1932

Abstract

This article provides a concise summary of the basic ideas and concepts in port-Hamiltonian systems theory and its use in analysis and control of complex multiphysics systems. It gives special attention to new and unexplored research directions and relations with other mathematical frameworks. Emergent control paradigms and open problems are indicated, including the relation with thermodynamics and the question of uniting the energy-processing view of control, as emphasized by port-Hamiltonian systems theory, with a complementary information-processing viewpoint.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-081219-092250
2020-05-03
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/control/3/1/annurev-control-081219-092250.html?itemId=/content/journals/10.1146/annurev-control-081219-092250&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Paynter HM. 1960. Analysis and Design of Engineering Systems Cambridge, MA: MIT Press
    [Google Scholar]
  2. 2. 
    Breedveld PC. 1984. Physical systems theory in terms of bond graphs PhD Thesis, Tech. Hogesch. Twente, Enschede Neth:.
    [Google Scholar]
  3. 3. 
    Golo G, van der Schaft A, Breedveld PC, Maschke BM 2003. Hamiltonian formulation of bond graphs. Nonlinear and Hybrid Systems in Automotive Control R Johansson, A Rantzer 351–72 London: Springer
    [Google Scholar]
  4. 4. 
    Breedveld PC. 2009. Port-based modeling of dynamic systems. Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach V Duindam, A Macchelli, S Stramigioli, H Bruyninckx 1–52 Berlin: Springer
    [Google Scholar]
  5. 5. 
    Maschke B, van der Schaft AJ 1992. Port-controlled Hamiltonian systems: modelling origins and system theoretic properties. IFAC Proc Vol 25:13359–65
    [Google Scholar]
  6. 6. 
    van der Schaft AJ, Maschke BM 1995. The Hamiltonian formulation of energy conserving physical systems with external ports. Arch. Elektron. Übertragungstech. 49:362–71
    [Google Scholar]
  7. 7. 
    Dalsmo M, van der Schaft AJ 1999. On representations and integrability of mathematical structures in energy-conserving physical systems. SIAM J. Control Optim. 37:54–91
    [Google Scholar]
  8. 8. 
    van der Schaft AJ. 2017.L2 -Gain and Passivity Techniques in Nonlinear Control Cham, Switz: Springer, 3rd ed..
    [Google Scholar]
  9. 9. 
    van der Schaft AJ. 2009. Port-Hamiltonian systems. Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach V Duindam, A Macchelli, S Stramigioli, H Bruyninckx 52–130 Berlin: Springer
    [Google Scholar]
  10. 10. 
    van der Schaft A, Jeltsema D 2014. Port-Hamiltonian systems theory: an introductory overview. Found. Trends Syst. Control 1:173–378
    [Google Scholar]
  11. 11. 
    Courant TJ. 1990. Dirac manifolds. Trans. Am. Math. Soc. 319:631–61
    [Google Scholar]
  12. 12. 
    Dorfman I. 1993. Dirac Structures and Integrability of Nonlinear Evolution Equations Chichester, UK: Wiley
    [Google Scholar]
  13. 13. 
    Abraham RA, Marsden JE. 1994. Foundations of Mechanics Redwood City, CA: Addison-Wesley, 2nd ed..
    [Google Scholar]
  14. 14. 
    Marsden JE, Ratiu TS. 1999. Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems New York: Springer, 2nd ed..
    [Google Scholar]
  15. 15. 
    Libermann P, Marle C-M. 1987. Symplectic Geometry and Analytical Mechanics Dordrecht, Neth: Reidel
    [Google Scholar]
  16. 16. 
    Arnold VI. 1978. Mathematical Methods of Classical Mechanics New York: Springer, 2nd ed..
    [Google Scholar]
  17. 17. 
    Vu NMT, Lefevre L, Maschke B 2016. A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks. Math. Comput. Model. Dyn Syst. 22:181–206
    [Google Scholar]
  18. 18. 
    van der Schaft AJ, Maschke BM 2002. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. J. Geom. Phys. 42:166–94
    [Google Scholar]
  19. 19. 
    van der Schaft AJ, Maschke BM 2013. Port-Hamiltonian systems on graphs. SIAM J. Control Optim. 51:906–37
    [Google Scholar]
  20. 20. 
    Stegink T, De Persis C, van der Schaft A 2017. A unifying energy-based approach to stability of power grids with market dynamics. IEEE Trans. Autom. Control 62:2612–22
    [Google Scholar]
  21. 21. 
    van der Schaft AJ. 1998. Implicit Hamiltonian systems with symmetry. Rep. Math. Phys. 41:203–21
    [Google Scholar]
  22. 22. 
    Blankenstein G, van der Schaft AJ 2001. Symmetry and reduction in implicit generalized Hamiltonian systems. Rep. Math. Phys. 47:57–100
    [Google Scholar]
  23. 23. 
    Cervera J, van der Schaft AJ, Banos A 2007. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica 43:212–25
    [Google Scholar]
  24. 24. 
    Willems JC. 1972. Dissipative dynamical systems, part I: general theory. Arch. Ration. Mech. Anal. 45:321–51
    [Google Scholar]
  25. 25. 
    Ortega R, van der Schaft AJ, Mareels I, Maschke BM 2001. Putting energy back in control. Control Syst. Mag. 21:218–33
    [Google Scholar]
  26. 26. 
    Ortega R, van der Schaft AJ, Maschke B, Escobar G 2002. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38:585–96
    [Google Scholar]
  27. 27. 
    Ortega R, van der Schaft AJ, Castaños F, Astolfi A 2008. Control by interconnection and standard passivity-based control of port-Hamiltonian systems. IEEE Trans. Autom. Control 53:2527–42
    [Google Scholar]
  28. 28. 
    Hogan N. 1985. Impedance control: an approach to manipulation: part I—theory. J. Dyn. Syst. Meas. Control 107:1–7
    [Google Scholar]
  29. 29. 
    van der Schaft AJ. 2010. Characterization and partial synthesis of the behavior of resistive circuits at their terminals. Syst. Control Lett. 59:423–28
    [Google Scholar]
  30. 30. 
    Duindam V, Stramigioli S. 2004. Port-based asymptotic curve tracking for mechanical systems. Eur. J. Control 10:411–20
    [Google Scholar]
  31. 31. 
    Folkertsma G, Stramigioli S. 2017. Energy in robotics. Found. Trends Robot. 6:140–210
    [Google Scholar]
  32. 32. 
    Camlibel MK, van der Schaft AJ 2013. Incrementally port-Hamiltonian systems. 52nd IEEE Conference on Decision and Control2538–43 Piscataway, NJ: IEEE
    [Google Scholar]
  33. 33. 
    Rockafellar RT, Wets J-B. 1998. Variational Analysis Berlin: Springer
    [Google Scholar]
  34. 34. 
    Maschke BM, Ortega R, van der Schaft AJ 2000. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Autom. Control 45:1498–502
    [Google Scholar]
  35. 35. 
    Crouch PE. 1981. Geometric structures in systems theory. IEE Proc. D 128:242–52
    [Google Scholar]
  36. 36. 
    Cortes J, van der Schaft AJ, Crouch PE 2005. Characterization of gradient control systems. SIAM J. Control Optim. 44:1192–214
    [Google Scholar]
  37. 37. 
    van der Schaft AJ. 2011. On the relation between port-Hamiltonian and gradient systems. IFAC Proc. Vol. 44:13321–26
    [Google Scholar]
  38. 38. 
    Duistermaat JJ. 2001. On Hessian Riemannian structures. Asian J. Math. 5:79–92
    [Google Scholar]
  39. 39. 
    Brayton RK, Moser JK. 1964. A theory of nonlinear networks I. Q. Appl. Math. 22:1–33
    [Google Scholar]
  40. 40. 
    Brayton RK, Moser JK. 1964. A theory of nonlinear networks II. Q. Appl. Math. 22:81–104
    [Google Scholar]
  41. 41. 
    van der Schaft AJ, Maschke B 2018. Generalized port-Hamiltonian DAE systems. Syst. Control Lett. 121:31–37
    [Google Scholar]
  42. 42. 
    Barbero-Linan M, Cendra H, Garcia-Torano Andres E, Martin de Diego D 2018. Morse families and Dirac systems. arXiv:1804.04949v1 [math-ph]
  43. 43. 
    Beattie CA, Mehrmann V, Xu H, Zwart H 2018. Linear port-Hamiltonian descriptor systems. Math. Control Signals Syst. 30:17
    [Google Scholar]
  44. 44. 
    Eberard D, Maschke B, van der Schaft AJ 2017. An extension of Hamiltonian systems to the thermodynamic phase space: towards a geometry of nonreversible thermodynamics. Rep. Math. Phys. 60:175–98
    [Google Scholar]
  45. 45. 
    van der Schaft A, Maschke B 2018. Geometry of thermodynamic processes. Entropy 20:925–47
    [Google Scholar]
  46. 46. 
    Forni F, Sepulchre R, van der Schaft AJ 2013. On differential passivity of physical systems. 52nd IEEE Conference on Decision and Control6580–85 Piscataway, NJ: IEEE
    [Google Scholar]
/content/journals/10.1146/annurev-control-081219-092250
Loading
/content/journals/10.1146/annurev-control-081219-092250
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error