1932

Abstract

Robotics is an emerging synthetic science concerned with programming work. Robot technologies are quickly advancing beyond the insights of the existing science. More secure intellectual foundations will be required to achieve better, more reliable, and safer capabilities as their penetration into society deepens. Presently missing foundations include the identification of fundamental physical limits, the development of new dynamical systems theory, and the invention of physically grounded programming languages. The new discipline needs a departmental home in the universities, which it can justify both intellectually and by its capacity to attract new diverse populations inspired by the age-old human fascination with robots.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-080320-011601
2021-05-03
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/control/4/1/annurev-control-080320-011601.html?itemId=/content/journals/10.1146/annurev-control-080320-011601&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Simon HA. 2019. The Sciences of the Artificial Cambridge, MA: MIT Press
    [Google Scholar]
  2. 2. 
    Schmidt M 2010. Do I understand what I can create?. Synthetic Biology: The Technoscience and Its Societal Consequences M Schmidt, A Kelle, A Ganguli-Mitra, H Vriend 81–100 Dordrecht, Neth: Springer
    [Google Scholar]
  3. 3. 
    Knuth DE. 1974. Computer programming as an art. Commun. ACM 17:12667–73
    [Google Scholar]
  4. 4. 
    Milner R. 1993. Elements of interaction: Turing Award lecture. Commun. ACM 36:178–89
    [Google Scholar]
  5. 5. 
    Harper R. 2013. Practical Foundations for Programming Languages Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  6. 6. 
    Puliafito C, Mingozzi E, Longo F, Puliafito A, Rana O 2019. Fog computing for the Internet of Things: a survey. ACM Trans. Internet Technol. 19:18
    [Google Scholar]
  7. 7. 
    Shalf J. 2020. The future of computing beyond Moore's law. Philos. Trans. R. Soc. A 378:20190061
    [Google Scholar]
  8. 8. 
    Hopcroft JE, Ullman JD. 1979. Introduction to Automata Theory, Languages and Computation Reading, MA: Addison-Wesley
    [Google Scholar]
  9. 9. 
    Fein L. 1959. The role of the university in computers, data processing, and related fields. Commun. ACM 2:97–14
    [Google Scholar]
  10. 10. 
    Denning PJ. 2007. Computing is a natural science. Commun. ACM 50:713–18
    [Google Scholar]
  11. 11. 
    Landauer R. 1961. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5:183–91
    [Google Scholar]
  12. 12. 
    Markov IL. 2014. Limits on fundamental limits to computation. Nature 512:147–54
    [Google Scholar]
  13. 13. 
    Falkoff AD, Iverson KE, Sussenguth EH. 1964. A formal description of SYSTEM/360. IBM Syst. J. 3:198–261
    [Google Scholar]
  14. 14. 
    Moore GE. 2006. Cramming more components onto integrated circuits, reprinted from Electronics, vol. 38, number 8, April 19, 1965, pp. 114 ff. IEEE Solid-State Circuits Soc. Newsl 11:333–35
    [Google Scholar]
  15. 15. 
    Dennard RH, Rideout VL, Bassous E, Leblanc AR. 1974. Design of ion-implanted MOSFET's with very small physical dimensions. IEEE J. Solid-State Circuits 9:256–68
    [Google Scholar]
  16. 16. 
    Bohr M. 2007. A 30 year retrospective on Dennard's MOSFET scaling paper. IEEE Solid-State Circuits Soc. Newsl. 12:111–13
    [Google Scholar]
  17. 17. 
    Krishnan S, Garimella SV, Chrysler G, Mahajan R 2007. Towards a thermal Moore's law. IEEE Trans. Adv. Packag. 30:462–74
    [Google Scholar]
  18. 18. 
    Pop E. 2010. Energy dissipation and transport in nanoscale devices. Nano Res 3:147–69
    [Google Scholar]
  19. 19. 
    DeHon A. 2015. Fundamental underpinnings of reconfigurable computing architectures. Proc. IEEE 103:355–78
    [Google Scholar]
  20. 20. 
    Theis TN, Wong HSP. 2017. The end of Moore's law: a new beginning for information technology. Comput. Sci. Eng. 19:41–50
    [Google Scholar]
  21. 21. 
    Bennett C. 1973. Logical reversibility of computation. IBM J. Res. Dev. 17:525–32
    [Google Scholar]
  22. 22. 
    Carlton DB, Lambson B, Scholl A, Young AT, Dhuey SD et al. 2011. Computing in thermal equilibrium with dipole-coupled nanomagnets. IEEE Trans. Nanotechnol. 10:1401–4
    [Google Scholar]
  23. 23. 
    Mead C, Conway L. 1980. Introduction to VLSI Systems Reading, MA: Addison-Wesley
    [Google Scholar]
  24. 24. 
    Bell CG, Newell A. 1971. Computer Structures: Readings and Examples New York: McGraw-Hill
    [Google Scholar]
  25. 25. 
    McCarthy J. 1960. Recursive functions of symbolic expressions and their computation by machine, part I. Commun. ACM 3:4184–95
    [Google Scholar]
  26. 26. 
    McCarthy J. 1962. A basis for a mathematical theory of computation Memo 31 Artif. Intell. Proj., Mass. Inst. Technol Cambridge, MA:
    [Google Scholar]
  27. 27. 
    Martin-Lof P. 1984. Constructive mathematics and computer programming. Philos. Trans. R. Soc. A 312:501–18
    [Google Scholar]
  28. 28. 
    Wood AK. 2012. Warships of the Ancient World Oxford, UK: Osprey
    [Google Scholar]
  29. 29. 
    Pierce BC. 2002. Types and Programming Languages Cambridge, MA: MIT Press
    [Google Scholar]
  30. 30. 
    Appel AW, Beringer L, Chlipala A, Pierce BC, Shao Z et al. 2017. Position paper: the science of deep specification. Philos. Trans. R. Soc. A 375:20160331
    [Google Scholar]
  31. 31. 
    McCarthy J 1981. History of Lisp. History of Programming Languages RL Wexelblat 173–85 New York: Academic
    [Google Scholar]
  32. 32. 
    Cohen PR. 1995. Empirical Methods for Artificial Intelligence Cambridge, MA: MIT Press
    [Google Scholar]
  33. 33. 
    Russell SJ, Norvig P. 2009. Artificial Intelligence: A Modern Approach Upper Saddle River, NJ: Prentice Hall
    [Google Scholar]
  34. 34. 
    Reynolds M, Cortese A, Liu Q, Wang W, Cao M et al. 2020. Surface electrochemical actuators for micron-scale fluid pumping and autonomous swimming. Bull. Am. Phys. Soc In press
    [Google Scholar]
  35. 35. 
    Oishi K, Klavins E. 2014. Framework for engineering finite state machines in gene regulatory networks. ACS Synthet. Biol. 3:652–65
    [Google Scholar]
  36. 36. 
    Reverdy PB, Vasilopoulos V, Koditschek DE. 2020. Motivation dynamics for autonomous composition of navigation tasks. IEEE Trans. Robot. In press
    [Google Scholar]
  37. 37. 
    Miracchi L. 2019. A competence framework for artificial intelligence research. Philos. Psychol. 32:588–633
    [Google Scholar]
  38. 38. 
    Robot. Ind. Assoc 2020. Joseph Engelberger: the Father of Robotics. Robotic Industries Association https://www.robotics.org/joseph-engelberger/about.cfm
    [Google Scholar]
  39. 39. 
    Whitney DE. 1996. Why mechanical design cannot be like VLSI design. Res. Eng. Des. 8:125–38
    [Google Scholar]
  40. 40. 
    Mead C. 1989. Analog and Neural Systems Boston: Addison-Wesley
    [Google Scholar]
  41. 41. 
    Schuman CD, Potok TE, Patton RM, Birdwell JD, Dean ME et al. 2017. A survey of neuromorphic computing and neural networks in hardware. arXiv:1705.06963 [cs.NE]
  42. 42. 
    Achour S, Sarpeshkar R, Rinard M. 2016. Configuration synthesis for programmable analog devices with Arco. PLDI' 16: Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation177–93 New York: ACM
    [Google Scholar]
  43. 43. 
    Mirvakili SM, Hunter IW. 2018. Artificial muscles: mechanisms, applications, and challenges. Adv. Mater. 30:1704407
    [Google Scholar]
  44. 44. 
    Meijer K, Bar-Cohen Y, Full RJ 2003. Biological inspiration for musclelike actuators of robots. Biologically Inspired Intelligent Robots Y Bar-Cohen, CL Breazeal 26–45 Bellingham, WA: Soc. Photo-Opt. Instrum. Eng.
    [Google Scholar]
  45. 45. 
    Full RJ 1989. Mechanics and energetics of terrestrial locomotion: bipeds to polypeds. Energy Transformations in Cells and Animals W Wieser, E Gnaiger 175–82 New York: Thieme
    [Google Scholar]
  46. 46. 
    Hunter IW, Hollerbach JM, Ballantyne J. 1992. A comparative analysis of actuator technologies for robotics. Robot. Rev. 2:299–342
    [Google Scholar]
  47. 47. 
    Zhang J, Sheng J, O'Neill CT, Walsh CJ, Wood RJ et al. 2019. Robotic artificial muscles: current progress and future perspectives. IEEE Trans. Robot. 35:761–81
    [Google Scholar]
  48. 48. 
    Spenko MJ, Saunders JA, Haynes GC, Cutkosky MR, Rizzi AA et al. 2008. Biologically inspired climbing with a hexapedal robot. J. Field Robot. 25:223–42
    [Google Scholar]
  49. 49. 
    Ruina A. 1998. Nonholonomic stability aspects of piecewise holonomic systems. Rep. Math. Phys. 42:91–100
    [Google Scholar]
  50. 50. 
    Kubow TM, Full RJ. 1999. The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners. Philos. Trans. R. Soc. B 354:84961
    [Google Scholar]
  51. 51. 
    Holmes P, Full RJ, Koditschek DE, Guckenheimer J. 2006. The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev 48:207–304
    [Google Scholar]
  52. 52. 
    McGeer T. 1990. Passive dynamic walking. Int. J. Robot. Res. 9:62–82
    [Google Scholar]
  53. 53. 
    Collins SH, Wisse M, Ruina A. 2001. A three-dimensional passive-dynamic walking robot with two legs and knees. Int. J. Robot. Res. 20:607–15
    [Google Scholar]
  54. 54. 
    Schmitt J, Holmes P. 2000. Mechanical models for insect locomotion: dynamics and stability in the horizontal plane I. Theory Biol. Cybernet. 83:501–15
    [Google Scholar]
  55. 55. 
    Parrondo JMR, Horowitz JM, Sagawa T. 2015. Thermodynamics of information. Nat. Phys. 11:131–39
    [Google Scholar]
  56. 56. 
    Debiossac M, Grass D, Alonso JJ, Lutz E, Kiesel N. 2020. Thermodynamics of continuous non-Markovian feedback control. Nat. Commun. 11:1360
    [Google Scholar]
  57. 57. 
    Messler RW. 1993. Joining of Advanced Materials Boston: Butterworth-Heinemann
    [Google Scholar]
  58. 58. 
    Kadic M, Milton GW, van Hecke M, Wegener M. 2019. 3D metamaterials. Nat. Rev. Phys. 1:198–210
    [Google Scholar]
  59. 59. 
    Sussman DM, Cho Y, Castle T, Gong X, Jung E et al. 2015. Algorithmic lattice kirigami: a route to pluripotent materials. PNAS 112:7449–53
    [Google Scholar]
  60. 60. 
    Yuan H, Pikul J, Sung C 2018. Programmable 3-D surfaces using origami tessellations. Origami7: Proceedings of the 7th International Meeting on Origami in Science, Mathematics, and Education, Vol. 3: Engineering One RJ Lang, M Bolitho, Z You 893–906 St. Albans, UK: Tarquin
    [Google Scholar]
  61. 61. 
    Guseinov R, McMahan C, Pérez J, Daraio C, Bickel B. 2020. Programming temporal morphing of self-actuated shells. Nat. Commun. 11:237
    [Google Scholar]
  62. 62. 
    Chan TS, Carlson A. 2019. Physics of adhesive organs in animals. Eur. Phys. J. Spec. Top. 227:2501–12
    [Google Scholar]
  63. 63. 
    Mason MT. 2018. Toward robotic manipulation. Annu. Rev. Control Robot. Auton. Syst. 1:1–28
    [Google Scholar]
  64. 64. 
    Cutkosky MR, Wright PK. 1986. Friction, stability and the design of robotic fingers. Int. J. Robot. Res. 5:20–37
    [Google Scholar]
  65. 65. 
    Tian Y, Pesika N, Zeng H, Rosenberg K, Zhao B et al. 2006. Adhesion and friction in gecko toe attachment and detachment. PNAS 103:19320–25
    [Google Scholar]
  66. 66. 
    Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR et al. 2002. Evidence for van der Waals adhesion in gecko setae. PNAS 99:12252–56
    [Google Scholar]
  67. 67. 
    Murray RM, Li Z, Sastry SS. 1994. A Mathematical Introduction to Robotic Manipulation Boca Raton, FL: CRC
    [Google Scholar]
  68. 68. 
    Johnson A, Koditschek D. 2013. Legged self-manipulation. IEEE Access 1:310–34
    [Google Scholar]
  69. 69. 
    Milner R. 1999. Communicating and Mobile Systems: The Pi Calculus Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  70. 70. 
    Eisenhaure J, Kim S. 2017. A review of the state of dry adhesives: biomimetic structures and the alternative designs they inspire. Micromachines 8:125
    [Google Scholar]
  71. 71. 
    McEvoy MA, Correll N. 2015. Materials that couple sensing, actuation, computation, and communication. Science 347:1261689
    [Google Scholar]
  72. 72. 
    Gholipour B, Bastock P, Craig C, Khan K, Hewak D, Soci C. 2015. Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computing. Adv. Opt. Mater. 3:635–41
    [Google Scholar]
  73. 73. 
    Asada H, Youcef-Toumi K. 1987. Direct-Drive Robots: Theory and Practice Cambridge, MA: MIT Press
    [Google Scholar]
  74. 74. 
    Kim S, Laschi C, Trimmer B. 2013. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 31:287–94
    [Google Scholar]
  75. 75. 
    Gregorio P, Ahmadi M, Buehler M. 1997. Design, control, and energetics of an electrically actuated legged robot. IEEE Trans. Syst. Man Cybernet. B 27:626–34
    [Google Scholar]
  76. 76. 
    Piccoli M, Yim M. 2015. Anticogging: torque ripple suppression, modeling, and parameter selection. Int. J. Robot. Res. 35:148–60
    [Google Scholar]
  77. 77. 
    De A, Stewart-Height A, Koditschek D. 2019. Task-based control and design of a BLDC actuator for robotics. IEEE Robot. Autom. Lett. 4:2393–400
    [Google Scholar]
  78. 78. 
    Ordonez C, Gupta N, Collins EG, Clark JE, Johnson AM 2012. Power modeling of the XRL hexapedal robot and its application to energy efficient motion planning. Adaptive Mobile Robotics AKM Azad, NJ Cowan, MO Tokhi, GS Virk, RD Eastman 689–96 Singapore: World Sci.
    [Google Scholar]
  79. 79. 
    Makadia A, Patterson A, Daniilidis K. 2006. Fully automatic registration of 3D point clouds. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition1297–304 Piscataway, NJ: IEEE
    [Google Scholar]
  80. 80. 
    Arslan O. 2019. Statistical coverage control of mobile sensor networks. IEEE Trans. Robot. 35:889–908
    [Google Scholar]
  81. 81. 
    Bajcsy R. 1988. Active perception. Proc. IEEE 76:966–1005
    [Google Scholar]
  82. 82. 
    Bajcsy R, Aloimonos Y, Tsotsos JK. 2018. Revisiting active perception. Auton. Robots 42:177–96
    [Google Scholar]
  83. 83. 
    Cowan NJ, Lee J, Full RJ. 2006. Task-level control of rapid wall following in the American cockroach. J. Exp. Biol. 209:1617–29
    [Google Scholar]
  84. 84. 
    Cowan NJ, Fortune ES. 2007. The critical role of locomotion mechanics in decoding sensory systems. J. Neurosci. 27:1123–28
    [Google Scholar]
  85. 85. 
    Cowan NJ, Ankarali MM, Dyhr JP, Madhav MS, Roth E et al. 2014. Feedback control as a framework for understanding tradeoffs in biology. Integr. Comp. Biol. 54:223–37
    [Google Scholar]
  86. 86. 
    Miracchi L. 2017. Generative explanation in cognitive science and the hard problem of consciousness. Philos. Perspect. 31:267–91
    [Google Scholar]
  87. 87. 
    Brooks RA. 1991. Intelligence without representation. Artif. Intell. 47:139–59
    [Google Scholar]
  88. 88. 
    Sontag ED. 1998. Mathematical Control Theory: Deterministic Finite Dimensional Systems New York: Springer
    [Google Scholar]
  89. 89. 
    Francis BA, Wonham WM. 1976. The internal model principle of control theory. Automatica 12:457–65
    [Google Scholar]
  90. 90. 
    Brown GS, Campbell DP. 1948. Principles of Servomechanisms: Dynamics and Synthesis of Closed-Loop Control Systems New York: Wiley
    [Google Scholar]
  91. 91. 
    Mason MT. 1993. Kicking the sensing habit. AI Mag 14:158–59
    [Google Scholar]
  92. 92. 
    Erdmann M, Mason MT. 1988. An exploration of sensorless manipulation. IEEE J. Robot. Autom. 4:369–79
    [Google Scholar]
  93. 93. 
    Brooks R. 1986. A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2:14–23
    [Google Scholar]
  94. 94. 
    Roberts SF, Koditschek DE, Miracchi LJ. 2020. Examples of Gibsonian affordances in legged robotics research using an empirical, generative framework. Front. Neurorobot. 14:12
    [Google Scholar]
  95. 95. 
    Metz C. 2019. Turing Award won by 3 pioneers in artificial intelligence. New York Times Mar. 27. https://www.nytimes.com/2019/03/27/technology/turing-award-ai.html
    [Google Scholar]
  96. 96. 
    Narendra KS, Parthasarathy K. 1990. Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1:4–27
    [Google Scholar]
  97. 97. 
    Esteves C, Allen-Blanchette C, Makadia A, Daniilidis K 2018. Learning SO(3) equivariant representations with spherical CNNs. Computer Vision – ECCV 2018 V Ferrari, M Hebert, C Sminchisescu, Y Weiss 54–70 Cham, Switz: Springer
    [Google Scholar]
  98. 98. 
    Buehler M, Iagnemma K, Singh S 2009. The DARPA Urban Challenge: Autonomous Vehicles in City Traffic Berlin: Springer
    [Google Scholar]
  99. 99. 
    Sofge E. 2015. The DARPA Robotics Challenge was a bust. Popular Science July 6. https://www.popsci.com/darpa-robotics-challenge-was-bust-why-darpa-needs-try-again
    [Google Scholar]
  100. 100. 
    Marcus G. 2012. Why making robots is so darn hard. New Yorker Dec. 13. https://www.newyorker.com/news/news-desk/why-making-robots-is-so-darn-hard
    [Google Scholar]
  101. 101. 
    Guizzo E, Ackerman E. 2015. The hard lessons of DARPA's Robotics Challenge. IEEE Spect 52:811–13
    [Google Scholar]
  102. 102. 
    Schmelzer R. 2018. Why are robotics companies dying. ? Forbes Oct. 29. https://www.forbes.com/sites/cognitiveworld/2018/10/29/why-are-robotics-companies-dying
    [Google Scholar]
  103. 103. 
    Vanderborght B. 2019. Robotic dreams, robotic realities. IEEE Robot. Autom. Mag. 26:14–5
    [Google Scholar]
  104. 104. 
    Mervis J 2020. U.S. Lawmakers unveil bold $100 billion plan to remake NSF. Science May 26. https://www.sciencemag.org/news/2020/05/us-lawmakers-unveil-bold-100-billion-plan-remake-nsf
    [Google Scholar]
  105. 105. 
    Kerry CF, Karsten J 2017. Gauging investment in self-driving cars Rep., Brookings Inst Washington, DC:
    [Google Scholar]
  106. 106. 
    Bhana Y. 2015. Drone technology: a tricky take-off or the future of ecommerce. ? TranslateMedia Feb. 9. https://www.translatemedia.com/us/blog-us/drone-technology-tricky-take-off-future-ecommerce
    [Google Scholar]
  107. 107. 
    Rosenberg N. 1976. Perspectives on Technology Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  108. 108. 
    Rizzo U, Barbieri N, Ramaciotti L, Iannantuono D. 2020. The division of labour between academia and industry for the generation of radical inventions. J. Technol. Transf. 45:393–413
    [Google Scholar]
  109. 109. 
    Latombe JC. 1991. Robot Motion Planning New York: Springer
    [Google Scholar]
  110. 110. 
    Thrun S, Burgard W, Fox D. 2006. Probabilistic Robotics Cambridge, MA: MIT Press
    [Google Scholar]
  111. 111. 
    Mason MT, Salisbury JKJr 1985. Robot Hands and the Mechanics of Manipulation Cambridge, MA: MIT Press
    [Google Scholar]
  112. 112. 
    Mason MT. 2001. Mechanics of Robotic Manipulation Cambridge, MA: MIT Press
    [Google Scholar]
  113. 113. 
    Raibert MH. 1986. Legged Robots That Balance Cambridge, MA: MIT Press
    [Google Scholar]
  114. 114. 
    Westervelt ER, Grizzle JW, Chevallereau C, Choi JH, Morris B. 2007. Feedback Control of Dynamic Bipedal Robot Locomotion Boca Raton, FL: CRC
    [Google Scholar]
  115. 115. 
    Tedre M, Simon, Malmi L 2018. Changing aims of computing education: a historical survey. Comput. Sci. Educ. 28:158–86
    [Google Scholar]
  116. 116. 
    Hewitt C, Kumar V. 2018. The gap in CS, mulling irrational exuberance. Commun. ACM 61:118–9
    [Google Scholar]
  117. 117. 
    Dixon L. 2020. Autonowashing: the greenwashing of vehicle automation. Transp. Res. Interdiscip. Perspect. 5:100113
    [Google Scholar]
  118. 118. 
    SAE Int 2014. Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems Stand. J3016, SAE Int. Warrendale, PA:
    [Google Scholar]
  119. 119. 
    Shladover SE. 2018. Connected and automated vehicle systems: introduction and overview. J. Intel. Transp. Syst. 22:190–200
    [Google Scholar]
  120. 120. 
    Soteropoulos A, Mitteregger M, Berger M, Zwirchmayr J. 2020. Automated drivability: toward an assessment of the spatial deployment of level 4 automated vehicles. Transp. Res. A 136:64–84
    [Google Scholar]
  121. 121. 
    Miller ID, Cladera F, Cowley A, Shivakumar SS, Lee ES et al. 2020. Mine tunnel exploration using multiple quadrupedal robots. IEEE Robot. Autom. Lett. 5:2840–47
    [Google Scholar]
  122. 122. 
    Zhang F, Niu W. 2019. A survey on formal specification and verification of system-level achievements in industrial circles. Acad. J. Comput. Inf. Sci. 2:22–34
    [Google Scholar]
  123. 123. 
    Moon FC. 2003. Franz Reuleaux: contributions to 19th century kinematics and theory of machines. Appl. Mech. Rev. 56:261–85
    [Google Scholar]
  124. 124. 
    Wiener N. 1948. Cybernetics: Or Control and Communication in the Animal and the Machine New York: Wiley & Sons
    [Google Scholar]
  125. 125. 
    Conway F, Siegelman J. 2006. Dark Hero of the Information Age: In Search of Norbert Wiener, the Father of Cybernetics New York: Basic Books
    [Google Scholar]
  126. 126. 
    Mayr O. 1971. Maxwell and the origins of cybernetics. Isis 62:425–44
    [Google Scholar]
  127. 127. 
    Newell A, Simon HA. 1972. Human Problem Solving Englewood Cliffs, NJ: Prentice Hall
    [Google Scholar]
  128. 128. 
    Krieger A, Susil RC, Menard C, Coleman JA, Fichtinger G et al. 2005. Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans. Biomed. Eng. 52:306–13
    [Google Scholar]
  129. 129. 
    Fasola J, Mataric MJ. 2012. Using socially assistive human–robot interaction to motivate physical exercise for older adults. Proc. IEEE 100:2512–26
    [Google Scholar]
  130. 130. 
    Jacobs LF. 2012. From chemotaxis to the cognitive map: the function of olfaction. PNAS 109:10693–700
    [Google Scholar]
  131. 131. 
    Ilton M, Bhamla MS, Ma X, Cox SM, Fitchett LL et al. 2018. The principles of cascading power limits in small, fast biological and engineered systems. Science 360:eaao1082
    [Google Scholar]
  132. 132. 
    Clark J, Goldman DI, Lin PC, Lynch G, Chen TS et al. 2008. Design of a bio-inspired dynamical vertical climbing robot. Robotics: Science and Systems III W Burgard, O Brock, C Stachniss 9–16 Cambridge, MA: MIT Press
    [Google Scholar]
  133. 133. 
    Goldman DI, Chen TS, Dudek DM, Full RJ. 2006. Dynamics of rapid vertical climbing in cockroaches reveals a template. J. Exp. Biol. 209:2990–3000
    [Google Scholar]
  134. 134. 
    Lynch GA, Clark JE, Lin PC, Koditschek DE. 2012. A bioinspired dynamical vertical climbing robot. Int. J. Robot. Res. 31:974–96
    [Google Scholar]
  135. 135. 
    Federle W, Labonte D. 2019. Dynamic biological adhesion: mechanisms for controlling attachment during locomotion. Philos. Trans. R. Soc. B 374:20190199
    [Google Scholar]
  136. 136. 
    Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M. 2006. Frictional adhesion: a new angle on gecko attachment. J. Exp. Biol. 209:3569–79
    [Google Scholar]
  137. 137. 
    Santos D, Spenko M, Parness A, Kim S, Cutkosky M. 2007. Directional adhesion for climbing: theoretical and practical considerations. J. Adhes. Sci. Technol. 21:1317–41
    [Google Scholar]
  138. 138. 
    Cutkosky MR. 2015. Climbing with adhesion: from bioinspiration to biounderstanding. Interface Focus 5:20150015
    [Google Scholar]
  139. 139. 
    Asbeck AT, Kim S, Cutkosky MR, Provancher WR, Lanzetta M. 2006. Scaling hard vertical surfaces with compliant microspine arrays. Int. J. Robot. Res. 25:1165–79
    [Google Scholar]
  140. 140. 
    Kim S, Spenko M, Trujillo S, Heyneman B, Santos D, Cutkosky MR. 2008. Smooth vertical surface climbing with directional adhesion. IEEE Trans. Syst. Man Cybernet. C 24:65–74
    [Google Scholar]
  141. 141. 
    Jamone L, Ugur E, Cangelosi A, Fadiga L, Bernardino A et al. 2018. Affordances in psychology, neuroscience, and robotics: a survey. IEEE Trans. Cogn. Dev. Syst. 10:4–25
    [Google Scholar]
  142. 142. 
    Li C, Zhang T, Goldman DI. 2013. A terradynamics of legged locomotion on granular media. Science 339:1408–12
    [Google Scholar]
  143. 143. 
    Othayoth R, Thoms G, Li C 2020. An energy landscape approach to locomotor transitions in complex 3D terrain. PNAS 117:14987–95
    [Google Scholar]
  144. 144. 
    Boothroyd G. 1994. Product design for manufacture and assembly. Comput.-Aided Des 26:505–20
    [Google Scholar]
  145. 145. 
    Papadakis P. 2013. Terrain traversability analysis methods for unmanned ground vehicles: a survey. Eng. Appl. Artif. Intell. 26:1373–85
    [Google Scholar]
  146. 146. 
    Shill JJ, Collins EGJr, Coyle E, Clark J 2015. Tactile surface classification for limbed robots using a pressure sensitive robot skin. Bioinspir. Biomimet. 10:016012
    [Google Scholar]
  147. 147. 
    Wu XA, Huh TM, Sabin A, Suresh SA, Cutkosky MR. 2019. Tactile sensing and terrain-based gait control for small legged robots. IEEE Trans. Robot. 36:15–27
    [Google Scholar]
  148. 148. 
    Marden JH, Allen LR 2002. Molecules, muscles, and machines: universal performance characteristics of motors. PNAS 99:4161–66
    [Google Scholar]
  149. 149. 
    Kenneally G, Chen WH, Koditschek DE 2018. Actuator transparency and the energetic cost of proprioception. Proceedings of the 2018 International Symposium on Experimental Robotics J Xiao, T Kröger, O Khatib 485–95 Cham, Switz: Springer
    [Google Scholar]
  150. 150. 
    Alexander R. 1990. Three uses for springs in legged locomotion. Int. J. Robot. Res. 9:53–61
    [Google Scholar]
  151. 151. 
    Kenneally G, De A, Koditschek DE. 2016. Design principles for a family of direct-drive legged robots. IEEE Robot. Autom. Lett. 1:900–7
    [Google Scholar]
  152. 152. 
    Pratt GA, Williamson MM. 1995. Series elastic actuators. Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 1399–406 Piscataway, NJ: IEEE
    [Google Scholar]
  153. 153. 
    Loughlin C, Albu-Schäffer A, Haddadin S, Ott C, Stemmer A et al. 2007. The DLR lightweight robot: design and control concepts for robots in human environments. Ind. Robot 34:376–85
    [Google Scholar]
  154. 154. 
    Duperret J, Kramer B, Koditschek DE 2016. Core actuation promotes self-manipulability on a direct-drive quadrupedal robot. 2016 International Symposium on Experimental Robotics D Kulić, Y Nakamura, O Khatib, G Venture 147–59 Cham, Switz: Springer
    [Google Scholar]
  155. 155. 
    Topping TT, Kenneally G, Koditschek D. 2017. Quasi-static and dynamic mismatch for door opening and stair climbing with a legged robot. 2017 IEEE International Conference on Robotics and Automation1080–87 Piscataway, NJ: IEEE
    [Google Scholar]
  156. 156. 
    Gilpin K, Rus D. 2010. Modular robot systems. IEEE Robot. Autom. Mag. 17:338–55
    [Google Scholar]
  157. 157. 
    Rubenstein M, Cornejo A, Nagpal R. 2014. Programmable self-assembly in a thousand-robot swarm. Science 345:795–99
    [Google Scholar]
  158. 158. 
    Yim M, Shen WM, Salemi B, Rus D, Moll M et al. 2007. Modular self-reconfigurable robot systems. Robot. Autom. Mag. IEEE 14:143–52
    [Google Scholar]
  159. 159. 
    Daudelin J, Jing G, Tosun T, Yim M, Kress-Gazit H, Campbell M. 2018. An integrated system for perception-driven autonomy with modular robots. Sci. Robot. 3:eaat4983
    [Google Scholar]
  160. 160. 
    Tosun T, Sung C, McCloskey C, Yim M. 2019. Optimal structure synthesis for environment augmenting robots. IEEE Robot. Autom. Lett. 4:1069–76
    [Google Scholar]
  161. 161. 
    Bourgeois J, Goldstein SC. 2015. Distributed intelligent MEMS: progresses and perspectives. IEEE Syst. J. 9:1057–68
    [Google Scholar]
  162. 162. 
    Jindrich DL, Full RJ. 2002. Dynamic stabilization of rapid hexapedal locomotion. J. Exp. Biol. 205:2803–23
    [Google Scholar]
  163. 163. 
    Daley MA, Voloshina A, Biewener AA. 2009. The role of intrinsic muscle mechanics in the neuromuscular control of stable running in the guinea fowl. J. Physiol. 587:2693–707
    [Google Scholar]
  164. 164. 
    Diacu F, Holmes P. 1999. Celestial Encounters: The Origins of Chaos and Stability Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  165. 165. 
    Bemporad A, Morari M. 1999. Control of systems integrating logic, dynamics, and constraints. Automatica 35:407–27
    [Google Scholar]
  166. 166. 
    Conley CC. 1978. Isolated Invariant Sets and the Morse Index Providence, RI: Am Math. Soc.
    [Google Scholar]
  167. 167. 
    Culbertson J, Gustafson P, Koditschek DE, Stiller PF. 2020. Formal composition of hybrid systems. Theory Appl. Categ. 35:1634–82
    [Google Scholar]
  168. 168. 
    Kvalheim MD, Gustafson P, Koditschek DE. 2020. Conley's fundamental theorem for a class of hybrid systems. arXiv:2005.03217 [math.DS] (in review for SIAM J. Appl. Dyn. Syst.)
  169. 169. 
    Johnson AM, Burden SA, Koditschek DE. 2016. A hybrid systems model for simple manipulation and self-manipulation systems. Int. J. Robot. Res. 35:1354–92
    [Google Scholar]
  170. 170. 
    Goebel R, Sanfelice RG, Teel A. 2009. Hybrid dynamical systems. IEEE Control Syst. Mag. 29:228–93
    [Google Scholar]
  171. 171. 
    Koditschek DE 1989. The application of total energy as a Lyapunov function for mechanical control systems. Dynamics and Control of Multibody Systems JE Marsden, PS Krishnaprasad, JC Simo 131–57 Providence, RI: Am. Math. Soc.
    [Google Scholar]
  172. 172. 
    Whitney DE. 1969. Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man-Mach. Syst. 10:47–53
    [Google Scholar]
  173. 173. 
    Reif JH. 1979. Complexity of the mover's problem and generalizations. 20th Annual Symposium on Foundations of Computer Science421–27 Piscataway, NJ: IEEE
    [Google Scholar]
  174. 174. 
    LaValle SM. 2006. Planning Algorithms Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  175. 175. 
    Canny JF. 1988. Complexity of Robot Motion Planning Cambridge, MA: MIT Press
    [Google Scholar]
  176. 176. 
    LaValle SM, Kuffner JJ. 2001. Randomized kinodynamic planning. Int. J. Robot. Res. 20:378–400
    [Google Scholar]
  177. 177. 
    Farber M. 2003. Topological complexity of motion planning. Discrete Comput. Geom. 29:211–21
    [Google Scholar]
  178. 178. 
    Koditschek DE. 1992. Task encoding: toward a scientific paradigm for robot planning and control. Robot. Auton. Syst. 9:5–39
    [Google Scholar]
  179. 179. 
    Khatib O. 1986. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5:90–98
    [Google Scholar]
  180. 180. 
    Koditschek DE, Rimon E. 1990. Robot navigation functions on manifolds with boundary. Adv. Appl. Math. 11:412–42
    [Google Scholar]
  181. 181. 
    Bhatia NP, Szegö GP. 2002. Stability Theory of Dynamical Systems Berlin: Springer
    [Google Scholar]
  182. 182. 
    Baryshnikov Y, Shapiro B 2014. How to run a centipede: a topological perspective. Geometric Control Theory and Sub-Riemannian Geometry G Stefani, U Boscain, J-P Gauthier, A Sarychev, M Sigalotti 37–51 Cham, Switz: Springer
    [Google Scholar]
  183. 183. 
    Baryshnikov Y. 2015. Topological perplexity in feedback stabilization Paper presented at the Summer Graduate Program in Mathematics on Topological Methods in Complex Systems, Institute for Mathematics and Its Applications Minneapolis, MN: July 25. https://faculty.math.illinois.edu/∼ymb/talks/perp_talk/perp.html
    [Google Scholar]
  184. 184. 
    Burridge RR, Rizzi AA, Koditschek DE. 1999. Sequential composition of dynamically dexterous robot behaviors. Int. J. Robot. Res. 18:534–55
    [Google Scholar]
  185. 185. 
    Lozano-Perez T, Mason MT, Taylor RH. 1984. Automatic synthesis of fine-motion strategies for robots. Int. J. Robot. Res. 3:3–24
    [Google Scholar]
  186. 186. 
    Fikes RE, Nilsson NJ. 1971. STRIPS: a new approach to the application of theorem proving to problem solving. Artif. Intell. 2:189–208
    [Google Scholar]
  187. 187. 
    Hogan N. 1985. Impedance control: an approach to manipulation: part I—theory. J. Dyn. Syst. Meas. Control 107:1–7
    [Google Scholar]
  188. 188. 
    Guastello S, Nathan D, Johnson MJ 2009. Attractor and Lyapunov models for reach and grasp movements with application to robot-assisted therapy. Nonlinear Dyn. Psychol. Life Sci. 13:99–121
    [Google Scholar]
  189. 189. 
    Bloch A, Chang DE, Leonard N, Marsden J 2001. Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping. IEEE Trans. Autom. Control 46:1556–71
    [Google Scholar]
  190. 190. 
    Arslan O, Guralnik DP, Koditschek DE. 2016. Coordinated robot navigation via hierarchical clustering. IEEE Trans. Robot. 32:352–71
    [Google Scholar]
  191. 191. 
    Farber M, Grant M, Lupton G, Oprea J. 2019. An upper bound for topological complexity. Topol. Appl. 255:109–25
    [Google Scholar]
  192. 192. 
    Johnson AM, Koditschek DE. 2013. Toward a vocabulary of legged leaping. 2013 IEEE International Conference on Robotics and Automation2568–75 Piscataway, NJ: IEEE
    [Google Scholar]
  193. 193. 
    Brill A, De A, Johnson AM, Koditschek DE. 2015. Tail-assisted rigid and compliant legged leaping. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems6304–11 Piscataway, NJ: IEEE
    [Google Scholar]
  194. 194. 
    Haynes GC, Cohen FR, Koditschek DE. 2011. Gait transitions for quasi-static hexapedal locomotion on level ground. Robotics Research: The 14th International Symposium ISRR105–21 Berlin: Springer
    [Google Scholar]
  195. 195. 
    Koditschek DE 1989. Robot planning and control via potential functions. The Robotics Review 1 JJ Craig, O Khatib, T Lozano-Pérez 349–67 Cambridge, MA: MIT Press
    [Google Scholar]
  196. 196. 
    Donald B, Xavier P, Canny J, Reif J. 1993. Kinodynamic motion planning. J. ACM 40:1048–66
    [Google Scholar]
  197. 197. 
    Koditschek DE. 1987. Adaptive techniques for mechanical systems. Proceedings of the Fifth Yale Workshop on Applications of Adaptive Systems Theory259–65 New Haven, CT: Yale Univ.
    [Google Scholar]
  198. 198. 
    Rizzi A. 1998. Hybrid control as a method for robot motion programming. 1998 IEEE International Conference on Robotics and Automation, Vol. 1832–37 Piscataway, NJ: IEEE
    [Google Scholar]
  199. 199. 
    Ayanian N, Kallem V, Kumar V. 2011. Synthesis of feedback controllers for multiple aerial robots with geometric constraints. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems3126–31 Piscataway, NJ: IEEE
    [Google Scholar]
  200. 200. 
    Bemporad A, Morari M 1999. Robust model predictive control: a survey. Robustness in Identification and Control A Garulli, A Tesi 207–26 London: Springer
    [Google Scholar]
  201. 201. 
    Conway L. 2012. Reminiscences of the VLSI revolution: how a series of failures triggered a paradigm shift in digital design. IEEE Solid-State Circuits Mag 4:48–31
    [Google Scholar]
  202. 202. 
    Bernstein N. 1967. The Coordination and Regulation of Movements Oxford, UK: Pergamon
    [Google Scholar]
  203. 203. 
    Full R, Koditschek D. 1999. Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J. Exp. Biol. 202:3325–32
    [Google Scholar]
  204. 204. 
    Libby T, Johnson AM, Chang-Siu E, Full RJ, Koditschek DE. 2015. Comparative design, scaling, and control of appendages for inertial reorientation. IEEE Trans. Robot. 32:1380–98
    [Google Scholar]
  205. 205. 
    Eldering J, Kvalheim M, Revzen S. 2018. Global linearization and fiber bundle structure of invariant manifolds. Nonlinearity 31:4202–45
    [Google Scholar]
  206. 206. 
    De A, Burden SA, Koditschek DE. 2018. A hybrid dynamical extension of averaging and its application to the analysis of legged gait stability. Int. J. Robot. Res. 37:266–86
    [Google Scholar]
  207. 207. 
    De A, Koditschek DE 2018. Averaged anchoring of decoupled templates in a tail-energized monoped. Robotics Research: Volume 2 A Bicchi, W Burgard 269–85 Cham, Switz: Springer
    [Google Scholar]
  208. 208. 
    De A, Koditschek DE 2018. Vertical hopper compositions for preflexive and feedback-stabilized quadrupedal bounding, pacing, pronking, and trotting. Int. J. Robot. Res. 37:743–78
    [Google Scholar]
  209. 209. 
    Franci A, Golubitsky M, Bizyaeva A, Leonard NE. 2020. A model-independent theory of consensus and dissensus decision making. arXiv:1909.05765 [math.OC]
  210. 210. 
    Guckenheimer J, Holmes P. 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields New York: Springer
    [Google Scholar]
  211. 211. 
    Topping TT, Vasilopoulos V, De A, Koditschek DE 2019. Composition of templates for transitional pedipulation behaviors Paper presented at the International Symposium on Robotics Research Hanoi, Vietnam: Oct. 6–10. https://repository.upenn.edu/ese_papers/860
    [Google Scholar]
  212. 212. 
    Bizzi E, Mussa-Ivaldi FA, Giszter S 1991. Computations underlying the execution of movement: a biological perspective. Science 253:287–91
    [Google Scholar]
  213. 213. 
    Ting LH, McKay JL. 2007. Neuromechanics of muscle synergies for posture and movement. Curr. Opin. Neurobiol. 17:622–28
    [Google Scholar]
  214. 214. 
    Ting L, Chiel H, Trumbower R, Allen J, McKay JL et al. 2015. Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron 86:38–54
    [Google Scholar]
  215. 215. 
    Taborri J, Agostini V, Artemiadis PK, Ghislieri M, Jacobs DA et al. 2018. Feasibility of muscle synergy outcomes in clinics, robotics, and sports: a systematic review. Appl. Bionics Biomech. 2018:3934698
    [Google Scholar]
  216. 216. 
    Ghrist RW. 2014. Elementary Applied Topology Scotts Valley, CA: CreateSpace
    [Google Scholar]
  217. 217. 
    Barr M, Wells C. 1990. Category Theory for Computing Science New York: Prentice Hall
    [Google Scholar]
  218. 218. 
    Hudak P, Courtney A, Nilsson H, Peterson J 2002. Arrows, robots, and functional reactive programming. Advanced Functional Programming: Revised Lectures J Jeuring, SLP Jones 159–87 Berlin: Springer
    [Google Scholar]
  219. 219. 
    Perez I, Bärenz M, Nilsson H. 2016. Functional reactive programming, refactored. ACM SIGPLAN Not 51:1233–44
    [Google Scholar]
  220. 220. 
    Brockett RW. 1988. On the computer control of movement. 1988 IEEE International Conference on Robotics and Automation534–40 Piscataway, NJ: IEEE
    [Google Scholar]
  221. 221. 
    Murray R, Deno D, Pister K, Sastry S. 1992. Control primitives for robot systems. IEEE Trans. Syst. Man Cybernet. 22:183–193
    [Google Scholar]
  222. 222. 
    Manikonda V, Krishnaprasad PS, Hendler J 1999. Languages, behaviors, hybrid architectures, and motion control. Mathematical Control Theory J Baillieul, JC Willems 199–226 New York: Springer
    [Google Scholar]
  223. 223. 
    Hristu-Varsakelis D, Egerstedt M, Krishnaprasad PS. 2003. On the structural complexity of the motion description language MDLe. 42nd IEEE International Conference on Decision and Control, Vol. 43360–65 Piscataway, NJ: IEEE
    [Google Scholar]
  224. 224. 
    Doyen L, Frehse G, Pappas GJ, Platzer A 2018. Verification of hybrid systems. Handbook of Model Checking EM Clarke, TA Henzinger, H Veith, R Bloem 1047–110 Cham, Switz: Springer
    [Google Scholar]
  225. 225. 
    Kress-Gazit H, Fainekos G, Pappas G. 2009. Temporal-logic-based reactive mission and motion planning. IEEE Trans. Robot. 25:1370–81
    [Google Scholar]
  226. 226. 
    Dantam N, Stilman M. 2013. The motion grammar: analysis of a linguistic method for robot control. IEEE Trans. Robot. 29:704–18
    [Google Scholar]
  227. 227. 
    Kress-Gazit H, Fainekos GE, Pappas GJ. 2008. Translating structured English to robot controllers. Adv. Robot. 22:1343–59
    [Google Scholar]
  228. 228. 
    Tellex S, Kollar T, Dickerson S, Walter MR, Banerjee AG et al. 2011. Understanding natural language commands for robotic navigation and mobile manipulation. Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence1507–14 Palo Alto, CA: AAAI Press
    [Google Scholar]
  229. 229. 
    Saha I, Ramaithitima R, Kumar V, Pappas GJ, Seshia SA. 2014. Automated composition of motion primitives for multi-robot systems from safe LTL specifications. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems1525–32 Piscataway, NJ: IEEE
    [Google Scholar]
  230. 230. 
    Wong KW, Ehlers R, Kress-Gazit H. 2018. Resilient, provably-correct, and high-level robot behaviors. IEEE Trans. Robot. 34:936–52
    [Google Scholar]
  231. 231. 
    Tellex S, Gopalan N, Kress-Gazit H, Matuszek C. 2020. Robots that use language. Annu. Rev. Control Robot. Auton. Syst. 3:25–55
    [Google Scholar]
  232. 232. 
    Cowley A, Taylor CJ. 2011. Stream-oriented robotics programming: the design of roshask. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems1048–54 Piscataway, NJ: IEEE
    [Google Scholar]
  233. 233. 
    Kortik S, Saranli U. 2019. Robotic task planning using a backchaining theorem prover for multiplicative exponential first-order linear logic. J. Intell. Robot. Syst. 96:179–91
    [Google Scholar]
  234. 234. 
    Gorn S. 1963. The computer and information sciences: a new basic discipline. SIAM Rev 5:150–55
    [Google Scholar]
  235. 235. 
    Hofstra B, Kulkarni VV, Galvez SMN, He B, Jurafsky D, McFarland DA 2020. The diversity–innovation paradox in science. PNAS 117:9284–91
    [Google Scholar]
  236. 236. 
    Stoet G, Geary DC. 2018. The gender-equality paradox in science, technology, engineering, and mathematics education. Psychol. Sci. 29:581–93
    [Google Scholar]
  237. 237. 
    Merolla DM, Jackson O 2019. Structural racism as the fundamental cause of the academic achievement gap. Sociol. Compass 13:e12696
    [Google Scholar]
  238. 238. 
    NAFSA 2020. Losing talent: an economic and foreign policy risk America can't ignore Policy Resour., NAFSA Washington, DC:
    [Google Scholar]
  239. 239. 
    Quinn DM, Cooc N. 2015. Science achievement gaps by gender and race/ethnicity in elementary and middle school: trends and predictors. Educ. Res. 44:336–46
    [Google Scholar]
  240. 240. 
    Mendoza-Denton R, Patt C, Fisher A, Eppig A, Young I et al. 2017. Differences in stem doctoral publication by ethnicity, gender and academic field at a large public research university. PLOS ONE 12:e0174296
    [Google Scholar]
  241. 241. 
    Whittaker JA, Montgomery BL, Martinez Acosta VG 2015. Retention of underrepresented minority faculty: strategic initiatives for institutional value proposition based on perspectives from a range of academic institutions. J. Undergrad. Neurosci. Educ. 13:A136–45
    [Google Scholar]
  242. 242. 
    Berends M. 2015. Sociology and school choice: what we know after two decades of charter schools. Annu. Rev. Sociol. 41:159–80
    [Google Scholar]
  243. 243. 
    Jabbar H, Fong CJ, Germain E, Li D, Sanchez J et al. 2019. The competitive effects of school choice on student achievement: a systematic review. Educ. Policy https://doi.org/10.1177/0895904819874756
    [Crossref] [Google Scholar]
  244. 244. 
    Mishra S. 2020. Social networks, social capital, social support and academic success in higher education: a systematic review with a special focus on ‘underrepresented’ students. Educ. Res. Rev. 29:100307
    [Google Scholar]
  245. 245. 
    Jenkins C. 2020. Before we put $100 billion into AI.…. VentureBeat Aug. 8. https://venturebeat.com/2020/08/08/before-we-put-100-billion-into-ai
    [Google Scholar]
  246. 246. 
    Johnson AM, Axinn S. 2013. The morality of autonomous robots. J. Mil. Ethics 12:129–41
    [Google Scholar]
  247. 247. 
    Vardi MY. 2016. Are robots taking our jobs?. The Conversation Apr. 6. https://theconversation.com/are-robots-taking-our-jobs-56537
    [Google Scholar]
  248. 248. 
    Bernstein A, Raman A. 2015. The great decoupling: an interview with Erik Brynjolfsson and Andrew McAfee. Harvard Business Review June. https://hbr.org/2015/06/the-great-decoupling
    [Google Scholar]
  249. 249. 
    Zysman J, Kenney M. 2018. The next phase in the digital revolution: intelligent tools, platforms, growth, employment. Commun. ACM 61:254–63
    [Google Scholar]
  250. 250. 
    Hecht B, Wilcox L, Bigham JP, Schöning JP, Hoque E et al. 2018. It's time to do something: mitigating the negative impacts of computing through a change to the peer review process. ACM Future of Computing Blog Mar. 29. https://acm-fca.org/2018/03/29/negativeimpacts
    [Google Scholar]
  251. 251. 
    World Econ. Forum 2018. The future of jobs report 2018 Rep., World Econ. Forum Geneva:
    [Google Scholar]
  252. 252. 
    Autor DH. 2015. Why are there still so many jobs? The history and future of workplace automation. J. Econ. Perspect. 29:33–30
    [Google Scholar]
  253. 253. 
    Howard A, Kennedy MIII 2020. Robots are not immune to bias and injustice. Sci. Robot. 5:eabf1364
    [Google Scholar]
  254. 254. 
    Johnson AM, Admoni H, Berry CA. 2020. Supporting black scholars in robotics. IEEE Spectrum Sept. 10. https://spectrum.ieee.org/automaton/at-work/education/supporting-black-scholars-in-robotics
    [Google Scholar]
/content/journals/10.1146/annurev-control-080320-011601
Loading

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error