
    [Google Scholar]
  84. 84.
    Brugnaro G, Baharlou E, Vasey L, Menges A 2016. Robotic softness: an adaptive robotic fabrication process for woven structures. Posthuman Frontiers: Data, Designers, and Cognitive Machines: Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture K Velikov, S Ahlquist, M del Campo, G Thün 154–63. Dover, DE: Assoc. Comput. Aided Des. Archit.
    [Google Scholar]
  85. [Google Scholar]
  86. 86.
    Dörfler K, Sandy T, Giftthaler M, Gramazio F, Kohler M, Buchli J 2016. Mobile robotic brickwork: automation of a discrete robotic fabrication process using an autonomous mobile robot. Robotic Fabrication in Architecture, Art and Design 2016 D Reinhardt, R Saunders, J Burry 204–17. Cham, Switz: Springer
    [Google Scholar]
  87. 87.
    Mitterberger D, Dörfler K, Sandy T, Salveridou F, Hutter M et al. 2020. Augmented bricklaying. Constr. Robot. 4:151–61
    [Google Scholar]
  88. 88.
    Wermelinger M, Johns R, Gramazio F, Kohler M, Hutter M. 2021. Grasping and object reorientation for autonomous construction of stone structures. IEEE Robot. Autom. Lett. 6:5105–12
    [Google Scholar]
  89. 89.
    Wu K, Kilian A. 2019. Designing natural wood log structures with stochastic assembly and deep learning. Robotic Fabrication in Architecture, Art and Design 2018 J Willmann, P Block, M Hutter, K Byrne, T Schork 16–30. Cham, Switz.: Springer
    [Google Scholar]
  90. 90.
    Larsson M, Yoshida H, Igarashi T, Spencer S 2019. Human-in-the-loop fabrication of 3D surfaces with natural tree branches. SCF ’19: Proceedings of the ACM Symposium on Computational Fabrication SN Spencer, pap. 1 New York: ACM
    [Google Scholar]
  91. 91.
    Feng C, Xiao Y, Willette A, McGee W, Kamat VR. 2015. Vision guided autonomous robotic assembly and as-built scanning on unstructured construction sites. Autom. Constr. 59:128–38
    [Google Scholar]
  92. 92.
    Bruun E, Adriaenssens S, Parascho S. 2022. Structural rigidity theory applied to the scaffold-free (dis)assembly of space frames using cooperative robotics. Autom. Constr. 141:104405
    [Google Scholar]
  93. 93.
    Lukka TJ, Tossavainen T, Kujala J, Raiko T 2014. ZenRobotics recycler – robotic sorting using machine learning. Sensor Based Sorting 2014 T Pretz, U Waschki 1–8. Clausthal-Zellerfeld, Ger: GDMB
    [Google Scholar]
  94. 94.
    Blomdell A, Dressler I, Nilsson K, Robertsson A. 2010. Flexible application development and high-performance motion control based on external sensing and reconfiguration of ABB industrial robot controllers. 2010 IEEE International Conference on Robotics and Automation62–66. Piscataway, NJ: IEEE
    [Google Scholar]
  95. 95.
    Wolf M, Kaiser B, Hügle S, Verl A, Middendorf P. 2022. Data model for adaptive robotic construction in architecture. Procedia CIRP 107:1035–40
    [Google Scholar]
  96. 96.
    Han IX, Parascho S. 2022. Improv-structure: exploring improvisation in collective human-robot construction Paper presented at the International Society for Intelligent Construction Conference Guimarães, Port.: Sept. 6–9
    [Google Scholar]
  97. 97.
    Apolinarska AA, Pacher M, Li H, Cote N, Pastrana R et al. 2021. Robotic assembly of timber joints using reinforcement learning. Autom. Constr. 125:103569
    [Google Scholar]
  98. 98.
    Belousov B, Wibranek B, Schneider J, Schneider T, Chalvatzaki G et al. 2022. Robotic architectural assembly with tactile skills: simulation and optimization. Autom. Constr. 133:104006
    [Google Scholar]
  99. 99.
    Wibranek B, Liu Y, Funk N, Belousov B, Peters J, Tessmann O 2021. Reinforcement learning for sequential assembly of SL-blocks: self-interlocking combinatorial design based on machine learning. eCAADe 2021: Towards a New, Configurable Architecture V Stojaković, B Tepavčević 27–36. Ljubljana, Slov.: eCAADe
    [Google Scholar]
  100. 100.
    Stadelmann L, Sandy T, Thoma A, Buchli J. 2019. End-effector pose correction for versatile large-scale multi-robotic systems. IEEE Robot. Autom. Lett. 4:546–53
    [Google Scholar]
  101. 101.
    Gannon M. 2017. Human-centered interfaces for autonomous fabrication machines PhD Thesis Carnegie Mellon Univ. Pittsburgh, PA:
    [Google Scholar]
  102. 102.
    Clark L. 2016. The robot whisperer who tames giant industrial machine ‘monsters’ to do her bidding. Wired May 11. https://www.wired.co.uk/article/madeline-gannon-robotics
    [Google Scholar]
  103. 103.
    Piškorec L, Jenny D, Parascho S, Mayer H, Gramazio F, Kohler M. 2019. The brick labyrinth. Robotic Fabrication in Architecture, Art and Design 2018 J Willmann, P Block, M Hutter, K Byrne, T Schork 150–64. Cham, Switz.: Springer
    [Google Scholar]
  104. 104.
    Parascho S, Knippers J, Dörstelmann M, Prado M, Menges A 2015. Modular fibrous morphologies: computational design, simulation and fabrication of differentiated fibre composite building components. Advances in Architectural Geometry 2014 P Block, J Knippers, NJ Mitra, W Wang 29–45. Cham, Switz.: Springer
    [Google Scholar]
  105. 105.
    Rust R, Gramazio F, Kohler M 2016. Force adaptive hot-wire cutting: integrated design, simulation, and fabrication of double-curved surface geometries. Advances in Architectural Geometry 2016 S Adriaenssens, F Gramazio, M Kohler, A Menges, M Pauly 288–305. Zürich: vdf Hochschulverlag AG an der ETH Zürich
    [Google Scholar]
  106. 106.
    Søndergaard A, Feringa J, Nørbjerg T, Steenstrup K, Brander D et al. 2016. Robotic hot-blade cutting. Robotic Fabrication in Architecture, Art and Design 2016 D Reinhardt, R Saunders, J Burry 150–64. Cham, Switz: Springer
    [Google Scholar]
  107. 107.
    Parascho S. 2019. Cooperative robotic assembly: computational design and robotic fabrication of spatial metal structures PhD Thesis ETH Zürich, Zürich, Switz:.
    [Google Scholar]
  108. 108.
    Gandia A, Parascho S, Rust R, Casas G, Gramazio F, Kohler M. 2019. Towards automatic path planning for robotically assembled spatial structures. Robotic Fabrication in Architecture, Art and Design 2018 J Willmann, P Block, M Hutter, K Byrne, T Schork 59–73. Cham, Switz.: Springer
    [Google Scholar]
  109. 109.
    Huang Y, Garrett CR, Ting I, Parascho S, Mueller CT. 2021. Robotic additive construction of bar structures: unified sequence and motion planning. Constr. Robot. 5:115–30
    [Google Scholar]
  110. 110.
    Parascho S, Han IX, Walker S, Beghini A, Bruun EPG, Adriaenssens S. 2020. Robotic vault: a cooperative robotic assembly method for brick vault construction. Constr. Robot. 4:117–27
    [Google Scholar]
  111. 111.
    Yablonina M, Ringley B, Brugnaro G, Menges A. 2021. Soft Office: a human–robot collaborative system for adaptive spatial configuration. Constr. Robot. 5:23–33
    [Google Scholar]
  112. 112.
    Napp N, Nagpal R 2014. Distributed amorphous ramp construction in unstructured environments. Distributed Autonomous Robotic Systems: The 11th International Symposium MA Hsieh, G Chirikjian 105–19. Berlin: Springer
    [Google Scholar]
  113. 113.
    D'Andrea R, Dullerud GE 2003. Distributed control design for spatially interconnected systems. IEEE Trans. Autom. Control. 48:1478–95
    [Google Scholar]
  114. 114.
    Rubenstein M, Cornejo A, Nagpal R. 2014. Programmable self-assembly in a thousand-robot swarm. Science 345:795–99
    [Google Scholar]
  115. 115.
    Petersen KH, Napp N, Stuart-Smith R, Rus D, Kovac M. 2019. A review of collective robotic construction. Sci. Robot. 4:eaau8479
    [Google Scholar]
  116. 116.
    Han IX, Meggers F, Parascho S. 2021. Bridging the collectives: a review of collective human–robot construction. Int. J. Archit. Comput. 19:512–31
    [Google Scholar]
  117. 117.
    Bärtschi R, Knauss M, Bonwetsch T, Gramazio F, Kohler M 2010. Wiggled brick bond. Advances in Architectural Geometry 2010 C Ceccato, L Hesselgren, M Pauly, H Pottmann, J Wallner 137–47. Vienna: Springer
    [Google Scholar]
  118. 118.
    Ercan JS, Lloret-Fritschi E, Gramazio F, Kohler M. 2020. Crafting plaster through continuous mobile robotic fabrication on-site. Constr. Robot. 4:261–71
    [Google Scholar]
  119. 119.
    Placzek G, Brohmann L, Mawas K, Schwerdtner P, Hack N et al. 2021. A lean-based production approach for shotcrete 3D printed concrete components. Proceedings of the 38th International Symposium on Automation and Robotics in Construction811–18. London: Int. Assoc. Autom. Robot. Constr.
    [Google Scholar]
  120. 120.
    Fologram 2022. Home page. Fologram https://fologram.com
    [Google Scholar]
  121. 121.
    Allner L, Kaltenbrunner C, Kröhnert D, Reinsberg P 2021. Augmented reality. Conceptual Joining: Wood Structures from Detail to Utopia: Holzstrukturen IM Experiment L Allner, C Kaltenbrunner, D Kröhnert, P Reinsberg 172–75. Basel: Birkhäuser. Ed Angew.
    [Google Scholar]
  122. 122.
    Johns RL, Anderson J, Kilian A, Bieg K, Briscoe D, Odom C 2019. Robo-Stim: modes of human robot collaboration for design exploration. Impact: Design With All Senses: Proceedings of the Design Modelling Symposium, Berlin 2019 C Gengnagel, O Baverel, J Burry, MR Thomsen, S Weinzieri 671–84. Cham, Switz.: Springer
    [Google Scholar]
  123. 123.
    Kilian A 2018. The flexing room architectural robot. An actuated active-bending robotic structure using human feedback. Recalibration: On Imprecision and Infidelity: Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture P Anzalone, M Del Signore, AJ Witt 232–41. Dover, DE: Assoc. Comput. Aided Des. Archit.
    [Google Scholar]
  124. 124.
    Myerson RB. 1997. Game Theory: Analysis of Conflict Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  125. 125.
    Wohlin C. 1995. Improving through an incremental approach. Proceedings of the 2nd European Industrial Symposium on Cleanroom Software Engineering Lund, Swed.: Q-Labs
    [Google Scholar]
/content/journals/10.1146/annurev-control-080122-090049
Loading
/content/journals/10.1146/annurev-control-080122-090049
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error