1932

Abstract

A multiagent system should be capable of fast and flexible decision-making to successfully manage the uncertainty, variability, and dynamic change encountered when operating in the real world. Decision-making is fast if it breaks indecision as quickly as indecision becomes costly. This requires fast divergence away from indecision in addition to fast convergence to a decision. Decision-making is flexible if it adapts to signals important to successful operation, even if they are weak or rare. This requires tunable sensitivity to input for modulating regimes in which the system is ultrasensitive and in which it is robust. Nonlinearity and feedback in the decision-making process are necessary to meeting these requirements. This article reviews theoretical principles, analytical results, related literature, and applications of decentralized nonlinear opinion dynamics that enable fast and flexible decision-making among multiple options for multiagent systems interconnected by communication and belief system networks. The theory and tools provide a principled and systematic means for designing and analyzing decision-making in systems ranging from robot teams to social networks.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-090523-100059
2024-07-10
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/control/7/1/annurev-control-090523-100059.html?itemId=/content/journals/10.1146/annurev-control-090523-100059&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ren W, Atkins E. 2007.. Distributed multi-vehicle coordinated control via local information exchange. . Int. J. Robust Nonlinear Control 17:(10–11):100233
    [Crossref] [Google Scholar]
  2. 2.
    Rios-Torres J, Malikopoulos AA. 2016.. Automated and cooperative vehicle merging at highway on-ramps. . IEEE Trans. Intell. Transp. Syst. 18:(4):78089
    [Crossref] [Google Scholar]
  3. 3.
    Vilca J, Adouane L, Mezouar Y. 2018.. Stable and flexible multi-vehicle navigation based on dynamic inter-target distance matrix. . IEEE Trans. Intell. Transp. Syst. 20:(4):141631
    [Crossref] [Google Scholar]
  4. 4.
    Fiorelli E, Leonard NE, Bhatta P, Paley DA, Bachmayer R, Fratantoni DM. 2006.. Multi-AUV control and adaptive sampling in Monterey Bay. . IEEE J. Ocean. Eng. 31:(4):93548
    [Crossref] [Google Scholar]
  5. 5.
    Leonard NE, Paley DA, Lekien F, Sepulchre R, Fratantoni DM, Davis RE. 2007.. Collective motion, sensor networks, and ocean sampling. . Proc. IEEE 95:(1):4874
    [Crossref] [Google Scholar]
  6. 6.
    Hu J, Niu H, Carrasco J, Lennox B, Arvin F. 2022.. Fault-tolerant cooperative navigation of networked UAV swarms for forest fire monitoring. . Aerosp. Sci. Technol. 123::107494
    [Crossref] [Google Scholar]
  7. 7.
    Liu Y, Nejat G. 2013.. Robotic urban search and rescue: a survey from the control perspective. . J. Intell. Robot. Syst. 72::14765
    [Crossref] [Google Scholar]
  8. 8.
    Arnold RD, Yamaguchi H, Tanaka T. 2018.. Search and rescue with autonomous flying robots through behavior-based cooperative intelligence. . J. Int. Humanit. Action 3:(1):18
    [Crossref] [Google Scholar]
  9. 9.
    Drew DS. 2021.. Multi-agent systems for search and rescue applications. . Curr. Robot. Rep. 2::189200
    [Crossref] [Google Scholar]
  10. 10.
    Kolling A, Walker P, Chakraborty N, Sycara K, Lewis M. 2015.. Human interaction with robot swarms: a survey. . IEEE Trans. Human-Mach. Syst. 46:(1):926
    [Crossref] [Google Scholar]
  11. 11.
    Wang X, Wang Y. 2017.. Co-design of control and scheduling for human–swarm collaboration systems based on mutual trust. . In Trends in Control and Decision-Making for Human–Robot Collaboration Systems, ed. Y Wang, F Zhang , pp. 387413. Cham, Switz.:: Springer
    [Google Scholar]
  12. 12.
    Ajoudani A, Zanchettin AM, Ivaldi S, Albu-Schäffer A, Kosuge K, Khatib O. 2018.. Progress and prospects of the human–robot collaboration. . Auton. Robots 42::95775
    [Crossref] [Google Scholar]
  13. 13.
    Gerkey BP, Matarić MJ. 2004.. A formal analysis and taxonomy of task allocation in multi-robot systems. . Int. J. Robot. Res. 23:(9):93954
    [Crossref] [Google Scholar]
  14. 14.
    Korsah GA, Stentz A, Dias MB. 2013.. A comprehensive taxonomy for multi-robot task allocation. . Int. J. Robot. Res. 32:(12):1495512
    [Crossref] [Google Scholar]
  15. 15.
    Khamis A, Hussein A, Elmogy A. 2015.. Multi-robot task allocation: a review of the state-of-the-art. . In Cooperative Robots and Sensor Networks, ed. A Koubâa, J Martínez-de Dios , pp. 3151. Cham, Switz.:: Springer
    [Google Scholar]
  16. 16.
    Valentini G, Ferrante E, Dorigo M. 2017.. The best-of-n problem in robot swarms: formalization, state of the art, and novel perspectives. . Front. Robot. AI 4::9
    [Crossref] [Google Scholar]
  17. 17.
    Dörfler F, Chertkov M, Bullo F. 2013.. Synchronization in complex oscillator networks and smart grids. . PNAS 110:(6):200510
    [Crossref] [Google Scholar]
  18. 18.
    Rinaldi S, Della Giustina D, Ferrari P, Flammini A, Sisinni E. 2016.. Time synchronization over heterogeneous network for smart grid application: design and characterization of a real case. . Ad Hoc Netw. 50::4157
    [Crossref] [Google Scholar]
  19. 19.
    Chu CC, Iu HHC. 2017.. Complex networks theory for modern smart grid applications: a survey. . IEEE J. Emerg. Sel. Top. Circuits Syst. 7:(2):17791
    [Crossref] [Google Scholar]
  20. 20.
    Conradt L, Roper TJ. 2005.. Consensus decision making in animals. . Trends Ecol. Evol. 20:(8):44956
    [Crossref] [Google Scholar]
  21. 21.
    Couzin ID, Krause J, Franks NR, Levin SA. 2005.. Effective leadership and decision-making in animal groups on the move. . Nature 433:(7025):51316
    [Crossref] [Google Scholar]
  22. 22.
    Sumpter DJ, Krause J, James R, Couzin ID, Ward AJ. 2008.. Consensus decision making by fish. . Curr. Biol. 18:(22):177377
    [Crossref] [Google Scholar]
  23. 23.
    Pagliara R, Gordon DM, Leonard NE. 2018.. Regulation of harvester ant foraging as a closed-loop excitable system. . PLOS Comput. Biol. 14:(12):e1006200
    [Crossref] [Google Scholar]
  24. 24.
    Sridhar VH, Li L, Gorbonos D, Nagy M, Schell BR, et al. 2021.. The geometry of decision-making in individuals and collectives. . PNAS 118:(50):e2102157118
    [Crossref] [Google Scholar]
  25. 25.
    Papadopoulou M, Fürtbauer I, O'Bryan LR, Garnier S, Georgopoulou DG, et al. 2023.. Dynamics of collective motion across time and species. . Philos. Trans. R. Soc. B 378:(1874):20220068
    [Crossref] [Google Scholar]
  26. 26.
    Zeng L, Skinner SO, Zong C, Sippy J, Feiss M, Golding I. 2010.. Decision making at a subcellular level determines the outcome of bacteriophage infection. . Cell 141:(4):68291
    [Crossref] [Google Scholar]
  27. 27.
    Weitz JS, Mileyko Y, Joh RI, Voit EO. 2008.. Collective decision making in bacterial viruses. . Biophys. J. 95:(6):267380
    [Crossref] [Google Scholar]
  28. 28.
    Balázsi G, Van Oudenaarden A, Collins JJ. 2011.. Cellular decision making and biological noise: from microbes to mammals. . Cell 144:(6):91025
    [Crossref] [Google Scholar]
  29. 29.
    Stewart I, Elmhirst T, Cohen J. 2003.. Symmetry-breaking as an origin of species. . In Bifurcation, Symmetry and Patterns, ed. J Buescu, SBSD Castro, AP da Silva Dias, IS Labouriau , pp. 354. Basel:: Birkhäuser
    [Google Scholar]
  30. 30.
    Waters CM, Bassler BL. 2005.. Quorum sensing: cell-to-cell communication in bacteria. . Annu. Rev. Cell Dev. Biol. 21::31946
    [Crossref] [Google Scholar]
  31. 31.
    Bogacz R. 2007.. Optimal decision-making theories: linking neurobiology with behaviour. . Trends Cogn. Sci. 11:(3):11825
    [Crossref] [Google Scholar]
  32. 32.
    Deco G, Rolls ET, Albantakis L, Romo R. 2013.. Brain mechanisms for perceptual and reward-related decision-making. . Prog. Neurobiol. 103::194213
    [Crossref] [Google Scholar]
  33. 33.
    Suzuki S, Adachi R, Dunne S, Bossaerts P, O'Doherty JP. 2015.. Neural mechanisms underlying human consensus decision-making. . Neuron 86:(2):591602
    [Crossref] [Google Scholar]
  34. 34.
    Busemeyer JR, Gluth S, Rieskamp J, Turner BM. 2019.. Cognitive and neural bases of multi-attribute, multi-alternative, value-based decisions. . Trends Cogn. Sci. 23:(3):25163
    [Crossref] [Google Scholar]
  35. 35.
    Collins AG, Shenhav A. 2022.. Advances in modeling learning and decision-making in neuroscience. . Neuropsychopharmacology 47:(1):10418
    [Crossref] [Google Scholar]
  36. 36.
    Fontan A, Altafini C. 2021.. A signed network perspective on the government formation process in parliamentary democracies. . Sci. Rep. 11:(1):5134
    [Crossref] [Google Scholar]
  37. 37.
    Siegenfeld AF, Bar-Yam Y. 2020.. Negative representation and instability in democratic elections. . Nat. Phys. 16:(2):18690
    [Crossref] [Google Scholar]
  38. 38.
    Bokhari A, Cliff D. 2022.. Studying narrative economics by adding continuous-time opinion dynamics to an agent-based model of co-evolutionary adaptive financial markets. . SSRN 4316574. https://doi.org/10.2139/ssrn.4316574
    [Google Scholar]
  39. 39.
    Zha Q, Kou G, Zhang H, Liang H, Chen X, et al. 2020.. Opinion dynamics in finance and business: a literature review and research opportunities. . Financ. Innov. 6::44
    [Crossref] [Google Scholar]
  40. 40.
    Morrison M, Kutz JN, Gabbay M. 2022.. Transitions between peace and systemic war as bifurcations in a signed network dynamical system. . Netw. Sci. 11:(3):458501
    [Crossref] [Google Scholar]
  41. 41.
    Baumann F, Lorenz-Spreen P, Sokolov IM, Starnini M. 2020.. Modeling echo chambers and polarization dynamics in social networks. . Phys. Rev. Lett. 124:(4):048301
    [Crossref] [Google Scholar]
  42. 42.
    Santos FP, Lelkes Y, Levin SA. 2021.. Link recommendation algorithms and dynamics of polarization in online social networks. . PNAS 118:(50):e2102141118
    [Crossref] [Google Scholar]
  43. 43.
    Leonard NE, Lipsitz K, Bizyaeva A, Franci A, Lelkes Y. 2021.. The nonlinear feedback dynamics of asymmetric political polarization. . PNAS 118:(50):e2102149118
    [Crossref] [Google Scholar]
  44. 44.
    Gajewski ŁG, Sienkiewicz J, Hołyst JA. 2022.. Transitions between polarization and radicalization in a temporal bilayer echo-chamber model. . Phys. Rev. E 105:(2):024125
    [Crossref] [Google Scholar]
  45. 45.
    Levin SA, Weber EU. 2023.. Polarization and the psychology of collectives. . Perspect. Psychol. Sci. https://doi.org/10.1177/17456916231186614
    [Google Scholar]
  46. 46.
    Leung HCH, Li Z, She B, Paré PE. 2023.. Leveraging opinions and vaccination to eradicate networked epidemics. . In 2023 European Control Conference. Piscataway, NJ:: IEEE. https://doi.org/10.23919/ECC57647.2023.10178234
    [Google Scholar]
  47. 47.
    Yanga L, Constantino SM, Grenfell BT, Weber EU, Levin SA, Vasconcelos VV. 2022.. Sociocultural determinants of global mask-wearing behavior. . PNAS 119:(41):e2213525119
    [Crossref] [Google Scholar]
  48. 48.
    Constantino SM, Weber EU. 2021.. Decision-making under the deep uncertainty of climate change: the psychological and political agency of narratives. . Curr. Opin. Psychol. 42:(41):15159
    [Crossref] [Google Scholar]
  49. 49.
    Converse PE. 2006.. The nature of belief systems in mass publics (1964). . Crit. Rev. 18:(1–3):174
    [Crossref] [Google Scholar]
  50. 50.
    Seeley TD, Passino K, Visscher K. 2006.. Group decision making in honey bee swarms. . Am. Sci. 94:(3):22029
    [Crossref] [Google Scholar]
  51. 51.
    Seeley TD, Visscher PK, Schlegel T, Hogan PM, Franks NR, Marshall JAR. 2012.. Stop signals provide cross inhibition in collective decision-making by honeybee swarms. . Science 335:(6064):10811
    [Crossref] [Google Scholar]
  52. 52.
    Guckenheimer J, Holmes P. 1983.. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York:: Springer
    [Google Scholar]
  53. 53.
    Golubitsky M, Schaeffer DG. 1985.. Singularities and Groups in Bifurcation Theory. New York:: Springer
    [Google Scholar]
  54. 54.
    Strogatz S. 1994.. Nonlinear Dynamics and Chaos. Boca Raton, FL:: CRC
    [Google Scholar]
  55. 55.
    Golubitsky M, Stewart I, Shaeffer D. 1988.. Singularities and Groups in Bifurcation Theory, Vol. 2. New York:: Springer
    [Google Scholar]
  56. 56.
    Golubitsky M, Stewart I. 2002.. The Symmetry Perspective. Basel:: Birkhäuser
    [Google Scholar]
  57. 57.
    Elmhirst T. 2004.. SN-equivariant symmetry-breaking bifurcations. . Int. J. Bifurc. Chaos 14:(3):101736
    [Crossref] [Google Scholar]
  58. 58.
    Franci A, Golubitsky M, Stewart I, Bizyaeva A, Leonard NE. 2023.. Breaking indecision in multiagent, multioption dynamics. . SIAM J. Appl. Dyn. Syst. 22:(3):1780817
    [Crossref] [Google Scholar]
  59. 59.
    Golubitsky M, Stewart I. 2023.. Dynamics and Bifurcation in Networks: Theory and Applications of Coupled Differential Equations. Philadelphia:: Soc. Ind. Appl. Math.
    [Google Scholar]
  60. 60.
    Wilson HR, Cowan JD. 1972.. Excitatory and inhibitory interactions in localized populations of model neurons. . Biophys. J. 12:(1):124
    [Crossref] [Google Scholar]
  61. 61.
    Wilson HR, Cowan JD. 1973.. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. . Kybernetik 13:(2):5580
    [Crossref] [Google Scholar]
  62. 62.
    Hopfield JJ. 1982.. Neural networks and physical systems with emergent collective computational abilities. . PNAS 79:(8):255458
    [Crossref] [Google Scholar]
  63. 63.
    Hopfield JJ. 1984.. Neurons with graded response have collective computational properties like those of two-state neurons. . PNAS 81:(10):308892
    [Crossref] [Google Scholar]
  64. 64.
    Hodgkin AL, Huxley AF. 1952.. A quantitative description of membrane current and its application to conduction and excitation in nerve. . J. Physiol. 117:(4):50044
    [Crossref] [Google Scholar]
  65. 65.
    Dalege J, Galesic M, Olsson H. 2023.. Networks of beliefs: an integrative theory of individual-and social-level belief dynamics. . OSF Preprints 368jz. https://doi.org/10.31219/osf.io/368jz
    [Google Scholar]
  66. 66.
    Gardner TS, Cantor CR, Collins JJ. 2000.. Construction of a genetic toggle switch in Escherichia coli. . Nature 403:(6767):33942
    [Crossref] [Google Scholar]
  67. 67.
    Smith HL. 2008.. Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. Providence, RI:: Am. Math. Soc.
    [Google Scholar]
  68. 68.
    Elhashash A, Szyld D. 2008.. On general matrices having the Perron-Frobenius property. . Electron. J. Linear Algebra 17::389413
    [Crossref] [Google Scholar]
  69. 69.
    DeGroot MH. 1974.. Reaching a consensus. . J. Am. Stat. Assoc. 69:(345):11821
    [Crossref] [Google Scholar]
  70. 70.
    Abelson RP. 1964.. Mathematical models of the distribution of attitudes under controversy. . In Contributions to Mathematical Psychology, ed. N Frederiksen, H Gulliksen , pp. 14260. New York:: Holt, Rinehart, & Winston
    [Google Scholar]
  71. 71.
    Olfati-Saber R, Fax JA, Murray RM. 2007.. Consensus and cooperation in networked multi-agent systems. . Proc. IEEE 95:(1):21533
    [Crossref] [Google Scholar]
  72. 72.
    Garin F, Schenato L. 2010.. A survey on distributed estimation and control applications using linear consensus algorithms. . In Networked Control Systems, ed. A Bemporad, M Heemels, M Johansson , pp. 75107. London:: Springer
    [Google Scholar]
  73. 73.
    Cao Y, Yu W, Ren W, Chen G. 2012.. An overview of recent progress in the study of distributed multi-agent coordination. . IEEE Trans. Ind. Inform. 9:(1):42738
    [Crossref] [Google Scholar]
  74. 74.
    Qin J, Ma Q, Shi Y, Wang L. 2016.. Recent advances in consensus of multi-agent systems: a brief survey. . IEEE Trans. Ind. Electron. 64:(6):497283
    [Crossref] [Google Scholar]
  75. 75.
    Mei W, Bullo F, Chen G, Hendrickx JM, Dörfler F. 2022.. Micro-foundation of opinion dynamics: rich consequences of the weighted-median mechanism. . Phys. Rev. Res. 4:(2):023213
    [Crossref] [Google Scholar]
  76. 76.
    Friedkin NE, Johnsen EC. 1990.. Social influence and opinions. . J. Math. Sociol. 15:(3–4):193206
    [Google Scholar]
  77. 77.
    Friedkin NE, Johnsen EC. 1999.. Social influence networks and opinion change. . In Advances in Group Processes, Vol. 16, ed. SR Thye, EJ Lawler, MW Macy, HA Walker , pp. 129. Stamford, CT:: JAI
    [Google Scholar]
  78. 78.
    Friedkin NE, Bullo F. 2017.. How truth wins in opinion dynamics along issue sequences. . PNAS 114:(43):1138085
    [Google Scholar]
  79. 79.
    Parsegov SE, Proskurnikov AV, Tempo R, Friedkin NE. 2017.. Novel multidimensional models of opinion dynamics in social networks. . IEEE Trans. Autom. Control 62:(5):227085
    [Google Scholar]
  80. 80.
    Jia P, MirTabatabaei A, Friedkin NE, Bullo F. 2015.. Opinion dynamics and the evolution of social power in influence networks. . SIAM Rev. 57:(3):36797
    [Google Scholar]
  81. 81.
    Friedkin NE. 2011.. A formal theory of reflected appraisals in the evolution of power. . Adm. Sci. Q. 56::50129
    [Google Scholar]
  82. 82.
    Altafini C. 2013.. Consensus problems on networks with antagonistic interactions. . IEEE Trans. Autom. Control 58:(4):93546
    [Google Scholar]
  83. 83.
    Proskurnikov AV, Matveev AS, Cao M. 2015.. Opinion dynamics in social networks with hostile camps: consensus versus polarization. . IEEE Trans. Autom. Control 61:(6):152436
    [Google Scholar]
  84. 84.
    Zhang H, Chen J. 2017.. Bipartite consensus of multi-agent systems over signed graphs: state feedback and output feedback control approaches. . Int. J. Robust Nonlinear Control 27:(1):314
    [Google Scholar]
  85. 85.
    Hegselmann R, Krause U. 2002.. Opinion dynamics and bounded confidence models, analysis, and simulations. . J. Artif. Soc. Soc. Simul. 5:(3):12132
    [Google Scholar]
  86. 86.
    Lorenz J. 2006.. Continuous opinion dynamics of multidimensional allocation problems under bounded confidence: More dimensions lead to better chances for consensus. . Eur. J. Econ. Soc. Syst. 19::21327
    [Google Scholar]
  87. 87.
    Dandekar P, Goel A, Lee DT. 2013.. Biased assimilation, homophily, and the dynamics of polarization. . PNAS 110:(15):579196
    [Google Scholar]
  88. 88.
    Xia W, Ye M, Liu J, Cao M, Sun XM. 2020.. Analysis of a nonlinear opinion dynamics model with biased assimilation. . Automatica 120::109113
    [Google Scholar]
  89. 89.
    Pais D, Hogan PM, Schlegel T, Franks NR, Leonard NE. 2013.. A mechanism for value-sensitive decision-making. . PLOS ONE 8:(9):e73216
    [Google Scholar]
  90. 90.
    Reina A, Marshall JA, Trianni V, Bose T. 2017.. Model of the best-of-N nest-site selection process in honeybees. . Phys. Rev. E 95:(5):052411
    [Google Scholar]
  91. 91.
    Gray R, Franci A, Srivastava V, Leonard NE. 2018.. Multiagent decision-making dynamics inspired by honeybees. . IEEE Trans. Control Netw. Syst. 5:(2):793806
    [Google Scholar]
  92. 92.
    Usher M, McClelland JL. 2001.. The time course of perceptual choice: the leaky, competing accumulator model. . Psychol. Rev. 108:(3):55092
    [Google Scholar]
  93. 93.
    Brown E, Holmes P. 2001.. Modeling a simple choice task: stochastic dynamics of mutually inhibitory neural groups. . Stochast. Dyn. 1:(2):15991
    [Google Scholar]
  94. 94.
    Bogacz R, Usher M, Zhang J, McClelland JL. 2007.. Extending a biologically inspired model of choice: multi-alternatives, nonlinearity and value-based multidimensional choice. . Philos. Trans. R. Soc. B 362:(1485):165570
    [Google Scholar]
  95. 95.
    Angeli D, Sontag ED. 2003.. Monotone control systems. . IEEE Trans. Autom. Control 48:(10):168498
    [Google Scholar]
  96. 96.
    Sontag ED. 2007.. Monotone and near-monotone biochemical networks. . Syst. Synth. Biol. 1:(2):5987
    [Google Scholar]
  97. 97.
    Altafini C. 2012.. Dynamics of opinion forming in structurally balanced social networks. . PLOS ONE 7:(6):e38135
    [Google Scholar]
  98. 98.
    Bizyaeva A, Amorim G, Santos M, Franci A, Leonard NE. 2022.. Switching transformations for decentralized control of opinion patterns in signed networks: application to dynamic task allocation. . IEEE Control Syst. Lett. 6::346368
    [Google Scholar]
  99. 99.
    Bizyaeva A, Sorochkin T, Franci A, Leonard NE. 2021.. Control of agreement and disagreement cascades with distributed inputs. . In 2021 60th IEEE Conference on Decision and Control, pp. 499499. Piscataway, NJ:: IEEE
    [Google Scholar]
  100. 100.
    Franci A, Bizyaeva A, Park S, Leonard NE. 2021.. Analysis and control of agreement and disagreement opinion cascades. . Swarm Intell. 15::4782
    [Google Scholar]
  101. 101.
    Qin J, Fu W, Zheng WX, Gao H. 2016.. On the bipartite consensus for generic linear multiagent systems with input saturation. . IEEE Trans. Cybernet. 47:(8):194858
    [Google Scholar]
  102. 102.
    Franci A, Srivastava V, Leonard NE. 2015.. A realization theory for bio-inspired collective decision-making. . arXiv:1503.08526 [math.OC]
  103. 103.
    Gray R, Franci A, Srivastava V, Leonard NE. 2017.. An agent-based framework for bio-inspired, value-sensitive decision-making. . IFAC-PapersOnLine 50:(1):823843
    [Google Scholar]
  104. 104.
    Abara PU, Ticozzi F, Altafini C. 2017.. Spectral conditions for stability and stabilization of positive equilibria for a class of nonlinear cooperative systems. . IEEE Trans. Autom. Control 63:(2):40217
    [Google Scholar]
  105. 105.
    Fontan A, Altafini C. 2017.. Multiequilibria analysis for a class of collective decision-making networked systems. . IEEE Trans. Control Netw. Syst. 5:(4):193140
    [Google Scholar]
  106. 106.
    Bizyaeva A, Matthews A, Franci A, Leonard NE. 2021.. Patterns of nonlinear opinion formation on networks. . In 2021 American Control Conference, pp. 273944. Piscataway, NJ:: IEEE
    [Google Scholar]
  107. 107.
    Bizyaeva A, Franci A, Leonard NE. 2022.. Nonlinear opinion dynamics with tunable sensitivity. . IEEE Trans. Autom. Control 68:(3):141530
    [Crossref] [Google Scholar]
  108. 108.
    Bizyaeva A, Franci A, Leonard NE. 2023.. Sustained oscillations in multi-topic belief dynamics over signed networks. . In 2023 American Control Conference, pp. 4296301. Piscataway, NJ:: IEEE
    [Google Scholar]
  109. 109.
    Bizyaeva A, Franci A, Leonard NE. 2023.. Multi-topic belief formation through bifurcations over signed social networks. . arXiv:2308.02755 [physics.soc-ph]
  110. 110.
    Park S, Bizyaeva A, Kawakatsu M, Franci A, Leonard NE. 2022.. Tuning cooperative behavior in games with nonlinear opinion dynamics. . IEEE Control Syst. Lett. 6::203035
    [Crossref] [Google Scholar]
  111. 111.
    Musslick S, Bizyaeva A, Agaron S, Leonard NE, Cohen JD. 2019.. Stability-flexibility dilemma in cognitive control: a dynamical system perspective. . In Proceedings of the 41st Annual Meeting of the Cognitive Science Society, pp. 242026. Seattle, WA:: Cogn. Sci. Soc.
    [Google Scholar]
  112. 112.
    Nabet B, Leonard NE, Couzin ID, Levin SA. 2009.. Dynamics of decision making in animal group motion. . J. Nonlinear Sci. 19::399435
    [Crossref] [Google Scholar]
  113. 113.
    Cathcart C, Santos M, Park S, Leonard NE. 2023.. Proactive opinion-driven robot navigation around human movers. . In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, 405258. Piscataway, NJ:: IEEE
    [Google Scholar]
  114. 114.
    Hu H, Nakamura K, Hsu KC, Leonard NE, Fisac JF. 2023.. Emergent coordination through game-induced nonlinear opinion dynamics. . In 2023 IEEE 62nd Conference on Decision and Control, 812229. Piscataway, NJ:: IEEE
    [Google Scholar]
  115. 115.
    Sepulchre R, Drion G, Franci A. 2019.. Control across scales by positive and negative feedback. . Annu. Rev. Control Robot. Auton. Syst. 2::89113
    [Crossref] [Google Scholar]
  116. 116.
    Douglas R, Martin K. 2007.. Mapping the matrix: the ways of neocortex. . Neuron 56:(2):22638
    [Crossref] [Google Scholar]
  117. 117.
    Riquelme JL, Hemberger M, Laurent G, Gjorgjieva J. 2023.. Single spikes drive sequential propagation and routing of activity in a cortical network. . eLife 12::e79928
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-control-090523-100059
Loading
/content/journals/10.1146/annurev-control-090523-100059
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error