1932

Abstract

A milestone in vertebrate evolution, the transition from water to land, owes its success to the development of a sprawling body plan that enabled an amphibious lifestyle. The body, originally adapted for swimming, evolved to benefit from limbs that enhanced its locomotion capabilities on submerged and dry ground. The first terrestrial animals used sprawling locomotion, a type of legged locomotion in which limbs extend laterally from the body (as opposed to erect locomotion, in which limbs extend vertically below the body). This type of locomotion—exhibited, for instance, by salamanders, lizards, and crocodiles—has been studied in a variety of fields, including neuroscience, biomechanics, evolution, and paleontology. Robotics can benefit from these studies to design amphibious robots capable of swimming and walking, with interesting applications in field robotics, in particular for search and rescue, inspection, and environmental monitoring. In return, robotics can provide useful scientific tools to test hypotheses in neuroscience, biomechanics, and paleontology. For instance, robots have been used to test hypotheses about the organization of neural circuits that can switch between swimming and walking under the control of simple modulation signals, as well as to identify the most likely gaits of extinct sprawling animals. Here, I review different aspects of amphibious and sprawling locomotion, namely gait characteristics, neurobiology, numerical models, and sprawling robots, and discuss fruitful interactions between robotics and other scientific fields.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-control-091919-095731
2020-05-03
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/control/3/1/annurev-control-091919-095731.html?itemId=/content/journals/10.1146/annurev-control-091919-095731&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Pfeifer R, Lungarella M, Iida F 2007. Self-organization, embodiment, and biologically inspired robotics. Science 318:1088–93
    [Google Scholar]
  2. 2. 
    Iida F, Ijspeert AJ. 2016. Biologically inspired robotics. Springer Handbook of Robotics B Siciliano, O Khatib 2015–34 Cham, Switz.: Springer
    [Google Scholar]
  3. 3. 
    Ijspeert AJ. 2014. Biorobotics: using robots to emulate and investigate agile locomotion. Science 346:196–203
    [Google Scholar]
  4. 4. 
    Floreano D, Ijspeert AJ, Schaal S 2014. Robotics and neuroscience. Curr. Biol. 24:R910–20
    [Google Scholar]
  5. 5. 
    Aguilar J, Zhang T, Qian F, Kingsbury M, McInroe B et al. 2016. A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems. Rep. Prog. Phys. 79:110001
    [Google Scholar]
  6. 6. 
    Aydin YO, Rieser JM, Hubicki CM, Savoie W, Goldman DI 2019. Physics approaches to natural locomotion: Every robot is an experiment. Robotic Systems and Autonomous Platforms SM Walsh, MS Strano 109–27 Duxford, UK: Woodhead
    [Google Scholar]
  7. 7. 
    Raibert MH. 1986. Legged Robots That Balance Cambridge, MA: MIT Press
    [Google Scholar]
  8. 8. 
    Raibert M, Chepponis M, Brown H 1986. Running on four legs as though they were one. IEEE J. Robot. Autom. 2:70–82
    [Google Scholar]
  9. 9. 
    Hutter M, Gehring C, Lauber A, Gunther F, Bellicoso CD et al. 2017. ANYmal – toward legged robots for harsh environments. Adv. Robot. 31:918–31
    [Google Scholar]
  10. 10. 
    Wensing PM, Wang A, Seok S, Otten D, Lang J, Kim S 2017. Proprioceptive actuator design in the MIT Cheetah: impact mitigation and high-bandwidth physical interaction for dynamic legged robots. IEEE Trans. Robot. 33:509–22
    [Google Scholar]
  11. 11. 
    Sharbafi MA, Seyfarth A. 2017. Bioinspired Legged Locomotion: Models, Concepts, Control and Applications Oxford, UK: Butterworth-Heinemann
    [Google Scholar]
  12. 12. 
    Wang W, Ji A, Manoonpong P, Shen H, Hu J et al. 2018. Lateral undulation of the flexible spine of sprawling posture vertebrates. J. Comp. Physiol. A 204:707–19
    [Google Scholar]
  13. 13. 
    Maladen RD, Ding Y, Li C, Goldman DI 2009. Undulatory swimming in sand: subsurface locomotion of the sandfish lizard. Science 325:314–18
    [Google Scholar]
  14. 14. 
    Jusufi A, Goldman DI, Revzen S, Full RJ 2008. Active tails enhance arboreal acrobatics in geckos. PNAS 105:4215–19
    [Google Scholar]
  15. 15. 
    Romer AS. 1922. The locomotor apparatus of certain primitive and mammal-like reptiles. Bull. Am. Mus. Nat. Hist. 46:517–606
    [Google Scholar]
  16. 16. 
    Barclay OR. 1946. The mechanics of amphibian locomotion. J. Exp. Biol. 23:177–203
    [Google Scholar]
  17. 17. 
    Worthington RD, Wake DB. 1972. Patterns of regional variation in the vertebral column of terrestrial salamanders. J. Morphol. 137:257–77
    [Google Scholar]
  18. 18. 
    Edwards JL. 1977. The evolution of terrestrial locomotion. Major Patterns in Vertebrate Evolution MK Hecht, PC Goody, BM Hecht 553–77 Berlin: Springer
    [Google Scholar]
  19. 19. 
    Cohen AH. 1988. Evolution of the vertebrate central pattern generator for locomotion. Neural Control of Rhythmic Movements in Vertebrates AH Cohen, S Rossignol, S Grillner 129–66 New York: Wiley
    [Google Scholar]
  20. 20. 
    Gao K-Q, Shubin NH. 2001. Late Jurassic salamanders from northern China. Nature 410:574–77
    [Google Scholar]
  21. 21. 
    Clack JA. 2002. An early tetrapod from ‘Romer's Gap.’. Nature 418:72–76
    [Google Scholar]
  22. 22. 
    Galbusera F, Bassani T. 2019. The spine: a strong, stable, and flexible structure with biomimetics potential. Biomimetics 4:60
    [Google Scholar]
  23. 23. 
    Reilly SM, Delancey MJ. 1997. Sprawling locomotion in the lizard Sceloporus clarkii: the effects of speed on gait, hindlimb kinematics, and axial bending during walking. J. Zool. 243:417–33
    [Google Scholar]
  24. 24. 
    Ritter R. 1992. Lateral bending during lizard locomotion. J. Exp. Biol. 173:1–10
    [Google Scholar]
  25. 25. 
    Ashley-Ross MA, Bechtel BF. 2004. Kinematics of the transition between aquatic and terrestrial locomotion in the newt Taricha torosa. J. Exp. Biol 207:461–74
    [Google Scholar]
  26. 26. 
    Karakasiliotis K, Thandiackal R, Melo K, Horvat T, Mahabadi NK et al. 2016. From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion. J. R. Soc. Interface 13:20151089
    [Google Scholar]
  27. 27. 
    Gray J. 1944. Studies in the mechanics of the tetrapod skeleton. J. Exp. Biol. 20:88–116
    [Google Scholar]
  28. 28. 
    Nyakatura JA, Melo K, Horvat T, Karakasiliotis K, Allen VR et al. 2019. Reverse-engineering the locomotion of a stem amniote. Nature 565:351–55
    [Google Scholar]
  29. 29. 
    D'Août K, Aerts P. 1997. Kinematics and efficiency of steady swimming in adult axolotls (Ambystoma mexicanum). J. Exp. Biol. 200:1863–71
    [Google Scholar]
  30. 30. 
    Seebacher F, Elsworth PG, Franklin CE 2003. Ontogenetic changes of swimming kinematics in a semi-aquatic reptile (Crocodylus porosus). Aust. J. Zool. 51:15–24
    [Google Scholar]
  31. 31. 
    Sheffield KM, Blob RW. 2011. Loading mechanics of the femur in tiger salamanders (Ambystoma tigrinum) during terrestrial locomotion. J. Exp. Biol. 214:2603–15
    [Google Scholar]
  32. 32. 
    Székely G, Czéh G, Vöeös G 1969. The activity pattern of limb muscles in freely moving normal and deafferented newts. Exp. Brain Res. 9:53–62
    [Google Scholar]
  33. 33. 
    Frolich LM, Biewener AA. 1992. Kinematic and electromyographic analysis of the functional role of the body axis during terrestrial and aquatic locomotion in the salamander Ambystoma tigrinum. J. Exp. . Biol 62:107–30
    [Google Scholar]
  34. 34. 
    Delvolvé I, Bem T, Cabelguen J-M 1997. Epaxial and limb muscle activity during swimming and terrestrial stepping in the adult newt. Pleurodeles waltl. J. Neurophysiol. 78:638–50
    [Google Scholar]
  35. 35. 
    Ashley-Ross MA, Lauder GV. 1997. Motor patterns and kinematics during backward walking in the Pacific giant salamander: evidence for novel motor output. J. Neurophysiol. 78:3047–60
    [Google Scholar]
  36. 36. 
    Deban SM, Schilling N. 2009. Activity of trunk muscles during aquatic and terrestrial locomotion in Ambystoma maculatum. J. Exp. Biol 212:2949–59
    [Google Scholar]
  37. 37. 
    Moberly WR. 1968. The metabolic responses of the common iguana, Iguana iguana, to walking and diving. Comp. Biochem. Physiol. 27:21–32
    [Google Scholar]
  38. 38. 
    Autumn K, Weinstein RB, Full RJ 1994. Low cost of locomotion increases performance at low temperature in a nocturnal lizard. Physiol. Zool. 67:238–62
    [Google Scholar]
  39. 39. 
    Karakasiliotis K, Schilling N, Cabelguen J-M, Ijspeert AJ 2013. Where are we in understanding salamander locomotion: biological and robotic perspectives on kinematics. Biol. Cybern. 107:529–44
    [Google Scholar]
  40. 40. 
    Autumn K, Hsieh ST, Dudek DM, Chen J, Chitaphan C, Full RJ 2006. Dynamics of geckos running vertically. J. Exp. Biol. 209:260–72
    [Google Scholar]
  41. 41. 
    Ashley-Ross MA, Lundin R, Johnson KL 2009. Kinematics of level terrestrial and underwater walking in the California newt. Taricha torosa. J. Exp. Zool. A 311:240–57
    [Google Scholar]
  42. 42. 
    Gillis GB. 1996. Undulatory locomotion in elongate aquatic vertebrates: anguilliform swimming since Sir James Gray. Am. Zool. 36:656–65
    [Google Scholar]
  43. 43. 
    Swanson PL. 1950. The iguana Iguana iguana iguana (L.). Herpetologica 6:187–93
    [Google Scholar]
  44. 44. 
    Ringma JL, Salisbury SW. 2013. Aquatic locomotor kinematics of the eastern water dragon (Intellagama lesueurii). J. Herpetol. 48:240–48
    [Google Scholar]
  45. 45. 
    Crespi A, Karakasiliotis K, Guignard A, Ijspeert AJ 2013. Salamandra robotica II: an amphibious robot to study salamander-like swimming and walking gaits. IEEE Trans. Robot. 29:308–20
    [Google Scholar]
  46. 46. 
    Zhong B, Aydin YO, Gong C, Sartoretti G, Wu Y et al. 2018. Coordination of back bending and leg movements for quadrupedal locomotion. Robotics: Science and Systems XIV H Kress-Gazit, S Srinivasa, T Howard, N Atanasov, pap 20 N.p: Robot. Sci. Syst. Found.
    [Google Scholar]
  47. 47. 
    Hildebrand M. 1965. Symmetrical gaits of horses. Science 150:701–8
    [Google Scholar]
  48. 48. 
    Snyder RC. 1962. Adaptations for bipedal locomotion of lizards. Am. Zool. 2:191–203
    [Google Scholar]
  49. 49. 
    Aerts P, Van Damme Raoul D'Août K, Van Hooydonck 2003. Bipedalism in lizards: whole-body modelling reveals a possible spandrel. Philos. Trans. R. Soc. Lond. B. 358:1525–33
    [Google Scholar]
  50. 50. 
    Allen V, Molnar J, Parker W, Pollard A, Nolan G, Hutchinson JR 2014. Comparative architectural properties of limb muscles in Crocodylidae and Alligatoridae and their relevance to divergent use of asymmetrical gaits in extant Crocodylia. J. Anat. 225:569–82
    [Google Scholar]
  51. 51. 
    Zug GR. 1974. Crocodilian galloping: an unique gait for reptiles. Copeia 1974:550–52
    [Google Scholar]
  52. 52. 
    Hsieh ST, Lauder GV. 2004. Running on water: three-dimensional force generation by basilisk lizards. PNAS 101:16784–88
    [Google Scholar]
  53. 53. 
    Nirody JA, Jinn J, Libby T, Lee TJ, Jusufi A et al. 2018. Geckos race across the water's surface using multiple mechanisms. Curr. Biol. 28:4046–51.e2
    [Google Scholar]
  54. 54. 
    Earhart GM, Stein PSG. 2000. Step, swim, and scratch motor patterns in the turtle. J. Neurophysiol. 84:2181–90
    [Google Scholar]
  55. 55. 
    Stein PSG. 2008. Motor pattern deletions and modular organization of turtle spinal cord. Brain Res. Rev. 57:118–24
    [Google Scholar]
  56. 56. 
    Grillner S. 2006. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52:751–66
    [Google Scholar]
  57. 57. 
    Kuo AD. 2002. The relative roles of feedforward and feedback in the control of rhythmic movements. Motor Control 6:129–45
    [Google Scholar]
  58. 58. 
    Shik ML, Severin FV, Orlovsky GN 1966. Control of walking by means of electrical stimulation of the mid-brain. Biophysics 11:756–65
    [Google Scholar]
  59. 59. 
    Mori S. 1987. Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats. Prog. Neurobiol. 28:161–95
    [Google Scholar]
  60. 60. 
    Loeb GE. 2001. Learning from the spinal cord. J. Physiol. 533:111–17
    [Google Scholar]
  61. 61. 
    Ryczko D, Charrier V, Ijspeert A, Cabelguen J-M 2010. Segmental oscillators in axial motor circuits of the salamander: distribution and bursting mechanisms. J. Neurophysiol. 104:2677–92
    [Google Scholar]
  62. 62. 
    Cheng J, Stein RB, Jovanovic K, Yoshida K, Bennett DJ, Han Y 1998. Identification, localization, and modulation of neural networks for walking in the mudpuppy (Necturus maculatus) spinal cord. J. Neurosci. 18:4295–304
    [Google Scholar]
  63. 63. 
    Cheng J, Jovanovic K, Aoyagi Y, Bennett DJ, Han Y, Stein RB 2002. Differential distribution of interneurons in the neural networks that control walking in the mudpuppy (Necturus maculatus) spinal cord. Exp. Brain Res. 145:190–98
    [Google Scholar]
  64. 64. 
    Ijspeert AJ. 2001. A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol. Cybern. 84:331–48
    [Google Scholar]
  65. 65. 
    Ijspeert AJ, Crespi A, Ryczko D, Cabelguen J-M 2007. From swimming to walking with a salamander robot driven by a spinal cord model. Science 315:1416–20
    [Google Scholar]
  66. 66. 
    Ryczko D, Dubuc R, Cabelguen J-M 2010. Rhythmogenesis in axial locomotor networks: an interspecies comparison. Breathe, Walk and Chew: The Neural Challenge: Part I J-P Gossard, R Dubuc, A Kolta 189–211 Prog. Brain Res 187 Amsterdam: Elsevier
    [Google Scholar]
  67. 67. 
    Le Ray D, Juvin L, Ryczko D, Dubuc R 2011. Supraspinal control of locomotion: the mesencephalic locomotor region. Breathe, Walk and Chew: The Neural Challenge: Part II J-P Gossard, R Dubuc, A Kolta 51–70 Prog. Brain Res 188 Amsterdam: Elsevier
    [Google Scholar]
  68. 68. 
    Cabelguen JM, Bourcier-Lucas C, Dubuc R 2003. Bimodal locomotion elicited by electrical stimulation of the midbrain in the salamander Notophthalmus viridesecens. J. Neurosci 23:2434–39
    [Google Scholar]
  69. 69. 
    Steeves JD, Sholomenko GN, Webster DMS 1987. Stimulation of the pontomedullary reticular formation initiates locomotion in decerebrate birds. Brain Res 401:205–12
    [Google Scholar]
  70. 70. 
    Chevallier S, Ijspeert AJ, Ryczko D, Nagy F, Cabelguen J-M 2008. Organisation of the spinal central pattern generators for locomotion in the salamander: biology and modelling. Brain Res. Rev. 57:147–61
    [Google Scholar]
  71. 71. 
    Ryczko D, Knüsel J, Crespi A, Lamarque S, Mathou A et al. 2015. Flexibility of the axial central pattern generator network for locomotion in the salamander. J. Neurophysiol. 113:1921–40
    [Google Scholar]
  72. 72. 
    Bicanski A, Ryczko D, Knuesel J, Harischandra N, Charrier V et al. 2013. Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics. Biol. Cybern. 107:545–64
    [Google Scholar]
  73. 73. 
    Ijspeert AJ, Cabelguen J-M. 2015. Control of aquatic and terrestrial gaits in salamander. Encyclopedia of Computational Neuroscience D Jaeger, R Jung 812–20 New York: Springer
    [Google Scholar]
  74. 74. 
    Ijspeert AJ, Crespi A, Cabelguen J-M 2005. Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots. Neuroinformatics 3:171–95
    [Google Scholar]
  75. 75. 
    Knuesel J, Karakasiliotis K, Crespi A, Ryczko D, Cabelguen J-M, Ijspeert AJ 2013. Gait transitions between swimming and walking in salamander: lessons from numerical modeling and robotics. Integr. Comp. Biol. 53:E113
    [Google Scholar]
  76. 76. 
    Harischandra N, Knuesel J, Kozlov A, Bicanski A, Cabelguen J-M et al. 2011. Sensory feedback plays a significant role in generating walking gait and in gait transition in salamanders: a simulation study. Front. Neurorobot. 5:3
    [Google Scholar]
  77. 77. 
    Bicanski A, Ryczko D, Cabelguen J-M, Ijspeert AJ 2013. From lamprey to salamander: an exploratory modeling study on the architecture of the spinal locomotor networks in the salamander. Biol. Cybern. 107:565–87
    [Google Scholar]
  78. 78. 
    Bem T, Cabelguen J-M, Ekeberg O, Grillner S 2003. From swimming to walking: a single basic network for two different behaviors. Biol. Cybern. 88:79–90
    [Google Scholar]
  79. 79. 
    Ekeberg Ö 1993. A combined neuronal and mechanical model of fish swimming. Biol. Cybern. 69:363–74
    [Google Scholar]
  80. 80. 
    Knuesel J, Cabelguen J-M, Ijspeert A 2010. Decoding the mechanisms of gait generation and gait transition in the salamander using robots and mathematical models. Motor Control: Theories, Experiments, and Applications F Danion, M Latash 417–50 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  81. 81. 
    Harischandra N, Cabelguen J-M, Ekeberg Ö 2010. A 3D musculo-mechanical model of the salamander for the study of different gaits and modes of locomotion. Front. Neurorobot. 4:112
    [Google Scholar]
  82. 82. 
    Liu Q, Yang H, Zhang J, Wang J 2018. A new model of the spinal locomotor networks of a salamander and its properties. Biol. Cybern. 112:369–85
    [Google Scholar]
  83. 83. 
    Karwa KG, Mondal S, Kumar A, Thakur A 2016. An open source low-cost alligator-inspired robotic research platform. 2016 Sixth International Symposium on Embedded Computing and System Design234–38 Piscataway, NJ: IEEE
    [Google Scholar]
  84. 84. 
    Manoonpong P, Pasemann F, Roth H 2007. Modular reactive neurocontrol for biologically inspired walking machines. Int. J. Robot. Res. 26:301–31
    [Google Scholar]
  85. 85. 
    Maladen RD, Ding Y, Umbanhowar PB, Kamor A, Goldman DI 2011. Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming. J. R. Soc. Interface 8:1332–45
    [Google Scholar]
  86. 86. 
    Kim S, Spenko M, Trujillo S, Heyneman B, Santos D, Cutkosky MR 2008. Smooth vertical surface climbing with directional adhesion. IEEE Trans. Robot. 24:65–74
    [Google Scholar]
  87. 87. 
    Ji A, Zhao Z, Manoonpong P, Wang W, Chen G, Dai Z 2018. A bio-inspired climbing robot with flexible pads and claws. J. Bionic Eng. 15:368–78
    [Google Scholar]
  88. 88. 
    Faudzi AAM, Razif MRM, Endo G, Nabae H, Suzumori K 2017. Soft-amphibious robot using thin and soft McKibben actuator. 2017 IEEE International Conference on Advanced Intelligent Mechatronics981–86 Piscataway, NJ: IEEE
    [Google Scholar]
  89. 89. 
    Kitano S, Hirose S, Horigome A, Endo G 2016. TITAN-XIII: sprawling-type quadruped robot with ability of fast and energy-efficient walking. ROBOMECH J 3:8
    [Google Scholar]
  90. 90. 
    Vogel AR, Kaipa KN, Krummel GM, Bruck HA, Gupta SK 2014. Design of a compliance assisted quadrupedal amphibious robot. 2014 IEEE International Conference on Robotics and Automation2378–83 Piscataway, NJ: IEEE
    [Google Scholar]
  91. 91. 
    Lewis MA. 1996. Self-organization of locomotory controllers in robots and animals PhD Thesis Univ. South. Calif. Los Angeles:
    [Google Scholar]
  92. 92. 
    Breithaupt R, Dahnke J, Zahedi K, Hertzberg J, Pasemann F 2002. Robo-Salamander – an approach for the benefit of both robotics and biology. Proceedings of the 5th International Conference on Climbing and Walking Robots P Bedaud 55–62 London: Prof. Eng.
    [Google Scholar]
  93. 93. 
    Spenko MJ, Haynes GC, Saunders JA, Cutkosky MR, Rizzi AA et al. 2008. Biologically inspired climbing with a hexapedal robot. J. Field Robot. 25:223–42
    [Google Scholar]
  94. 94. 
    Kohut NJ, Pullin AO, Haldane DW, Zarrouk D, Fearing RS 2013. Precise dynamic turning of a 10 cm legged robot on a low friction surface using a tail. 2013 IEEE International Conference on Robotics and Automation3299–306 Piscataway, NJ IEEE
    [Google Scholar]
  95. 95. 
    Kim J, Kim H, Kim Y, Kim HS, Kim J 2018. Design of lizard-inspired robot with lateral body motion. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems Piscataway, NJ: IEEE https://doi.org/10.1109/IROS.2018.8594086
    [Crossref] [Google Scholar]
  96. 96. 
    McInroe B, Astley HC, Gong C, Kawano SM, Schiebel PE et al. 2016. Tail use improves performance on soft substrates in models of early vertebrate land locomotors. Science 353:154–58
    [Google Scholar]
  97. 97. 
    Jusufi A, Vogt DM, Wood RJ, Lauder GV 2017. Undulatory swimming performance and body stiffness modulation in a soft robotic fish-inspired physical model. Soft Robot 4:202–10
    [Google Scholar]
  98. 98. 
    Wright B, Vogt DM, Wood RJ, Jusufi A 2019. Soft sensors for curvature estimation under water in a soft robotic fish. 2019 2nd IEEE International Conference on Soft Robotics367–71 Piscataway, NJ: IEEE
    [Google Scholar]
  99. 99. 
    Libby T, Moore TY, Chang-Siu E, Li D, Cohen DJ et al. 2012. Tail-assisted pitch control in lizards, robots and dinosaurs. Nature 481:181–84
    [Google Scholar]
  100. 100. 
    Floyd S, Sitti M. 2008. Design and development of the lifting and propulsion mechanism for a biologically inspired water runner robot. IEEE Trans. Robot. 24:698–709
    [Google Scholar]
  101. 101. 
    Park HS, Floyd S, Sitti M 2010. Roll and pitch motion analysis of a biologically inspired quadruped water runner robot. Int. J. Robot. Res. 29:1281–97
    [Google Scholar]
  102. 102. 
    Kim H, Lee DG, Seo T 2015. Rolling stability enhancement via balancing tail for a water-running robot. J. Bionic Eng. 12:395–405
    [Google Scholar]
  103. 103. 
    Hirose S, Fukuda Y, Yoneda K, Nagakubo A, Tsukagoshi H et al. 2009. Quadruped walking robots at Tokyo Institute of Technology. IEEE Robot. Autom. Mag. 16:2104–14
    [Google Scholar]
  104. 104. 
    Saranli U, Buehler M, Koditschek DE 2001. RHex: a simple and highly mobile hexapod robot. Int. J. Robot. Res. 20:616–31
    [Google Scholar]
  105. 105. 
    Dudek G, Giguere P, Prahacs C, Saunderson S, Sattar J et al. 2007. AQUA: an amphibious autonomous robot. Computer 40:46–53
    [Google Scholar]
  106. 106. 
    Zhang S, Zhou Y, Xu M, Liang X, Liu J, Yang J 2016. AmphiHex-I: locomotory performance in amphibious environments with specially designed transformable flipper legs. IEEE/ASME Trans. Mechatron. 21:1720–31
    [Google Scholar]
  107. 107. 
    Karakasiliotis K, Ijspeert AJ. 2009. Analysis of the terrestrial locomotion of a salamander robot. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems5015–20 Piscataway, NJ: IEEE
    [Google Scholar]
  108. 108. 
    Ryczko D, Thandiackal R, Ijspeert AJ 2016. Interfacing a salamander brain with a salamander-like robot: control of speed and direction with calcium signals from brainstem reticulospinal neurons. 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics1140–47 Piscataway, NJ: IEEE
    [Google Scholar]
  109. 109. 
    Horvat T, Melo K, Ijspeert AJ 2017. Model predictive control based framework for CoM control of a quadruped robot. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems3372–78 Piscataway, NJ: IEEE
    [Google Scholar]
  110. 110. 
    Cho Y, Manzoor S, Choi Y 2019. Adaptation to environmental change using reinforcement learning for robotic salamander. Intell. Serv. Robot. 12:209–18
    [Google Scholar]
  111. 111. 
    Knüsel J. 2013. Modeling a diversity of salamander motor behaviors with coupled abstract oscillators and a robot PhD Thesis École Polytech. Féd Lausanne, Lausanne, Switz:.
    [Google Scholar]
  112. 112. 
    Suzuki S, Kano T, Ijspeert A, Ishiguro A 2019. Decentralized control with cross-coupled sensory feedback between body and limbs in sprawling locomotion. Bioinspir. Biomim. 14:066010
    [Google Scholar]
  113. 113. 
    Horvat T, Karakasiliotis K, Melo K, Fleury L, Thandiackal R, Ijspeert AJ 2015. Inverse kinematics and reflex based controller for body-limb coordination of a salamander-like robot walking on uneven terrain. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems195–201 Piscataway, NJ: IEEE
    [Google Scholar]
  114. 114. 
    Horvat T, Melo K, Ijspeert AJ 2017. Spine controller for a sprawling posture robot. IEEE Robot. Autom. Lett. 2:1195–202
    [Google Scholar]
  115. 115. 
    Papantoniou V, Avlakiotis P, Alexander RM 1999. Control of a robot dinosaur. Philos. Trans. R. Soc. Lond. B 354:863–68
    [Google Scholar]
  116. 116. 
    Long JH, Schumacher J, Livingston N, Kemp M 2006. Four flippers or two? Tetrapodal swimming with an aquatic robot. Bioinspir. Biomim. 1:20–29
    [Google Scholar]
  117. 117. 
    Sellers WI, Manning PL. 2007. Estimating dinosaur maximum running speeds using evolutionary robotics. Proc. R. Soc. B 274:2711–16
    [Google Scholar]
  118. 118. 
    Berman DS, Henrici AC, Kissel RA, Sumida SS, Martens T 2004. A new diadectid (Diadectomorpha), Orobates pabsti, from the early Permian of central Germany. Bull. Carnegie Mus. Nat. Hist. 35:1–36
    [Google Scholar]
  119. 119. 
    Nyakatura JA, Allen VR, Lauströer J, Andikfar A, Danczak M et al. 2015. A three-dimensional skeletal reconstruction of the stem amniote Orobates pabsti (Diadectidae): analyses of body mass, centre of mass position, and joint mobility. PLOS ONE 10:e0137284
    [Google Scholar]
  120. 120. 
    Voigt S, Berman DS, Henrici AC 2007. First well-established track-trackmaker association of Paleozoic tetrapods based on Ichniotherium trackways and diadectid skeletons from the Lower Permian of Germany. J. Vertebr. Paleontol. 27:553–70
    [Google Scholar]
  121. 121. 
    École Polytech. Féd. Lausanne (EPFL) 2019. Reverse engineering the locomotion of a stem amniote. EPFL https://biorob2.epfl.ch/pages/Orobates_interactive
    [Google Scholar]
  122. 122. 
    Cyberbotics 2019. Webots online OroBOT simulator. Cyberbotics https://cyberbotics2.cyberbotics.com/orobot/simulation.php
    [Google Scholar]
  123. 123. 
    Delmerico J, Mintchev S, Giusti A, Gromov B, Melo K et al. 2019. The current state and future outlook of rescue robotics. J. Field Robot. 36:1171–91
    [Google Scholar]
/content/journals/10.1146/annurev-control-091919-095731
Loading
/content/journals/10.1146/annurev-control-091919-095731
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error