1932

Abstract

Considering microbotics, microforce sensing, their working environment, and their control architecture together, microrobotic force-sensing systems provide the potential to outperform traditional stand-alone approaches. Microrobotics is a unique way for humans to control interactions between a robot and micrometer-size samples by enabling the control of speeds, dynamics, approach angles, and localization of the contact in a highly versatile manner. Many highly integrated microforce sensors attempt to measure forces occurring during these interactions, which are highly difficult to predict because the forces strongly depend on many environmental and system parameters. This article discusses state-of-the-art microrobotic systems for microforce sensing, considering all of these factors. It starts by presenting the basic principles of microrobotic microforce sensing, robotics, and control. It then discusses the importance of microforce sensor calibration and active microforce-sensing techniques. Finally, it provides an overview of microrobotic microforce-sensing systems and applications, including both tethered and untethered microrobotic approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-090623-115925
2024-07-10
2025-04-25
Loading full text...

Full text loading...

/deliver/fulltext/control/7/1/annurev-control-090623-115925.html?itemId=/content/journals/10.1146/annurev-control-090623-115925&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Yang Y, Zhao M, Yinguo H, Zhang H, Guo N, Zheng Y. 2022.. Micro-force sensing techniques and traceable reference forces: a review. . Measur. Sci. Technol. 33:(11):114010
    [Crossref] [Google Scholar]
  2. 2.
    Wei Y, Xu Q. 2019.. A survey of force-assisted robotic cell microinjection technologies. . IEEE Trans. Autom. Sci. Eng. 16:(2):93145
    [Crossref] [Google Scholar]
  3. 3.
    Zang H, Zhang X, Zhu B, Fatikow S. 2019.. Recent advances in non-contact force sensors used for micro/nano manipulation. . Sens. Actuators A 296::15577
    [Crossref] [Google Scholar]
  4. 4.
    Wei Y, Xu Q. 2015.. An overview of micro-force sensing techniques. . Sens. Actuators A 234::35974
    [Crossref] [Google Scholar]
  5. 5.
    Boudaoud M, Régnier S. 2014.. An overview on gripping force measurement at the micro and nano-scales using two-fingered microrobotic systems. . Int. J. Adv. Robot. Syst. 11:(3). https://doi.org/10.5772/57571
    [Crossref] [Google Scholar]
  6. 6.
    Muntwyler S, Beyeler F, Nelson BJ. 2009.. Three-axis micro-force sensor with sub-micro-Newton measurement uncertainty and tunable force range. . J. Micromech. Microeng. 20:(2):25011
    [Crossref] [Google Scholar]
  7. 7.
    Beyeler F, Muntwyler S, Nelson BJ. 2009.. A six-axis MEMS force–torque sensor with micro-Newton and nano-Newtonmeter resolution. . J. Microelectromech. Syst. 18:(2):43341
    [Crossref] [Google Scholar]
  8. 8.
    Kim K, Cheng J, Liu Q, Wu XY, Sun Y. 2010.. Investigation of mechanical properties of soft hydrogel microcapsules in relation to protein delivery using a MEMS force sensor. . J. Biomed. Mater. Res. A 92A:(1):10313
    [Crossref] [Google Scholar]
  9. 9.
    Nastro A, Ferrari M, Ferrari V. 2020.. Double-actuator position-feedback mechanism for adjustable sensitivity in electrostatic-capacitive MEMS force sensors. . Sens. Actuators A 312::112127
    [Crossref] [Google Scholar]
  10. 10.
    Stange A, Imboden M, Javor J, Barrett LK, Bishop DJ. 2019.. Building a Casimir metrology platform with a commercial MEMS sensor. . Microsyst. Nanoeng. 5:(1):14
    [Crossref] [Google Scholar]
  11. 11.
    Gao W, Liu C, Han X, Zhao L, Lin Q, et al. 2023.. A high-resolution MEMS capacitive force sensor with bionic swallow comb arrays for ultralow multiphysics measurement. . IEEE Trans. Ind. Electron. 70:(7):746777
    [Crossref] [Google Scholar]
  12. 12.
    Chu HK, Mills JK, Cleghorn WL. 2007.. Design of a high sensitivity capacitive force sensor. . In 2007 7th IEEE Conference on Nanotechnology, pp. 2933. Piscataway, NJ:: IEEE
    [Google Scholar]
  13. 13.
    Adam G, Chidambaram S, Reddy SS, Ramani K, Cappelleri DJ. 2021.. Towards a comprehensive and robust micromanipulation system with force-sensing and VR capabilities. . Micromachines 12:(7):784
    [Crossref] [Google Scholar]
  14. 14.
    Tiwari B, Blot M, Laurent GJ, Agnus J, Sandoz P, et al. 2021.. A high range-to-resolution multiaxis μforce and torque sensing platform. . IEEE/ASME Trans. Mech. 26:(4):183745
    [Crossref] [Google Scholar]
  15. 15.
    Suzuki M, Takahashi T, Aoyagi S. 2019.. A distributed 3D force sensor for detecting insect motion by optically evaluating deformation of microscale grid pattern inscribed on a flexible hydrogel sheet. . In 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, pp. 25047. Piscataway, NJ:: IEEE
    [Google Scholar]
  16. 16.
    Guo X, Zhang Y, Cao M, Shu Q, Knoll A, et al. 2023.. Mechanical force characterization of living cells based on needle deformation. . Adv. Mater. Interfaces 10:(20):2300293
    [Crossref] [Google Scholar]
  17. 17.
    Guelpa V, Laurent GJ, Sandoz P, Clévy C. 2015.. Vision-based microforce measurement with a large range-to-resolution ratio using a twin-scale pattern. . IEEE/ASME Trans. Mechatron. 20:(6):314856
    [Crossref] [Google Scholar]
  18. 18.
    Zou M, Liao C, Liu S, Xiong C, Zhao C, et al. 2021.. Fiber-tip polymer clamped-beam probe for high-sensitivity nanoforce measurements. . Light Sci. Appl. 10:(1):171
    [Crossref] [Google Scholar]
  19. 19.
    Tang Y, Liu H, Pan J, Zhang Z, Xu Y, et al. 2021.. Optical micro/nanofiber-enabled compact tactile sensor for hardness discrimination. . ACS Appl. Mater. Interfaces 13:(3):456066
    [Crossref] [Google Scholar]
  20. 20.
    He X, Handa J, Gehlbach P, Taylor R, Iordachita I. 2014.. A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery. . IEEE Trans. Biomed. Eng. 61:(2):52234
    [Crossref] [Google Scholar]
  21. 21.
    Wei Y, Xu Q. 2017.. Design of a PVDF-MFC force sensor for robot-assisted single cell microinjection. . IEEE Sens. J. 17:(13):397582
    [Crossref] [Google Scholar]
  22. 22.
    Behrens I, Doering L, Peiner E. 2003.. Piezoresistive cantilever as portable micro force calibration standard. . J. Micromech. Microeng. 13:(4):S17177
    [Crossref] [Google Scholar]
  23. 23.
    Qu J, Wu Q, Clancy T, Fan Q, Wang X, Liu X. 2020.. 3D-printed strain-gauge micro force sensors. . IEEE Sens. J. 20:(13):697178
    [Crossref] [Google Scholar]
  24. 24.
    Tiwari B, Billot M, Clévy C, Agnus J, Piat E, Lutz P. 2021.. A two-axis piezoresistive force sensing tool for microgripping. . Sensors 21:(18):6059
    [Crossref] [Google Scholar]
  25. 25.
    Komati B, Clévy C, Rakotondrabe M, Lutz P. 2014.. Dynamic force/position modeling of a one-DOF smart piezoelectric micro-finger with sensorized end-effector. . In 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 147479. Piscataway, NJ:: IEEE
    [Google Scholar]
  26. 26.
    Takahashi H, Thanh-Vinh N, Jung UG, Matsumoto K, Shimoyama I. 2014.. MEMS two-axis force plate array used to measure the ground reaction forces during the running motion of an ant. . J. Micromech. Microeng. 24:(6):65014
    [Crossref] [Google Scholar]
  27. 27.
    Schuerle S, Vizcarra IA, Moeller J, Sakar MS, Özkale B, et al. 2017.. Robotically controlled microprey to resolve initial attack modes preceding phagocytosis. . Sci. Robot. 2:(2):eaah6094
    [Crossref] [Google Scholar]
  28. 28.
    Gerena E, Haliyo S. 2023.. 3D force-feedback optical tweezers for experimental biology. . In Robotics for Cell Manipulation and Characterization, ed. C Dai, G Shan, Y Sun , pp. 14572. San Diego, CA:: Academic
    [Google Scholar]
  29. 29.
    Guix M, Wang J, An Z, Adam G, Cappelleri DJ. 2018.. Real-time force-feedback micromanipulation using mobile microrobots with colored fiducials. . IEEE Robot. Autom. Lett. 3:(4):359197
    [Crossref] [Google Scholar]
  30. 30.
    FemtoTools. 2023.. Home page. . FemtoTools. https://www.femtotools.com
    [Google Scholar]
  31. 31.
    THK Precis. 2023.. Home page. . THK Precision. https://www.thkprecision.co.jp
    [Google Scholar]
  32. 32.
    CLA. 2023.. Home page. . CLA. https://www.cla.ch
    [Google Scholar]
  33. 33.
    Transducer Tech. 2023.. Home page. . Transducer Techniques. https://www.transducertechniques.com
    [Google Scholar]
  34. 34.
    Futek. . 2023.. Home page. . Futek. https://www.futek.com
    [Google Scholar]
  35. 35.
    TEI. 2023.. Home page. . TEI. https://www.tei.fr
    [Google Scholar]
  36. 36.
    Moore SI, Coskun MB, Alan T, Neild A, Moheimani SOR. 2015.. Feedback-controlled MEMS force sensor for characterization of microcantilevers. . J. Microelectromech. Syst. 24:(4):1092101
    [Crossref] [Google Scholar]
  37. 37.
    Zhang L, Dong J. 2012.. Design, fabrication, and testing of a SOI-MEMS-based active microprobe for potential cellular force sensing applications. . Adv. Mech. Eng. 4::785798
    [Crossref] [Google Scholar]
  38. 38.
    Koo B, Ferreira PM. 2014.. An active MEMS probe for fine position and force measurements. . Precis. Eng. 38:(4):73848
    [Crossref] [Google Scholar]
  39. 39.
    Ousaid AM, Haliyo DS, Régnier S, Hayward V. 2015.. A stable and transparent microscale force feedback teleoperation system. . IEEE/ASME Trans. Mechatron. 20:(5):2593603
    [Crossref] [Google Scholar]
  40. 40.
    Maroufi M, Alemansour H, Bulut Coskun M, Moheimani SOR. 2018.. An adjustable-stiffness MEMS force sensor: design, characterization, and control. . Mechatronics 56::198210
    [Crossref] [Google Scholar]
  41. 41.
    Barile G, Ferri G, Parente FR, Stornelli V, Sisinni E, et al. 2018.. A CMOS full-range linear integrated interface for differential capacitive sensor readout. . Sens. Actuators A 281::13040
    [Crossref] [Google Scholar]
  42. 42.
    Cellini F, Khapli S, Peterson SD, Porfiri M. 2014.. Mechanochromic polyurethane strain sensor. . Appl. Phys. Lett. 105:(6):061907
    [Crossref] [Google Scholar]
  43. 43.
    Ştefaˇnescu DM, Farcaşiu AT, Toader A. 2012.. Strain gauge force transducer and virtual instrumentation used in a measurement system for retention forces of palatal plates or removable dentures. . IEEE Sens. J. 12:(10):296873
    [Crossref] [Google Scholar]
  44. 44.
    Gnerlich M, Perry SF, Tatic-Lucic S. 2012.. A submersible piezoresistive MEMS lateral force sensor for a diagnostic biomechanics platform. . Sens. Actuators A 188::11119
    [Crossref] [Google Scholar]
  45. 45.
    Xie Y, Zhou Y, Lin Y, Wang L, Xi W. 2016.. Development of a microforce sensor and its array platform for robotic cell microinjection force measurement. . Sensors 16:(4):483
    [Crossref] [Google Scholar]
  46. 46.
    Hasegawa Y, Shikida M, Ogura D, Suzuki Y, Sato K. 2008.. Fabrication of a wearable fabric tactile sensor produced by artificial hollow fiber. . J. Micromech. Microeng. 18:(8):085014
    [Crossref] [Google Scholar]
  47. 47.
    De Maria G, Natale C, Pirozzi S. 2012.. Force/tactile sensor for robotic applications. . Sens. Actuators A 175::6072
    [Crossref] [Google Scholar]
  48. 48.
    Yussof H, Ohka M, Kobayashi H, Takata J, Yamano M, Nasu Y. 2007.. Development of an optical three-axis tactile sensor for object handing tasks in humanoid robot navigation system. . In Autonomous Robots and Agents, ed. SC Mukhopadhyay, GS Gupta , pp. 4351. Berlin:: Springer
    [Google Scholar]
  49. 49.
    Puangmali P, Althoefer K, Seneviratne LD, Murphy D, Dasgupta P. 2008.. State-of-the-art in force and tactile sensing for minimally invasive surgery. . IEEE Sens. J. 8:(4):37180
    [Crossref] [Google Scholar]
  50. 50.
    Barbot A, Decanini D, Hwang G. 2017.. Helical microrobot for force sensing inside microfluidic chip. . Sens. Actuators A 266::25872
    [Crossref] [Google Scholar]
  51. 51.
    Borovic B, Liu AQ, Popa D, Cai H, Lewis FL. 2005.. Open-loop versus closed-loop control of MEMS devices: choices and issues. . J. Micromech. Microeng. 15:(10):1917
    [Crossref] [Google Scholar]
  52. 52.
    Devasia S, Eleftheriou E, Moheimani SOR. 2007.. A survey of control issues in nanopositioning. . IEEE Trans. Control Syst. Technol. 15:(5):80223
    [Crossref] [Google Scholar]
  53. 53.
    Piat E, Abadie J, Oster S. 2012.. Nanoforce estimation based on Kalman filtering and applied to a force sensor using diamagnetic levitation. . Sens. Actuators A 179::22336
    [Crossref] [Google Scholar]
  54. 54.
    Boudaoud M, Haddab Y, Le Gorrec Y. 2013.. Modeling and optimal force control of a nonlinear electrostatic microgripper. . IEEE/ASME Trans. Mechatron. 18:(3):113039
    [Crossref] [Google Scholar]
  55. 55.
    Chen WH, Yang J, Guo L, Li S. 2016.. Disturbance-observer-based control and related methods—an overview. . IEEE Trans. Ind. Electron. 63:(2):108395
    [Crossref] [Google Scholar]
  56. 56.
    Rakotondrabe M, Rabenorosoa K, Agnus J, Chaillet N. 2011.. Robust feedforward-feedback control of a nonlinear and oscillating 2-DOF piezocantilever. . IEEE Trans. Autom. Sci. Eng. 8:(3):50619
    [Crossref] [Google Scholar]
  57. 57.
    Tafazzoli A, Pawashe C, Sitti M. 2006.. Force-controlled microcontact printing using microassembled particle templates. . In 2006 IEEE International Conference on Robotics and Automation, pp. 26368. Piscataway, NJ:: IEEE
    [Google Scholar]
  58. 58.
    Xu Q. 2014.. Design and smooth position/force switching control of a miniature gripper for automated microhandling. . IEEE Trans. Ind. Inform. 10:(2):102332
    [Crossref] [Google Scholar]
  59. 59.
    Singh SK, Popa DO. 1995.. An analysis of some fundamental problems in adaptive control of force and impedance behavior: theory and experiments. . IEEE Trans. Robot. Autom. 11:(6):91221
    [Crossref] [Google Scholar]
  60. 60.
    Komati B, Pac M, Ranatunga I, Clévy C, Popa D, Lutz P. 2013.. Explicit force control versus impedance control for micromanipulation. . In ASME 2013 International Design Engineering Technical Conference and Computers and Information in Engineering Conference, Vol. 1, pap. V001T09A018 . New York:: Am. Soc. Mech. Eng.
    [Google Scholar]
  61. 61.
    Xu Q. 2015.. Robust impedance control of a compliant microgripper for high-speed position/force regulation. . IEEE Trans. Ind. Electron. 62:(2):12019
    [Crossref] [Google Scholar]
  62. 62.
    Komati B, Clévy C, Lutz P. 2019.. Sliding mode impedance controlled smart fingered microgripper for automated grasp and release tasks at the microscale. . In Precision Assembly in the Digital Age, ed. S Ratchev , pp. 20113. Cham, Switz:.: Springer
    [Google Scholar]
  63. 63.
    Ru C, Liu X, Sun Y, eds. 2016.. Nanopositioning Technologies: Fundamentals and Applications. Cham, Switz.:: Springer
    [Google Scholar]
  64. 64.
    Li Z, Li S, Luo X. 2021.. An overview of calibration technology of industrial robots. . IEEE/CAA J. Autom. Sin. 8:(1):2336
    [Crossref] [Google Scholar]
  65. 65.
    Lubrano E. 2011.. Calibration of ultra-high-precision robots operating in an unsteady environment. PhD Thesis , École Polytech. Féd. Lausanne, Lausanne, Switz.:
    [Google Scholar]
  66. 66.
    Xu Q, Tan KK. 2016.. Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems. Cham, Switz.:: Springer
    [Google Scholar]
  67. 67.
    Popa DO, Murthy R, Das AN. 2009.. M3-deterministic, multiscale, multirobot platform for microsystems packaging: design and quasi-static precision evaluation. . IEEE Trans. Autom. Sci. Eng. 6:(2):34561
    [Crossref] [Google Scholar]
  68. 68.
    Mattos LS, Caldwell DG. 2009.. A fast and precise micropipette positioning system based on continuous camera-robot recalibration and visual servoing. . In 2009 IEEE International Conference on Automation Science and Engineering, pp. 60914. Piscataway, NJ:: IEEE
    [Google Scholar]
  69. 69.
    Tan N, Clévy C, Laurent G, Sandoz P, Chaillet N. 2015.. Accuracy quantification and improvement of serial micropositioning robots for in-plane motions. . IEEE Trans. Robot. 31:(6):1497507
    [Crossref] [Google Scholar]
  70. 70.
    Cailliez J, Boudaoud M, Régnier S. 2019.. Calibration of a class of 3 DOF serial micro robotic systems through SEM vision: application to vertical AFM tip landing. . In 2019 International Conference on Manipulation, Automation and Robotics at Small Scales. Piscataway, NJ:: IEEE. https://doi.org/10.1109/MARSS.2019.8860990
    [Google Scholar]
  71. 71.
    Tan N, Clévy C, Chaillet N. 2015.. Calibration of nanopositioning stages. . Micromachines 6:(12):185675
    [Crossref] [Google Scholar]
  72. 72.
    Bettahar H, Lehmann O, Clévy C, Courjal N, Lutz P. 2022.. 6-DoF full robotic calibration based on 1-D interferometric measurements for microscale and nanoscale applications. . IEEE Trans. Autom. Sci. Eng. 19:(1):34859
    [Crossref] [Google Scholar]
  73. 73.
    Peiner E, Doering L, Balke M, Christ A. 2008.. Silicon cantilever sensor for micro-/nanoscale dimension and force metrology. . Microsyst. Technol. 14::44151
    [Crossref] [Google Scholar]
  74. 74.
    Gates RS, Pratt JR. 2006.. Prototype cantilevers for SI-traceable nanonewton force calibration. . Meas. Sci. Technol. 17:(10):2852
    [Crossref] [Google Scholar]
  75. 75.
    Chao L, Seifert F, Haddad D, Pratt J, Newell D, Schlamminger S. 2020.. The performance of the KIBB-g1 tabletop Kibble balance at NIST. . Metrologia 57:(3):35014
    [Crossref] [Google Scholar]
  76. 76.
    Frühauf J, Gärtner E, Li Z, Doering L, Spichtinger J, Ehret G. 2022.. Silicon cantilever for micro/nanoforce and stiffness calibration. . Sensors 22:(16):6253
    [Crossref] [Google Scholar]
  77. 77.
    Collinson DW, Sheridan RJ, Palmeri MJ, Brinson LC. 2021.. Best practices and recommendations for accurate nanomechanical characterization of heterogeneous polymer systems with atomic force microscopy. . Prog. Polym. Sci. 119::101420
    [Crossref] [Google Scholar]
  78. 78.
    Hopcroft MA, Nix WD, Kenny TW. 2010.. What is the Young's modulus of silicon?. J. Microelectromech. Syst. 19:(2):22938
    [Crossref] [Google Scholar]
  79. 79.
    Adam G, Ulliac G, Clévy C, Cappelleri DJ. 2022.. Design and characterization of a fully 3D printed vision-based micro-force sensor for microrobotic applications. . In 2022 International Conference on Manipulation, Automation and Robotics at Small Scales. Piscataway, NJ:: IEEE. https://doi.org/10.1109/MARSS55884.2022.9870488
    [Google Scholar]
  80. 80.
    Xiang D. 2019.. Capacitive micro-force sensor as a transfer standard for verification and calibration of nanoindentation instruments. . In Micro- and Nanotechnology Sensors, Systems, and Applications XI, ed. T George, MS Islam , pp. 53441. Philadelphia:: Soc. Ind. Appl. Math.
    [Google Scholar]
  81. 81.
    Li Z, Youssefi O, Diller E. 2016.. Magnetically-guided in-situ microrobot fabrication. . In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 513136. Piscataway, NJ:: IEEE
    [Google Scholar]
  82. 82.
    Jang J, Panusa G, Boero G, Brugger J. 2022.. SU-8 cantilever with integrated pyrolyzed glass-like carbon piezoresistor. . Microsyst. Nanoeng. 8:(1):22
    [Crossref] [Google Scholar]
  83. 83.
    Joint Comm. Guides Metrol. (JCGM). 2012.. International vocabulary of metrology – basic and general concepts and associated terms (VIM). Doc. JCGM 200:2012 , Joint Comm. Guides Metrol. , 3rd ed..
    [Google Scholar]
  84. 84.
    Kim MS, Pratt JR. 2010.. SI traceability: current status and future trends for forces below 10 microNewtons. . Measurement 43:(2):16982
    [Crossref] [Google Scholar]
  85. 85.
    Yafei Q, Yulong Z, Weizhong W. 2015.. Development and characterization of three-axis micro-force sensor series. . In 10th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 1036. Piscataway, NJ:: IEEE
    [Google Scholar]
  86. 86.
    Hamdana G, Wasisto HS, Doering L, Yan C, Zhou L, et al. 2016.. Double-meander spring silicon piezoresistive sensors as microforce calibration standards. . Opt. Eng. 55:(9):091409
    [Crossref] [Google Scholar]
  87. 87.
    Zhao Y, Wu B, Jia Y, Li Z. 2023.. A micro-force measurement torsion pendulum design with dual laser detection. . J. Phys. Conf. Ser. 2489::12003
    [Crossref] [Google Scholar]
  88. 88.
    Pratt JR, Kramar JA, Newell DB, Smith DT. 2005.. Review of SI traceable force metrology for instrumented indentation and atomic force microscopy. . Meas. Sci. Technol. 16:(11):2129
    [Crossref] [Google Scholar]
  89. 89.
    Robinson IA, Schlamminger S. 2016.. The watt or Kibble balance: a technique for implementing the new SI definition of the unit of mass. . Metrologia 53:(5):A4674
    [Crossref] [Google Scholar]
  90. 90.
    Marti K, Aeschbacher M, Russi S, Wuethrich C. 2018.. Microforce measurements – a new instrument at METAS. . J. Phys. Conf. Ser. 1065::42024
    [Crossref] [Google Scholar]
  91. 91.
    Marti K, Wuethrich C, Aeschbacher M, Russi S, Brand U, Li Z. 2020.. Micro-force measurements: a new instrument at METAS. . Meas. Sci. Technol. 31:(7):75007
    [Crossref] [Google Scholar]
  92. 92.
    Cailliez J, Boudaoud M, Mohand-Ousaid A, Weill-Duflos A, Haliyo S, Régnier S. 2019.. Modeling and experimental characterization of an active MEMS based force sensor. . J. Micro-Bio Robot. 15::5364
    [Crossref] [Google Scholar]
  93. 93.
    Moore SI, Coskun MB, Alan T, Neild A, Moheimani SOR. 2015.. Feedback-controlled MEMS force sensor for characterization of microcantilevers. . J. Microelectromech. Syst. 24:(4):1092101
    [Crossref] [Google Scholar]
  94. 94.
    Cailliez J, Boudaoud M, Mohand-Ousaid A, Weill-Duflos A, Haliyo S, Régnier S. 2018.. Modeling and experimental characterization of an active MEMS based force sensor. . In 2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS). Piscataway, NJ:: IEEE. https://doi.org/10.1109/MARSS.2018.8481177
    [Google Scholar]
  95. 95.
    Cailliez J, Weill-Duflos A, Boudaoud M, Régnier S, Haliyo S. 2020.. Design and control of a large-range nil-stiffness electro-magnetic active force sensor. . In 2020 IEEE International Conference on Robotics and Automation, pp. 924450. Piscataway, NJ:: IEEE
    [Google Scholar]
  96. 96.
    Mohammadi A, Fowler AG, Yong YK, Moheimani SOR. 2014.. A feedback controlled MEMS nanopositioner for on-chip high-speed AFM. . J. Microelectromech. Syst. 23:(3):61019
    [Crossref] [Google Scholar]
  97. 97.
    Legtenberg R, Groeneveld AW, Elwenspoek M. 1996.. Comb-drive actuators for large displacements. . J. Micromech. Microeng. 6:(3):320
    [Crossref] [Google Scholar]
  98. 98.
    Boudaoud M, Gaudenzi De Faria M, Le Gorrec Y, Haddab Y, Lutz P. 2014.. An output feedback LPV control strategy of a nonlinear electrostatic microgripper through a singular implicit modeling. . Control Eng. Pract. 28::97111
    [Crossref] [Google Scholar]
  99. 99.
    Boudaoud M, Le Gorrec Y, Haddab Y, Lutz P. 2015.. Gain scheduling control of a nonlinear electrostatic microgripper: design by an eigenstructure assignment with an observer-based structure. . IEEE Trans. Control Syst. Technol. 23:(4):125567
    [Crossref] [Google Scholar]
  100. 100.
    Mohand-Ousaid A, Haliyo S, Régnier S, Hayward V. 2020.. High fidelity force feedback facilitates manual injection in biological samples. . IEEE Robot. Autom. Lett. 5:(2):175863
    [Crossref] [Google Scholar]
  101. 101.
    Ousaid AM, Millet G, Haliyo S, Régnier S, Hayward V. 2014.. Feeling what an insect feels. . PLOS ONE 9:(10):e108895
    [Crossref] [Google Scholar]
  102. 102.
    Amokrane F, Drouot A, Abadie J, Piat E. 2020.. Nanoforce estimation using interval observer: application to force sensor based on diamagnetic levitation. . IFAC-PapersOnLine 53:(2):863843
    [Crossref] [Google Scholar]
  103. 103.
    Uslu FE, Davidson CD, Mailand E, Bouklas N, Baker BM, Sakar MS. 2021.. Engineered extracellular matrices with integrated wireless microactuators to study mechanobiology. . Adv. Mater. 33:(40):2102641
    [Crossref] [Google Scholar]
  104. 104.
    Adam G, Ulliac G, Clévy C, Cappelleri DJ. 2023.. 3D printed vision-based micro-force sensors for microrobotic applications. . J. Micro-Bio Robot. 18::1524
    [Crossref] [Google Scholar]
  105. 105.
    Clévy C, Rakotondrabe M, Chaillet N, eds. 2011.. Signal Measurement and Estimation Techniques for Micro and Nanotechnology. New York:: Springer
    [Google Scholar]
  106. 106.
    Lafitte N, Haddab Y, Le Gorrec Y, Kumemura M, Jalabert L, et al. 2013.. Closed-loop control of silicon nanotweezers for improvement of sensitivity to mechanical stiffness measurement and bio-sensing on DNA molecules. . In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 102227. Piscataway, NJ:: IEEE
    [Google Scholar]
  107. 107.
    Lafitte N, Haddab Y, Le Gorrec Y, Guillou H, Kumemura M, et al. 2014.. Improvement of silicon nanotweezers sensitivity for mechanical characterization of biomolecules using closed-loop control. . IEEE/ASME Trans. Mechatron. 20:(3):141827
    [Crossref] [Google Scholar]
  108. 108.
    Bettahar H, Clévy C, Courjal N, Lutz P. 2020.. Force-position photo-robotic approach for the high-accurate micro-assembly of photonic devices. . IEEE Robot. Autom. Lett. 5:(4):6396402
    [Crossref] [Google Scholar]
  109. 109.
    Sakuma S, Nakahara K, Arai F. 2019.. Continuous mechanical indexing of single-cell spheroids using a robot-integrated microfluidic chip. . IEEE Robot. Autom. Lett. 4:(3):297380
    [Crossref] [Google Scholar]
  110. 110.
    Thanh-Vinh N, Takahashi H, Matsumoto K, Shimoyama I. 2015.. Two-axis MEMS-based force sensor for measuring the interaction forces during the sliding of a droplet on a micropillar array. . Sens. Actuators A 231::3543
    [Crossref] [Google Scholar]
  111. 111.
    Billot M, Xu X, Agnus J, Piat E, Stempflé P. 2015.. Multi-axis MEMS force sensor for measuring friction components involved in dexterous micromanipulation: design and optimisation. . Int. J. Nanomanuf. 11:(3–4):16184
    [Crossref] [Google Scholar]
  112. 112.
    Yang S, Xu Q, Nan Z. 2017.. Design and development of a dual-axis force sensing MEMS microgripper. . J. Mech. Robot. 9:(6):061011
    [Crossref] [Google Scholar]
  113. 113.
    Saketi P. 2015.. Microrobotic platform with integrated force sensing microgrippers for characterization of fibrous materials: case study on individual paper fibers. PhD Thesis , Tampere Univ. Technol., Hervanta, Finland:
    [Google Scholar]
  114. 114.
    Grigoray O, Wondraczek H, Daus S, Kühnöl K, Latifi SK, et al. 2015.. Photocontrol of mechanical properties of pulp fibers and fiber-to-fiber bonds via self-assembled polysaccharide derivatives. . Macromol. Mater. Eng. 300:(3):27782
    [Crossref] [Google Scholar]
  115. 115.
    Komati B, Rabenorosoa K, Clévy C, Lutz P. 2013.. Automated guiding task of a flexible micropart using a two-sensing-finger microgripper. . IEEE Trans. Autom. Sci. Eng. 10:(3):51524
    [Crossref] [Google Scholar]
  116. 116.
    Komati B, Clévy C, Lutz P. 2016.. High bandwidth microgripper with integrated force sensors and position estimation for the grasp of multistiffness microcomponents. . IEEE/ASME Trans. Mechatron. 21:(4):203949
    [Crossref] [Google Scholar]
  117. 117.
    Komati B. 2014.. Automated microassembly using an active microgripper with sensorized end-effectors and hybrid force/position control. PhD Thesis , Univ. Franche-Comté, Besançon, Fr:.
    [Google Scholar]
  118. 118.
    Rakotondrabe M, Ivan IA, Khadraoui S, Lutz P, Chaillet N. 2014.. Simultaneous displacement/force self-sensing in piezoelectric actuators and applications to robust control. . IEEE/ASME Trans. Mechatron. 20:(2):51931
    [Crossref] [Google Scholar]
  119. 119.
    Boudaoud M, Gaudenzi De Faria M, Haddab Y, Haliyo S, Le Gorrec Y, et al. 2015.. Robust microscale grasping through a multimodel design: synthesis and real time implementation. . Control Eng. Pract. 39::1222
    [Crossref] [Google Scholar]
  120. 120.
    Flores G, Rakotondrabe M. 2023.. Classical Bouc-Wen hysteresis modeling and force control of a piezoelectric robotic hand manipulating a deformable object. . IEEE Cont. Syst. Lett. 7::241318
    [Crossref] [Google Scholar]
  121. 121.
    Li Z, Fu P, Wei BT, Wang J, Li AL, et al. 2022.. An automatic drug injection device with spatial micro-force perception guided by an microscopic image for robot-assisted ophthalmic surgery. . Front. Robot. AI 9::913930
    [Crossref] [Google Scholar]
  122. 122.
    Li T, King NKK, Ren H. 2020.. Disposable FBG-based tridirectional force/torque sensor for aspiration instruments in neurosurgery. . IEEE Trans. Ind. Electron. 67:(4):323647
    [Crossref] [Google Scholar]
  123. 123.
    Tiwari B, Clévy C, Lutz P. 2019.. High-precision gluing tasks based on thick films of glue and a microrobotics approach. . IEEE Robot. Autom. Lett. 4:(4):437077
    [Crossref] [Google Scholar]
  124. 124.
    Shi B, Wang F, Huo Z, Tian Y, Cong R, Zhang D. 2022.. Contact force sensing and control for inserting operation during precise assembly using a micromanipulator integrated with force sensors. . IEEE Trans. Autom. Sci. Eng. 20:(3):214755
    [Crossref] [Google Scholar]
  125. 125.
    Liu S, Xu D, Zhang D, Zhang Z. 2014.. High precision automatic assembly based on microscopic vision and force information. . IEEE Trans. Autom. Sci. Eng. 13:(1):38293
    [Crossref] [Google Scholar]
  126. 126.
    Zhao G, Teo CL, Hutmacher DW, Burdet E. 2010.. Force-controlled automatic microassembly of tissue engineering scaffolds. . J. Micromech. Microeng. 20:(3):35001
    [Crossref] [Google Scholar]
  127. 127.
    Kim DH, Kim B, Kang H. 2004.. Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micromanipulation. . Microsyst. Technol. 10:(4):27580
    [Crossref] [Google Scholar]
  128. 128.
    Nguyen TV, Tanii R, Takahata T, Shimoyama I. 2019.. Development of a single-chip elasticity sensor using MEMS-based piezoresistive cantilevers with different tactile properties. . Sens. Actuators A 285::36268
    [Crossref] [Google Scholar]
  129. 129.
    Nan Z, Xu Q, Zhang Y, Ge W. 2019.. Force-sensing robotic microinjection system for automated multi-cell injection with consistent quality. . IEEE Access 7::5554353
    [Crossref] [Google Scholar]
  130. 130.
    Esfahani AM, Minnick G, Rosenbohm J, Zhai H, Jin X, et al. 2022.. Microfabricated platforms to investigate cell mechanical properties. . Med. Novel Technol. Devices 13::100107
    [Crossref] [Google Scholar]
  131. 131.
    Govilas J, Guicheret-Retel V, Amiot F, Beaugrand J, Placet V, Clévy C. 2022.. Platen parallelism significance and control in single fiber transverse compression tests. . Composites A 159::106990
    [Crossref] [Google Scholar]
  132. 132.
    André AN, Lehmann O, Govilas J, Laurent GJ, Saadana H, et al. 2024.. Automating robotic micro-assembly of fluidic chips and single fiber compression tests based-on Θ visual measurement with high-precision fiducial markers. . IEEE Trans. Autom. Sci. Eng. 21::35366
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-control-090623-115925
Loading
/content/journals/10.1146/annurev-control-090623-115925
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error