1932

Abstract

Neotropical freshwater fishes (NFFs) constitute the most diverse continental vertebrate fauna on Earth, with more than 6,200 named species compressed into an aquatic footprint <0.5% of the total regional land-surface area and representing the greatest phenotypic disparity and functional diversity of any continental ichthyofauna. Data from the fossil record and time-calibrated molecular phylogenies indicate that most higher taxa (e.g., genera, families) diversified relatively continuously through the Cenozoic, across broad geographic ranges of the South American platform. Biodiversity data for most NFF clades support a model of continental radiation rather than adaptive radiation, in which speciation occurs mainly in allopatry, and speciation and adaptation are largely decoupled. These radiations occurred under the perennial influence of river capture and sea-level oscillations, which episodically fragmented and merged portions of adjacent river networks. The future of the NFF fauna into the Anthropocene is uncertain, facing numerous threats at local, regional, and continental scales.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-011620-031032
2020-11-02
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/51/1/annurev-ecolsys-011620-031032.html?itemId=/content/journals/10.1146/annurev-ecolsys-011620-031032&mimeType=html&fmt=ahah

Literature Cited

  1. Albert JS, Antonelli A. 2017. Society for the study of systematic biology symposium: frontiers in parametric biogeography. Syst. Biol. 66:2125–27
    [Google Scholar]
  2. Albert JS, Bart HL Jr, Reis RE 2011a. Species richness and cladal diversity. See Albert & Reis 2011 89–104
  3. Albert JS, Carvalho TP. 2011. Neogene assembly of modern faunas. See Albert & Reis 2011 119–36
  4. Albert JS, Carvalho TP, Petry P, Holder MA, Maxime EL et al. 2011b. Aquatic biodiversity in the Amazon: Habitat specialization and geographic isolation promote species richness. Animals 1:2205–41
    [Google Scholar]
  5. Albert JS, Craig JM, Tagliacollo VA, Petry P 2018a. Upland and lowland fishes: a test of the river capture hypothesis. See Hoorn et al. 2018 273–94
  6. Albert JS, Destouni G, Duke-Sylvester SM, Magurran AE, Oberdorff T et al. 2020. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio https://doi.org/10.1007/s13280-020-01318-8
    [Crossref] [Google Scholar]
  7. Albert JS, Lovejoy NR, Crampton WG 2006. Miocene tectonism and the separation of cis- and trans-Andean river basins: evidence from Neotropical fishes. J. South Am. Earth Sci. 21:1–214–27
    [Google Scholar]
  8. Albert JS, Petry P, Reis RE 2011c. Major biogeographic and phylogenetic patterns. See Albert & Reis 2011 21–58
  9. Albert JS, Reis RE 2011. Historical Biogeography of Neotropical Freshwater Fishes Berkeley: Univ. Calif. Press
    [Google Scholar]
  10. Albert JS, Schoolmaster DR Jr, Tagliacollo V, Duke-Sylvester SM 2017. Barrier displacement on a neutral landscape: toward a theory of continental biogeography. Syst. Biol 66:2167–82
    [Google Scholar]
  11. Albert JS, Val P, Hoorn C 2018b. The changing course of the Amazon River in the Neogene: center stage for Neotropical diversification. Neotropical Ichthyol 16:e180033
    [Google Scholar]
  12. Alda F, Tagliacollo VA, Bernt MJ, Waltz BT, Ludt WB et al. 2018. Resolving deep nodes in an ancient radiation of neotropical fishes in the presence of conflicting signals from incomplete lineage sorting. Syst. Biol. 68:4573–93
    [Google Scholar]
  13. Allen GH, Pavelsky TM. 2018. Global extent of rivers and streams. Science 361:6402585–88
    [Google Scholar]
  14. Amorim PF, Costa WJ. 2019. Reconstructing biogeographic temporal events in the evolution of the livebearer fish genus Jenynsia based on total evidence analysis (Cyprinodontiformes: Anablepidae). Syst. Biodivers. 17:2124–33
    [Google Scholar]
  15. Antonelli A, Ariza M, Albert JS, Andermann T, Azevedo J et al. 2018a. Conceptual and empirical advances in Neotropical biodiversity research. PeerJ 2018:e5644
    [Google Scholar]
  16. Antonelli A, Zizka A, Carvalho FA, Scharn R, Bacon CD et al. 2018b. Amazonia is the primary source of Neotropical biodiversity. PNAS 115:236034–39
    [Google Scholar]
  17. Arbour JH, López-Fernández H. 2016. Continental cichlid radiations: Functional diversity reveals the role of changing ecological opportunity in the Neotropics. Proc. R. Soc. B 283:183620160556
    [Google Scholar]
  18. Arce M, Reis RE, Geneva AJ, Pérez MHS 2013. Molecular phylogeny of thorny catfishes (Siluriformes: Doradidae). Mol. Phylogenetics Evol. 67:560–77
    [Google Scholar]
  19. Arnegard ME, McIntyre PB, Harmon LJ, Zelditch ML, Crampton WG et al. 2010. Sexual signal evolution outpaces ecological divergence during electric fish species radiation. Am. Nat. 176:335–56
    [Google Scholar]
  20. Azevedo JA, Guedes TB, Nogueira CDC, Passos P, Sawaya RJ et al. 2020. Museums and cradles of diversity are geographically coincident for narrowly distributed Neotropical snakes. Ecography 43:328–39
    [Google Scholar]
  21. Bagley JC, Alda F, Breitman MF, Bermingham E, van den Berghe EP, Johnson JB 2015. Assessing species boundaries using multilocus species delimitation in a morphologically conserved group of neotropical freshwater fishes, the Poecilia sphenops species complex (Poeciliidae). PLOS ONE 10:4e0121139
    [Google Scholar]
  22. Beheregaray LB, Cooke GM, Chao NL, Landguth EL 2015. Ecological speciation in the tropics: insights from comparative genetic studies in Amazonia. Front. Genet. 5:477
    [Google Scholar]
  23. Bernt MJ, Tagliacollo VA, Albert JS 2019. Molecular phylogeny of the ghost knifefishes (Gymnotiformes: Apteronotidae). Mol. Phylogenetics Evol. 135:297–307
    [Google Scholar]
  24. Birindelli JL, Sidlauskas BL. 2018. How far has Neotropical Ichthyology progressed in twenty years. Neotropical Ichthyol 16: https://doi.org/10.1590/1982-0224-20180128
    [Crossref] [Google Scholar]
  25. Bloom DD, Egan JP. 2018. Systematics of Clupeiformes and testing for ecological limits on species richness in a trans-marine/freshwater clade. Neotropical Ichthyol 16: https://doi.org/10.1590/1982-0224-20180095
    [Crossref] [Google Scholar]
  26. Bloom DD, Lovejoy NR. 2017. On the origins of marine‐derived freshwater fishes in South America. J. Biogeogr. 44:91927–38
    [Google Scholar]
  27. Bloom DD, Weir JT, Piller KR, Lovejoy NR 2013. Do freshwater fishes diversify faster than marine fishes? A test using state‐dependent diversification analyses and molecular phylogenetics of New World silversides (Atherinopsidae). Evolution 67:72040–57
    [Google Scholar]
  28. Bragança PH, Costa WJ. 2018. Time-calibrated molecular phylogeny reveals a Miocene–Pliocene diversification in the Amazon miniature killifish genus Fluviphylax (Cyprinodontiformes: Cyprinodontoidei). Org. Divers. Evol. 18:3345–53
    [Google Scholar]
  29. Burns MD, Sidlauskas BL. 2019. Ancient and contingent body shape diversification in a hyperdiverse continental fish radiation. Evolution 73:3569–87
    [Google Scholar]
  30. Burress ED, Alda F, Duarte A, Loureiro M, Armbruster JW, Chakrabarty P 2018a. Phylogenomics of pike cichlids (Cichlidae: Crenicichla): the rapid ecological speciation of an incipient species flock. J. Evol. Biol. 31:114–30
    [Google Scholar]
  31. Burress ED, Duarte A, Serra WS, Loureiro M 2016. Rates of piscivory predict pharyngeal jaw morphology in a piscivorous lineage of cichlid fishes. Ecol. Freshw. Fish 25:4590–98
    [Google Scholar]
  32. Burress ED, Piálek L, Casciotta JR, Almirón A, Tan M et al. 2018b. Island- and lake-like parallel adaptive radiations replicated in rivers. Proc. R. Soc. B 285:20171762
    [Google Scholar]
  33. Burridge CP, Craw D, Waters JM 2006. River capture, range expansion, and cladogenesis: the genetic signature of freshwater vicariance. Evolution 60:51038–49
    [Google Scholar]
  34. Cardoso AL, Pieczarka JC, Crampton WG, Ready JS, de Figueiredo Ready W et al. 2018a. Karyotypic diversity and evolution in a sympatric assemblage of Neotropical electric knifefish. Front. Genet. 9:81
    [Google Scholar]
  35. Cardoso YP, Rosso JJ, Mabragaña E, González-Castro M, Delpiani M et al. 2018b. A continental-wide molecular approach unraveling mtDNA diversity and geographic distribution of the Neotropical genus Hoplias. . PLOS ONE 13:8e0202024
    [Google Scholar]
  36. Carvajal-Quintero J, Villalobos F, Oberdorff T, Grenouillet G, Brosse S et al. 2019. Drainage network position and historical connectivity explain global patterns in freshwater fishes’ range size. PNAS 116:13434–39
    [Google Scholar]
  37. Carvalho TP, Albert JS. 2011. The Amazon–Paraguay divide. See Albert & Reis 2011 193–202
  38. Castello L, Macedo MN. 2016. Large‐scale degradation of Amazonian freshwater ecosystems. Glob. Change Biol. 22:3990–1007
    [Google Scholar]
  39. Castro R, Polaz CN. 2020. Small-sized fish: the largest and most threatened portion of the megadiverse neotropical freshwater fish fauna. Biota Neotropica 20:e20180683
    [Google Scholar]
  40. Chakrabarty P, Faircloth BC, Alda F, Ludt WB, McMahan CD et al. 2017. Phylogenomic systematics of ostariophysan fishes: Ultraconserved elements support the surprising non-monophyly of Characiformes. Syst. Biol. 66:6881–95
    [Google Scholar]
  41. Costa WJ, Amorim PF, Mattos JLO 2017. Molecular phylogeny and timing of diversification in South American Cynolebiini seasonal killifishes. Mol. Phylogenetics Evol. 116:61–68
    [Google Scholar]
  42. Craig JM, Crampton WG, Albert JS 2017. Revision of the polytypic electric fish Gymnotus carapo (Gymnotiformes, Teleostei), with descriptions of seven subspecies. Zootaxa 4318:3401–38
    [Google Scholar]
  43. Craig JM, Kim LY, Tagliacollo VA, Albert JS 2019. Phylogenetic revision of Gymnotidae (Teleostei: Gymnotiformes), with descriptions of six subgenera. PLOS ONE 14:11e0224599
    [Google Scholar]
  44. Crampton WG. 2011. An ecological perspective on diversity and distributions. See Albert & Reis 2011 165–89
  45. Crampton WG. 2019. Electroreception, electrogenesis and electric signal evolution. J. Fish Biol. 95:92–134
    [Google Scholar]
  46. Crampton WG, de Santana CD, Waddell JC, Lovejoy NR 2016. Phylogenetic systematics, biogeography, and ecology of the electric fish genus Brachyhypopomus (Ostariophysi: Gymnotiformes). PLOS ONE 11:e0161680
    [Google Scholar]
  47. Cui R, Schumer M, Kruesi K, Walter R, Andolfatto P, Rosenthal GG 2013. Phylogenomics reveals extensive reticulate evolution in Xiphophorus fishes. Evolution 67:82166–79
    [Google Scholar]
  48. Czekanski-Moir JE, Rundell RJ. 2019. The ecology of nonecological speciation and nonadaptive radiations. Trends Ecol. Evol. 34:400–15
    [Google Scholar]
  49. Dagosta FC, de Pinna M 2017. Biogeography of Amazonian fishes: deconstructing river basins as biogeographic units. Neotropical Ichthyol 15: https://doi.org/10.1590/1982-0224-20170034
    [Crossref] [Google Scholar]
  50. Dagosta FC, de Pinna MC 2018. A history of the biogeography of Amazonian fishes. Neotropical Ichthyol 16: https://doi.org/10.1590/1982-0224-20180023
    [Crossref] [Google Scholar]
  51. Dagosta FC, de Pinna MC 2019. The fishes of the Amazon: distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist. 431:1–163
    [Google Scholar]
  52. de León JLP, León G, Rodríguez R, Metcalfe CJ, Hernández D et al. 2014. Phylogeography of Cuban Rivulus: evidence for allopatric speciation and secondary dispersal across a marine barrier. Mol. Phylogenetics Evol. 79:404–14
    [Google Scholar]
  53. Derryberry EP, Claramunt S, Derryberry G, Chesser RT, Cracraft J et al. 2011. Lineage diversification and morphological evolution in a large‐scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution 65:102973–86
    [Google Scholar]
  54. Dias MS, Oberdorff T, Hugueny B, Leprieur F, Jézéquel C et al. 2014. Global imprint of historical connectivity on freshwater fish biodiversity. Ecol. Lett. 17:1130–40
    [Google Scholar]
  55. Downing JA, Cole JJ, Duarte CM, Middelburg JJ, Melack JM et al. 2012. Global abundance and size distribution of streams and rivers. Inland Waters 2:4229–36
    [Google Scholar]
  56. Duarte CM, Magurran AE, Zuanon J, Deus CP 2019. Trophic ecology of benthic fish assemblages in a lowland river in the Brazilian Amazon. Aquat. Ecol. 53:707–18
    [Google Scholar]
  57. Dudgeon D. 2019. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol. 29:R960–67
    [Google Scholar]
  58. Evans KM, Bernt MJ, Kolmann MA, Ford KL, Albert JS 2018. Why the long face? Static allometry in the sexually dimorphic phenotypes of Neotropical electric fishes. Zoolog. J. Linnaean Soc. 186:633–49
    [Google Scholar]
  59. Evans KM, Kim LY, Schubert BA, Albert JS 2019. Ecomorphology of Neotropical electric fishes: an integrative approach to testing the relationships between form, function, and trophic ecology. Integr. Org. Biol. 1:obz015
    [Google Scholar]
  60. Evans KM, Waltz B, Tagliacollo V, Chakrabarty P, Albert JS 2017a. Why the short face? Developmental disintegration of the neurocranium drives convergent evolution in neotropical electric fishes. Ecol. Evol. 7:61783–801
    [Google Scholar]
  61. Evans KM, Waltz BT, Tagliacollo VA, Sidlauskas BL, Albert JS 2017b. Fluctuations in evolutionary integration allow for big brains and disparate faces. Sci. Rep. 7:40431
    [Google Scholar]
  62. Fagan WF. 2002. Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 83:123243–49
    [Google Scholar]
  63. Faria-Pereira LP, Hilsdorf AWS, Albert J, Ranzani Paiva MJT, Galvão MSN 2019. Molecular assessment of Gymnotus spp. (Gymnotiformes: Gymnotidae) fishing used as live baitfish in the Tietê River, Brazil. Neotropical Ichthyol 17: https://doi.org/10.1590/1982-0224-20190075
    [Crossref] [Google Scholar]
  64. Ferreira M, Garcia C, Matoso DA, de Jesus IS, Cioffi MDB et al. 2017. The Bunocephalus coracoideus species complex (Siluriformes, Aspredinidae). Signs of a speciation process through chromosomal, genetic and ecological diversity. Front. Genet. 8:120
    [Google Scholar]
  65. Fitzgerald DB, Winemiller KO, Sabaj Pérez MH, Sousa LM 2017. Seasonal changes in the assembly mechanisms structuring tropical fish communities. Ecology 98:121–31
    [Google Scholar]
  66. Fricke R, Eschmeyer WN, Van der Laan R 2019. Eschmeyer's catalog of fishes: genera, species, references Calif. Acad. Sci., San Francisco, electronic version retrieved Dec 30: https://www.calacademy.org/scientists/projects/eschmeyers-catalog-of-fishes
    [Google Scholar]
  67. Gallant JR, Traeger LL, Volkening JD, Moffett H, Chen PH et al. 2014. Genomic basis for the convergent evolution of electric organs. Science 344:61911522–25
    [Google Scholar]
  68. Goulding M, Venticinque E, Ribeiro MLDB, Barthem RB, Leite RG et al. 2019. Ecosystem‐based management of Amazon fisheries and wetlands. Fish Fish 20:1138–58
    [Google Scholar]
  69. Hauser FE, Ilves KL, Schott RK, Castiglione GM, López-Fernández H, Chang BS 2017. Accelerated evolution and functional divergence of the dim light visual pigment accompanies cichlid colonization of Central America. Mol. Biol. Evol. 34:102650–64
    [Google Scholar]
  70. Hoorn C, Perrigo A, Antonelli A 2018. Mountains, Climate and Biodiversity Oxford, UK: Wiley-Blackwell
    [Google Scholar]
  71. Hoorn C, Wesselingh FP, Ter Steege H, Bermudez MA, Mora A et al. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:6006927–31
    [Google Scholar]
  72. Hulsey CD, Hollingsworth PR, Fordyce JA 2010. Temporal diversification of Central American cichlids. BMC Evol. Biol. 10:1279
    [Google Scholar]
  73. Kautt AF, Machado‐Schiaffino G, Meyer A 2018. Lessons from a natural experiment: Allopatric morphological divergence and sympatric diversification in the Midas cichlid species complex are largely influenced by ecology in a deterministic way. Evol. Lett. 2:4323–40
    [Google Scholar]
  74. Lambert JW, Reichard M, Pincheira-Donoso D 2019. Live fast, diversify non-adaptively: evolutionary diversification of exceptionally short-lived annual killifishes. BMC Evol. Biol. 19:110
    [Google Scholar]
  75. Langerhans RB, Gifford ME, Joseph EO 2007. Ecological speciation in Gambusia fishes. Evolution 61:92056–74
    [Google Scholar]
  76. Lehmberg ES, Elbassiouny AA, Bloom DD, López‐Fernández H, Crampton WG, Lovejoy NR 2018. Fish biogeography in the “Lost World” of the Guiana Shield: phylogeography of the weakly electric knifefish Gymnotus carapo (Teleostei: Gymnotidae). J. Biogeogr. 45:4815–25
    [Google Scholar]
  77. Liem KF. 1973. Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst. Zool. 22:425–41
    [Google Scholar]
  78. Linder HP, Verboom GA. 2015. The evolution of regional species richness: the history of the southern African flora. Annu. Rev. Ecol. Evol. Syst. 46:393–412
    [Google Scholar]
  79. López‐Delgado EO, Winemiller KO, Villa‐Navarro FA 2019. Local environmental factors influence beta‐diversity patterns of tropical fish assemblages more than spatial factors. Ecology 101:e02940
    [Google Scholar]
  80. López-Fernández H, Albert JS. 2011. Paleogene radiations. See Albert & Reis 2011 105–18
  81. López‐Fernández H, Arbour JH, Winemiller KO, Honeycutt RL 2013. Testing for ancient adaptive radiations in Neotropical cichlid fishes. Evolution 67:51321–37
    [Google Scholar]
  82. Lujan NK, Armbruster JW. 2012. Morphological and functional diversity of the mandible in suckermouth armored catfishes (Siluriformes: Loricariidae). J. Morphol. 273:124–39
    [Google Scholar]
  83. Lujan NK, Conway KW. 2015. Life in the fast lane: a review of rheophily in freshwater fishes. Extremophile Fishes R Riesch, M Tobler, M Plath 107–36 Cham, Switz: Springer
    [Google Scholar]
  84. Lujan NK, German DP, Winemiller KO 2011. Do wood‐grazing fishes partition their niche? Morphological and isotopic evidence for trophic segregation in Neotropical Loricariidae. Funct. Ecol. 25:61327–38
    [Google Scholar]
  85. Lujan NK, Roach KA, Jacobsen D, Winemiller KO, Vargas VM et al. 2013. Aquatic community structure across an Andes‐to‐Amazon fluvial gradient. J. Biogeogr. 40:91715–28
    [Google Scholar]
  86. Lundberg JG. 1998. The temporal context for the diversification of Neotropical fishes. See Malabarba et al. 1998 49–68
  87. Lundberg JG, Marshall LG, Guerrero J, Horton B, Malabarba MC, Wesselingh F 1998. The stage for Neotropical fish diversification: a history of tropical South American rivers. See Malabarba et al. 1998 13–48
  88. Lyons N, Albert J, Gasparini N 2020. SpeciesEvolver: a Landlab component to evolve life in simulated landscapes. J. Open Source Softw. 5:462066
    [Google Scholar]
  89. Machado CB, Galetti PM Jr, Carnaval AC 2018. Bayesian analyses detect a history of both vicariance and geodispersal in Neotropical freshwater fishes. J. Biogeogr. 45:61313–25
    [Google Scholar]
  90. Magurran AE. 2013. Measuring Biological Diversity New York: Wiley-Blackwell
    [Google Scholar]
  91. Malabarba LR, Reis RE, Vari RP, Lucena ZMS 1998. Phylogeny and Classification of Neotropical Fishes Porto Alegre, Braz: EDIPUCRS
    [Google Scholar]
  92. Malabarba MC, Malabarba LR, Papa CD 2010. Gymnogeophagus eocenicus, n. sp. (Perciformes: Cichlidae), an Eocene cichlid from the Lumbrera Formation in Argentina. J. Vertebr. Paleontol. 30:2341–50
    [Google Scholar]
  93. Marroig G, Cheverud JM. 2005. Size as a line of least evolutionary resistance: diet and adaptive morphological radiation in New World monkeys. Evolution 59:51128–42
    [Google Scholar]
  94. Matamoros WA, McMahan CD, Chakrabarty P, Albert JS, Schaefer JF 2015. Derivation of the freshwater fish fauna of Central America revisited: Myers's hypothesis in the twenty-first century. Cladistics 31:2177–88
    [Google Scholar]
  95. Melo BF, Benine RC, Silva GS, Avelino GS, Oliveira C 2016a. Molecular phylogeny of the Neotropical fish genus Tetragonopterus (Teleostei: Characiformes: Characidae). Mol. Phylogenetics Evol. 94:709–17
    [Google Scholar]
  96. Melo BF, Ochoa LE, Vari RP, Oliveira C 2016b. Cryptic species in the Neotropical fish genus Curimatopsis (Teleostei, Characiformes). Zool. Scr. 45:6650–58
    [Google Scholar]
  97. Melo BF, Sato Y, Foresti F, Oliveira C 2013. The roles of marginal lagoons in the maintenance of genetic diversity in the Brazilian migratory fishes Prochilodus argenteus and P. costatus. . Neotropical Ichthyol 11:3625–36
    [Google Scholar]
  98. Mélotte G, Raick X, Vigouroux R, Parmentier E 2019. Origin and evolution of sound production in Serrasalmidae. Biol. J. Linnaean Soc. 128:2403–14
    [Google Scholar]
  99. Miller EC, Román-Palacios C. 2019. Evolutionary time explains the global distribution of freshwater fish diversity. bioRxiv 668079. https://doi.org/10.1101/668079
    [Crossref] [Google Scholar]
  100. Mooers AO, Heard SB. 1997. Inferring evolutionary process from phylogenetic tree shape. Q. Rev. Biol. 72:131–54
    [Google Scholar]
  101. Musher LJ, Ferreira M, Auerbach AL, McKay J, Cracraft J 2019. Why is Amazonia a ‘source’ of biodiversity? Climate-mediated dispersal and synchronous speciation across the Andes in an avian group (Tityrinae). Proc. R. Soc. B 286:20182343
    [Google Scholar]
  102. Oberdorff T, Dias MS, Jézéquel C, Albert JS, Arantes CC et al. 2019. Unexpected fish diversity gradients in the Amazon basin. Sci. Adv. 5:9eaav8681
    [Google Scholar]
  103. Ochoa LE, Datovo A, DoNascimiento C, Roxo FF, Sabaj MH et al. 2020. Phylogenomic analysis of trichomycterid catfishes (Teleostei: Siluriformes) inferred from ultraconserved elements. Sci. Rep. 10:2697
    [Google Scholar]
  104. Pastana MNL, Dagosta FCP, Esguícero ALH 2017. A new sexually dichromatic miniature Hyphessobrycon (Teleostei: Characiformes: Characidae) from the Rio Formiga, upper Rio Juruena basin, Mato Grosso, Brazil, with a review of sexual dichromatism in Characiformes. J. Fish Biol. 91:1301–18
    [Google Scholar]
  105. Pelicice FM, Azevedo‐Santos VM, Vitule JR, Orsi ML, Lima DP Jr et al. 2017. Neotropical freshwater fishes imperiled by unsustainable policies. Fish Fish 18:61119–33
    [Google Scholar]
  106. Picq S, Alda F, Bermingham E, Krahe R 2016. Drift‐driven evolution of electric signals in a Neotropical knifefish. Evolution 70:2134–44
    [Google Scholar]
  107. Rabosky DL. 2014. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLOS ONE 9:2e89543
    [Google Scholar]
  108. Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD et al. 2018. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361:6399eaar5452
    [Google Scholar]
  109. Reis RE. 1998. Systematics, biogeography, and the fossil record of the Callichthyidae: a review of the available data. See Malabarba et al. 1998 351–62
  110. Reis RE, Albert JS, Di Dario F, Mincarone MM, Petry P, Rocha LA 2016. Fish biodiversity and conservation in South America. J. Fish Biol. 89:112–47
    [Google Scholar]
  111. Reznick D. 2016. Hard and soft selection revisited: how evolution by natural selection works in the real world. J. Hered. 107:13–14
    [Google Scholar]
  112. Richards EJ, Martin CH. 2017. Adaptive introgression from distant Caribbean islands contributed to the diversification of a microendemic adaptive radiation of trophic specialist pupfishes. PLOS Genet 13:8e1006919
    [Google Scholar]
  113. Rodrigues‐Filho CA, Leitão RP, Zuanon J, Sánchez‐Botero JI, Baccaro FB 2018. Historical stability promoted higher functional specialization and originality in Neotropical stream fish assemblages. J. Biogeogr. 45:61345–54
    [Google Scholar]
  114. Roxo FF, Albert JS, Silva GS, Zawadzki CH, Foresti F, Oliveira C 2014. Molecular phylogeny and biogeographic history of the armored Neotropical catfish subfamilies Hypoptopomatinae, Neoplecostominae and Otothyrinae (Siluriformes: Loricariidae). PLOS ONE 9:8e105564
    [Google Scholar]
  115. Roxo FF, Lujan NK, Tagliacollo VA, Waltz BT, Silva GS et al. 2017. Shift from slow- to fast-water habitats accelerates lineage and phenotype evolution in a clade of Neotropical suckermouth catfishes (Loricariidae: Hypoptopomatinae). PLOS ONE 12:6e0178240
    [Google Scholar]
  116. Roxo FF, Ochoa LE, Costa-Silva GJ, Oliveira C 2015. Species delimitation in Neoplecostomus (Siluriformes: Loricariidae) using morphologic and genetic approaches. DNA Barcodes 3:1110–17
    [Google Scholar]
  117. Roxo FF, Ochoa LE, Sabaj MH, Lujan NK, Covain R et al. 2019. Phylogenomic reappraisal of the Neotropical catfish family Loricariidae (Teleostei: Siluriformes) using ultraconserved elements. Mol. Phylogenetics Evol. 135:148–65
    [Google Scholar]
  118. Rull V. 2011. Neotropical biodiversity: timing and potential drivers. Trends Ecol. Evol. 26:10508–13
    [Google Scholar]
  119. Santini F, Harmon LJ, Carnevale G, Alfaro ME 2009. Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evol. Biol. 9:1194
    [Google Scholar]
  120. Santos LL, Benone NL, Soares BE, Barthem RB, Montag LF 2019. Trait–environment relationships in Amazon stream fish assemblages. Ecol. Freshw. Fish 28:424–33
    [Google Scholar]
  121. Seehausen O, Wagner CE. 2014. Speciation in freshwater fishes. Annu. Rev. Ecol. Evol. Syst. 45:621–51
    [Google Scholar]
  122. Serrano ÉA, Melo BF, Freitas‐Souza D, Oliveira ML, Utsunomia R et al. 2019. Species delimitation in Neotropical fishes of the genus Characidium (Teleostei, Characiformes). Zool. Scr. 48:169–80
    [Google Scholar]
  123. Silva GS, Roxo FF, Lujan NK, Tagliacollo VA, Zawadzki CH, Oliveira C 2016. Transcontinental dispersal, ecological opportunity and origins of an adaptive radiation in the Neotropical catfish genus Hypostomus (Siluriformes: Loricariidae). Mol. Ecol. 25:71511–29
    [Google Scholar]
  124. Simões M, Breitkreuz L, Alvarado M, Baca S, Cooper JC et al. 2016. The evolving theory of evolutionary radiations. Trends Ecol. Evol. 31:127–34
    [Google Scholar]
  125. Smith C, Wootton RJ. 2016. The remarkable reproductive diversity of teleost fishes. Fish Fish 17:1208–15
    [Google Scholar]
  126. Smith GR, Badgley C, Eiting TP, Larson PS 2010. Species diversity gradients in relation to geological history in North American freshwater fishes. Evol. Ecol. Res. 12:6693–726
    [Google Scholar]
  127. Stroud JT, Losos JB. 2016. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47:507–32
    [Google Scholar]
  128. Su G, Villéger S, Brosse S 2019. Morphological diversity of freshwater fishes differs between realms, but morphologically extreme species are widespread. Glob. Ecol. Biogeogr. 28:211–21
    [Google Scholar]
  129. Svenning JC, Eiserhardt WL, Normand S, Ordonez A, Sandel B 2015. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annu. Rev. Ecol. Evol. Syst. 46:551–72
    [Google Scholar]
  130. Tagliacollo VA, Bernt MJ, Craig JM, Oliveira C, Albert JS 2016. Model-based total evidence phylogeny of Neotropical electric knifefishes (Teleostei. Gymnotiformes). Mol. Phylogenetics Evol. 95:20–33
    [Google Scholar]
  131. Tagliacollo VA, Duke-Sylvester SM, Matamoros WA, Chakrabarty P, Albert JS 2017. Coordinated dispersal and pre-isthmian assembly of the Central American ichthyofauna. Syst. Biol. 66:2183–96
    [Google Scholar]
  132. Tagliacollo VA, Roxo FF, Duke‐Sylvester SM, Oliveira C, Albert JS 2015. Biogeographical signature of river capture events in Amazonian lowlands. J. Biogeogr. 42:122349–62
    [Google Scholar]
  133. Thomaz AT, Carvalho TP, Malabarba LR, Knowles LL 2019. Geographic distributions, phenotypes, and phylogenetic relationships of Phalloceros (Cyprinodontiformes: Poeciliidae): insights about diversification among sympatric species pools. Mol. Phylogenetics Evol. 132:265–74
    [Google Scholar]
  134. Tougard C, Davila CRG, Römer U, Duponchelle F, Cerqueira F et al. 2017. Tempo and rates of diversification in the South American cichlid genus Apistogramma (Teleostei: Perciformes: Cichlidae). PLOS ONE 12:9e0182618
    [Google Scholar]
  135. Val AL, de Almeida-Val VM 1995. Fishes of the Amazon and their Environment: Physiological and Biochemical Aspects Zoophysiology, 32 Berlin/Heidelberg, Ger: Springer-Verlag
    [Google Scholar]
  136. van der Sleen P, Albert JS 2017. Field Guide to the Fishes of the Amazon, Orinoco, and Guianas Princeton Field Guides 115 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  137. Vasconcelos TS, da Silva FR, dos Santos TG, Prado VH, Provete DB 2019. Biogeographic Patterns of South American Anurans Cham, Switz: Springer Int. Publ.
    [Google Scholar]
  138. Wainwright PC, Smith WL, Price SA, Tang KL, Sparks JS et al. 2012. The evolution of pharyngognathy: a phylogenetic and functional appraisal of the pharyngeal jaw key innovation in labroid fishes and beyond. Syst. Biol. 61:1001–27
    [Google Scholar]
  139. Wendt EW, Silva PC, Malabarba LR, Carvalho TP 2019. Phylogenetic relationships and historical biogeography of Oligosarcus (Teleostei: Characidae): examining riverine landscape evolution in southeastern South America. Mol. Phylogenetics Evol. 140:106604
    [Google Scholar]
  140. Wiens JJ, Graham CH. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36:519–39
    [Google Scholar]
  141. Wilson EO. 2003. Pheidole in the New World. A Dominant, Hyperdiverse, Ant Genus Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  142. Winemiller KO, Fitzgerald DB, Bower LM, Pianka ER 2015. Functional traits, convergent evolution, and periodic tables of niches. Ecol. Lett. 18:8737–51
    [Google Scholar]
  143. Worm B, Tittensor DP. 2018. A Theory of Global Biodiversity Monogr. Popul. Biol. 60 Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-011620-031032
Loading
/content/journals/10.1146/annurev-ecolsys-011620-031032
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error