1932

Abstract

Whales are an extraordinary study group for questions about ecology and evolution because their combinations of extreme body sizes and unique foraging strategies are unparalleled among animals. From a terrestrial ancestry, whales evolved specialized oceanic foraging mechanisms that characterize the two main groups of living cetaceans: echolocation by toothed whales and bulk filter feeding by baleen whales. In toothed whales, lineage-specific increases in body size, enhanced diving capacity, and echolocation enable them to hunt the most abundant prey on the planet: deep-sea fish and cephalopods. Even greater body size increases, along with filter feeding and fasting capacity, permit large baleen whales to migrate long distances and exploit epipelagic patches of schooling prey, such as krill or fish, which are highly abundant but ephemeral. For both groups, prey abundance and distribution limit foraging performance, yielding divergent energetic niches that have shaped their convergent evolution to gigantism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102220-025458
2023-11-02
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/54/1/annurev-ecolsys-102220-025458.html?itemId=/content/journals/10.1146/annurev-ecolsys-102220-025458&mimeType=html&fmt=ahah

Literature Cited

  1. Aguilar de Soto N, Madsen PT, Tyack P, Arranz P, Marrero J et al. 2012. No shallow talk: cryptic strategy in the vocal communication of Blainville's beaked whales. Mar. Mammal Sci. 28:E75–92
    [Google Scholar]
  2. Aguilar de Soto N, Visser F, Tyack PL, Alcazar J, Ruxton G et al. 2020. Fear of killer whales drives extreme synchrony in deep diving beaked whales. Sci. Rep. 10:13
    [Google Scholar]
  3. Aguilar Soto N, Johnson MP, Madsen PT, Diaz F, Dominguez I, Brito A, Tyack P. 2008. Cheetahs of the deep sea: deep foraging sprints in short-finned pilot whales off Tenerife (Canary Islands). J. Anim. Ecol. 77:5936–47
    [Google Scholar]
  4. Ahlborn BK, Blake RW. 1999. Lower size limit of aquatic mammals. Am. J. Phys. 67:920–22
    [Google Scholar]
  5. Alexander RM. 1998. All-time giants: the largest animals and their problems. Palaeontology 41:1231–45
    [Google Scholar]
  6. Alter SE, Newsome SD, Palumbi SR. 2012. Pre-whaling genetic diversity and population ecology in eastern Pacific gray whales: insights from ancient DNA and stable isotopes. PLOS ONE 7:e35039
    [Google Scholar]
  7. Arranz P, De Soto NA, Madsen PT, Brito A, Bordes F, Johnson MP. 2011. Following a foraging fish-finder: diel habitat use of Blainville's beaked whales revealed by echolocation. PLOS ONE 6:e28353
    [Google Scholar]
  8. Bejder L, Videsen S, Hermannsen L, Simon M, Hanf D, Madsen P. 2019. Low energy expenditure and resting behaviour of humpback whale mother-calf pairs highlights conservation importance of sheltered breeding areas. Sci. Rep. 9:771
    [Google Scholar]
  9. Benson RB, Hunt G, Carrano MT, Campione N. 2018. Cope's rule and the adaptive landscape of dinosaur body size evolution. Palaeontology 61:13–48
    [Google Scholar]
  10. Berta A. 2017. The Rise of Marine Mammals: 50 Million Years of Evolution Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  11. Bianucci G, Di Celma C, Urbina M, Lambert O. 2016. New beaked whales from the late Miocene of Peru and evidence for convergent evolution in stem and crown Ziphiidae (Cetacea, Odontoceti). PeerJ 4:e2479
    [Google Scholar]
  12. Bianucci G, Geisler JH, Citron S, Collareta A. 2022. The origins of the killer whale ecomorph. Curr. Biol. 32:1843–51.e2
    [Google Scholar]
  13. Bisconti M, Pellegrino L, Carnevale G. 2021. Evolution of gigantism in right and bowhead whales (Cetacea: Mysticeti: Balaenidae). Biol. J. Linn. Soc. 134:498–524
    [Google Scholar]
  14. Boyd IL, Hoelzel A. 2002. Energetics: consequences for fitness. Marine Mammal Biology: An Evolutionary Approach AR Hoelzel 247–77. Malden, MA: Blackwell
    [Google Scholar]
  15. Brodie P. 1975. Cetacean energetics, an overview of intraspecific size variation. Ecology 56:152–61
    [Google Scholar]
  16. Burness GP, Diamond J, Flannery T. 2001. Dinosaurs, dragons, and dwarfs: the evolution of maximal body size. PNAS 98:14518–23
    [Google Scholar]
  17. Burnett DG. 2012. The Sounding of the Whale: Science and Cetaceans in the Twentieth Century Chicago: Univ. Chicago Press
    [Google Scholar]
  18. Cade DE, Friedlaender AS, Calambokidis J, Goldbogen JA. 2016. Kinematic diversity in rorqual whale feeding mechanisms. Curr. Biol. 26:2617–24
    [Google Scholar]
  19. Cade DE, Kahane-Rapport SR, Gough WT, Bierlich K, Linsky JM et al. 2023. Minke whale feeding rate limitations suggest constraints on the minimum body size for engulfment filtration feeding. Nat. Ecol. Evol. 7:535–46
    [Google Scholar]
  20. Cade DE, Seakamela SM, Findlay KP, Fukunaga J, Kahane-Rapport SR et al. 2021. Predator-scale spatial analysis of intra-patch prey distribution reveals the energetic drivers of rorqual whale super-group formation. Funct. Ecol. 35:894–908
    [Google Scholar]
  21. Christiansen F, Dawson SM, Durban JW, Fearnbach H, Miller CA et al. 2020. Population comparison of right whale body condition reveals poor state of the North Atlantic right whale. Mar. Ecol. Prog. Ser. 640:1–16
    [Google Scholar]
  22. Christiansen F, Dujon AM, Sprogis KR, Arnould JP, Bejder L. 2016. Noninvasive unmanned aerial vehicle provides estimates of the energetic cost of reproduction in humpback whales. Ecosphere 7:e01468
    [Google Scholar]
  23. Christiansen F, Vivier F, Charlton C, Ward R, Amerson A et al. 2018. Maternal body size and condition determine calf growth rates in southern right whales. Mar. Ecol. Prog. Ser. 592:267–81
    [Google Scholar]
  24. Churchill M, Clementz MT, Kohno N. 2015. Cope's rule and the evolution of body size in Pinnipedimorpha (Mammalia: Carnivora). Evolution 69:201–15
    [Google Scholar]
  25. Clarke MR. 1996. Cephalopods as prey. III. Cetaceans. Philos. Trans. R. Soc. B 351:1053–65
    [Google Scholar]
  26. Corkeron PJ, Connor RC. 1999. Why do baleen whales migrate?. Mar. Mammal Sci. 15:1228–45
    [Google Scholar]
  27. D'agrosa C, Lennert-Cody CE, Vidal O. 2000. Vaquita bycatch in Mexico's artisanal gillnet fisheries: driving a small population to extinction. Conserv. Biol. 14:1110–19
    [Google Scholar]
  28. Denny M. 1993. Air and Water: The Biology and Physics of Life's Media Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  29. Dick TJ, Clemente CJ. 2017. Where have all the giants gone? How animals deal with the problem of size. PLOS Biol. 15:e2000473
    [Google Scholar]
  30. Dietz R, Desforges J-P, Rigét FF, Aubail A, Garde E et al. 2021. Analysis of narwhal tusks reveals lifelong feeding ecology and mercury exposure. Curr. Biol. 31:2012–19.e2
    [Google Scholar]
  31. Domning D. 1978. Sirenian Evolution in the North Pacific Ocean Univ. Calif. Publ. Geol. Sci. 118 Berkeley: Univ. Calif. Press
    [Google Scholar]
  32. Domning D. 2001. Evolution of the Sirenia and Desmostylia. See Mazin & de Buffrénil 2001 151–58
  33. Durfort A, Mariani G, Tulloch V, Savoca MS, Troussellier M, Mouillot D. 2022. Recovery of carbon benefits by overharvested baleen whale populations is threatened by climate change. Proc. R. Soc. B 289:20220375
    [Google Scholar]
  34. Estes JA, Burdin A, Doak DF. 2016. Sea otters, kelp forests, and the extinction of Steller's sea cow. PNAS 113:880–85
    [Google Scholar]
  35. Estes JA, DeMaster DP, Doak DF, Williams TM, Brownell RL Jr. 2006. Whales, Whaling, and Ocean Ecosystems Berkeley: Univ. Calif. Press
    [Google Scholar]
  36. Fitzgerald EMG. 2006. A bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales. Proc. R. Soc. B 273:2955–63
    [Google Scholar]
  37. Ford JKB, Reeves RR. 2008. Fight or flight: antipredator strategies of baleen whales. Mammal Rev. 38:50–86
    [Google Scholar]
  38. Fordyce RE, de Muizon C. 2001. Evolutionary history of cetaceans: a review. See Mazin & de Buffrénil 2001 169–233
  39. Fortune SM, Ferguson SH, Trites AW, Hudson JM, Baumgartner MF. 2020. Bowhead whales use two foraging strategies in response to fine-scale differences in zooplankton vertical distribution. Sci. Rep. 10:20249
    [Google Scholar]
  40. Friedlaender AS, Goldbogen JA, Nowacek DP, Read AJ, Johnston D, Gales N. 2014. Feeding rates and under-ice foraging strategies of the smallest lunge filter feeder, the Antarctic minke whale (Balaenoptera bonaerensis). J. Exp. Biol. 217:2851–54
    [Google Scholar]
  41. Galileo G. 1638 (1974). Two New Sciences, transl. S. Drake Madison, WI: Univ. Wisc. Press
    [Google Scholar]
  42. Gearty W, McClain CR, Payne JL. 2018. Energetic tradeoffs control the size distribution of aquatic mammals. PNAS 115:4191–99
    [Google Scholar]
  43. George JC, Bada J, Zeh J, Scott L, Brown SE et al. 1999. Age and growth estimates of bowhead whales (Balaena mysticetus) via aspartic acid racemization. Can. J. Zool.-Rev. Can. Zool. 77:571–80
    [Google Scholar]
  44. George JC, Druckenmiller ML, Laidre KL, Suydam R, Person B. 2015. Bowhead whale body condition and links to summer sea ice and upwelling in the Beaufort Sea. Prog. Oceanogr. 136:250–62
    [Google Scholar]
  45. Gingerich P 2005. Cetacea. The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades KD Rose, JD Archibald 234–52. Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  46. Gingerich PD. 1998. Paleobiological perspectives on Mesonychia, Archaeoceti, and the origin of whales. The Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea JGM Thewissen 423–49. New York: Plenum
    [Google Scholar]
  47. Goldbogen J, Cade D, Calambokidis J, Friedlaender A, Potvin J et al. 2017. How baleen whales feed: the biomechanics of engulfment and filtration. Annu. Rev. Mar. Sci. 9:367–86
    [Google Scholar]
  48. Goldbogen JA, Cade DE, Wisniewska DM, Potvin J, Segre PS et al. 2019. Why whales are big but not bigger: physiological drivers and ecological limits in the age of ocean giants. Science 366:1367–72
    [Google Scholar]
  49. Gough WT, Cade DE, Czapanskiy MF, Potvin J, Fish FE et al. 2022. Fast and furious: energetic tradeoffs and scaling of high-speed foraging in rorqual whales. Integr. Organ. Biol. 4:obac038
    [Google Scholar]
  50. Gould SJ. 1992. Ever Since Darwin: Reflections in Natural History New York: WW Norton & Co.
    [Google Scholar]
  51. Gutarra S, Moon BC, Rahman IA, Palmer C, Lautenschlager S et al. 2019. Effects of body plan evolution on the hydrodynamic drag and energy requirements of swimming in ichthyosaurs. Proc. R. Soc. B 286:20182786
    [Google Scholar]
  52. Hazen EL, Abrahms B, Brodie S, Carroll G, Jacox MG et al. 2019. Marine top predators as climate and ecosystem sentinels. Front. Ecol. Environ. 17:565–74
    [Google Scholar]
  53. Jensen FH, Johnson M, Ladegaard M, Wisniewska DM, Madsen PT. 2018. Narrow acoustic field of view drives frequency scaling in toothed whale biosonar. Curr. Biol. 28:3878–85.e3
    [Google Scholar]
  54. Kahane-Rapport SR, Goldbogen JA. 2018. Allometric scaling of morphology and engulfment capacity in rorqual whales. J. Morphol. 279:1256–68
    [Google Scholar]
  55. Kahane-Rapport SR, Savoca MS, Cade DE, Segre PS, Bierlich KC et al. 2020. Lunge filter feeding biomechanics constrain rorqual foraging ecology across scale. J. Exp. Biol. 223:jeb224196
    [Google Scholar]
  56. Kanwisher J, Sundnes G. 1965. Physiology of a small cetacean. Hvalradets Skr. 48:45–53
    [Google Scholar]
  57. Kanwisher JW, Ridgway SH. 1983. The physiological ecology of whales and porpoises. Sci. Am. 248:110–21
    [Google Scholar]
  58. Kaschner K, Quick NJ, Jewell R, Williams R, Harris CM. 2012. Global coverage of cetacean line-transect surveys: status quo, data gaps and future challenges. PLOS ONE 7:9e44075
    [Google Scholar]
  59. Kastelein RA, Hardeman J, Boer H. 1997. Food consumption and body weight of harbour porpoises (Phocoena phocoena). The Biology of the Harbour Porpoise AJ Read 217–33. Woerden, Neth: De Spil
    [Google Scholar]
  60. Katona S, Whitehead H. 1988. Are Cetacea ecologically important?. Oceanogr. Mar. Biol. Annu. Rev. 26:553–68
    [Google Scholar]
  61. Kelley NP, Pyenson ND. 2015. Evolutionary innovation and ecology in marine tetrapods from the Triassic to the Anthropocene. Science 348:aaa3716
    [Google Scholar]
  62. Lambert O, Bianucci G, Post K, De Muizon C, Salas-Gismondi R et al. 2010. The giant bite of a new raptorial sperm whale from the Miocene epoch of Peru. Nature 466:105
    [Google Scholar]
  63. Lavigne DM, Innes S, Worthy GAJ, Edwards EF. 1990. Lower critical temperatures of blue whales, Balaenoptera musculus. J. Theor. Biol. 144:249–57
    [Google Scholar]
  64. Lindberg DR, Pyenson ND 2006. Evolutionary patterns in Cetacea. Fishing up prey size through deep time. Whales, Whaling and Ocean Ecosystems JA Estes, DP Demaster, DF Doak, TM Williams, RL Brownell Jr. 67–81. Berkeley: Univ. Calif. Press
    [Google Scholar]
  65. Lockyer C. 1976. Body weights of some species of large whales. ICES J. Mar. Sci. 36:259–73
    [Google Scholar]
  66. Lockyer C. 2007. All creatures great and smaller: a study in cetacean life history energetics. J. Mar. Biol. Assoc. UK 87:1035–45
    [Google Scholar]
  67. Madsen PT, de Soto NA, Arranz P, Johnson M. 2013. Echolocation in Blainville's beaked whales (Mesoplodon densirostris). J. Comp. Physiol. A. 199:451–69
    [Google Scholar]
  68. Mansouri F, Winfield ZC, Crain DD, Morris B, Charapata P et al. 2021. Evidence of multi-decadal behavior and ecosystem-level changes revealed by reconstructed lifetime stable isotope profiles of baleen whale earplugs. Sci. Total Environ. 757:143985
    [Google Scholar]
  69. Mazin J-M, de Buffrénil V. 2001. Secondary Adaptation of Tetrapods to Life in Water, Proceedings of the International Meeting, Poitiers, 1996 Munich: Verlag Dr. Friederich Pfeil
    [Google Scholar]
  70. McGowen MR. 2011. Toward the resolution of an explosive radiation—a multilocus phylogeny of oceanic dolphins (Delphinidae). Mol. Phylogenet. Evol. 60:345–57
    [Google Scholar]
  71. McHuron EA, Adamczak S, Arnould JP, Ashe E, Booth C et al. 2022. Key questions in marine mammal bioenergetics. Conserv. Physiol. 10:coac055
    [Google Scholar]
  72. Millar J, Hickling G. 1990. Fasting endurance and the evolution of mammalian body size. Funct. Ecol. 4:5–12
    [Google Scholar]
  73. Miller PJ, Isojunno S, Siegal E, Lam F-PA, Kvadsheim PH, Curé C. 2022. Behavioral responses to predatory sounds predict sensitivity of cetaceans to anthropogenic noise within a soundscape of fear. PNAS 119:e2114932119
    [Google Scholar]
  74. Møhl B, Wahlberg M, Madsen PT, Heerfordt A, Lund A. 2003. The monopulsed nature of sperm whale clicks. J. Acoust. Soc. Am. 114:1143–54
    [Google Scholar]
  75. Morisaka T, Connor R. 2007. Predation by killer whales (Orcinus orca) and the evolution of whistle loss and narrow-band high frequency clicks in odontocetes. J. Evol. Biol. 20:1439–58
    [Google Scholar]
  76. Nagy KA. 2005. Field metabolic rate and body size. J. Exp. Biol. 208:1621–25
    [Google Scholar]
  77. Nummela S, Thewissen J, Bajpai S, Hussain ST, Kumar K. 2004. Eocene evolution of whale hearing. Nature 430:776–78
    [Google Scholar]
  78. Omura H, Ohsumi S, Nemoto T, Nasu K, Kasuya T. 1969. Black right whales in the North Pacific. Sci. Rep. Whales Res. Inst. 21:1–78
    [Google Scholar]
  79. Peredo CM, Pyenson ND, Boersma AT. 2017. Decoupling tooth loss from the evolution of baleen in whales. Front. Mar. Sci. 4:67
    [Google Scholar]
  80. Pirotta E, Mangel M, Costa DP, Mate B, Goldbogen JA et al. 2018. A dynamic state model of migratory behavior and physiology to assess the consequences of environmental variation and anthropogenic disturbance on marine vertebrates. Am. Nat. 191:E40–56
    [Google Scholar]
  81. Ponganis PJ. 2015. Diving Physiology of Marine Mammals and Seabirds Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  82. Pyenson ND. 2017. The ecological rise of whales chronicled by the fossil record. Curr. Biol. 27:R558–64
    [Google Scholar]
  83. Pyenson ND, Kelley NP, Parham JF. 2014. Marine tetrapod macroevolution: physical and biological drivers on 250 million years of invasions and evolution in ocean ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol. 400:1–8
    [Google Scholar]
  84. Pyenson ND, Sponberg SN. 2011. Reconstructing body size in extinct crown Cetacea (Neoceti) using allometry, phylogenetic methods and tests from the fossil record. J. Mamm. Evol. 18:269–88
    [Google Scholar]
  85. Pyenson ND, Vermeij GJ. 2016. The rise of ocean giants: maximum body size in Cenozoic marine mammals as an indicator for productivity in the Pacific and Atlantic Oceans. Biol. Lett. 12:20160186
    [Google Scholar]
  86. Rocha RC, Clapham PJ, Ivashchenko YV. 2014. Emptying the oceans: a summary of industrial whaling catches in the 20th century. Mar. Fisheries Rev. 76:37–48
    [Google Scholar]
  87. Rojano-Doñate L, McDonald BI, Wisniewska DM, Johnson M, Teilmann J et al. 2018. High field metabolic rates of wild harbour porpoises. J. Exp. Biol. 221:jeb185827
    [Google Scholar]
  88. Ryg M, Lydersen C, Knutsen LO, Bjorge A, Smith TG, Oritsland NA. 1993. Scaling of insulation in seals and whales. J. Zool. 230:193–206
    [Google Scholar]
  89. Saarinen JJ, Boyer AG, Brown JH, Costa DP, Ernest SM et al. 2014. Patterns of maximum body size evolution in Cenozoic land mammals: eco-evolutionary processes and abiotic forcing. Proc. R. Soc. B 281:20132049
    [Google Scholar]
  90. Sander PM, Griebeler EM, Klein N, Juarbe JV, Wintrich T et al. 2021. Early giant reveals faster evolution of large body size in ichthyosaurs than in cetaceans. Science 374:eabf5787
    [Google Scholar]
  91. Santora JA, Mantua NJ, Schroeder ID, Field JC, Hazen EL et al. 2020. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11:536
    [Google Scholar]
  92. Sarko DK, Domning DP, Marino L, Reep RL. 2010. Estimating body size of fossil sirenians. Mar. Mammal Sci. 26:937–59
    [Google Scholar]
  93. Savoca MS, Czapanskiy MF, Kahane-Rapport SR, Gough WT, Fahlbusch JA et al. 2021. Baleen whale prey consumption based on high-resolution foraging measurements. Nature 599:85–90
    [Google Scholar]
  94. Silva M, Downing JA. 1995. The allometric scaling of density and body mass: a nonlinear relationship for terrestrial mammals. Am. Nat. 145:704–27
    [Google Scholar]
  95. Simon M, Johnson M, Madsen PT. 2012. Keeping momentum with a mouthful of water: behavior and kinematics of humpback whale lunge feeding. J. Exp. Biol. 215:3786–98
    [Google Scholar]
  96. Simon M, Johnson M, Tyack P, Madsen PT. 2009. Behaviour and kinematics of continuous ram filtration in bowhead whales (Balaena mysticetus). Proc. R. Soc. B 276:3819–28
    [Google Scholar]
  97. Slater GJ, Goldbogen JA, Pyenson ND. 2017. Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics. Proc. R. Soc. B 284:20170546
    [Google Scholar]
  98. Smith FA, Lyons SK. 2011. How big should a mammal be? A macroecological look at mammalian body size over space and time. Philos. Trans. R. Soc. B 366:2364–78
    [Google Scholar]
  99. Stewart JD, Durban JW, Knowlton AR, Lynn MS, Fearnbach H et al. 2021. Decreasing body lengths in North Atlantic right whales. Curr. Biol. 31:3174–79.e3
    [Google Scholar]
  100. Thewissen JG. 2013. The Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea New York: Springer Sci. Bus. Media
    [Google Scholar]
  101. Thewissen JG, Williams EM. 2002. The early radiations of Cetacea (Mammalia): evolutionary pattern and developmental correlations. Annu. Rev. Ecol. Syst. 33:73–90
    [Google Scholar]
  102. Tønnesen P, Oliveira C, Johnson M, Madsen PT. 2020. The long-range echo scene of the sperm whale biosonar. Biol. Lett. 16:20200134
    [Google Scholar]
  103. Trumble SJ, Robinson EM, Berman-Kowalewski M, Potter CW, Usenko S. 2013. Blue whale earplug reveals lifetime contaminant exposure and hormone profiles. PNAS 110:16922–26
    [Google Scholar]
  104. Tyack P, Whitehead H. 1983. Male competition in large groups of wintering humpback whales. Behaviour 83:132–54
    [Google Scholar]
  105. Uhen MD, Pyenson ND. 2007. Diversity estimates, biases, and historiographic effects: resolving cetacean diversity in the Tertiary. Palaeontol. Electron. 10:10.2.10A
    [Google Scholar]
  106. van der Hoop J, Corkeron P, Moore M. 2017. Entanglement is a costly life-history stage in large whales. Nat. Ecol. Evol. 7:92–106
    [Google Scholar]
  107. van der Hoop JM, Nousek-McGregor AE, Nowacek DP, Parks SE, Tyack P, Madsen PT. 2019. Foraging rates of ram-filtering North Atlantic right whales. Funct. Ecol. 33:1290–306
    [Google Scholar]
  108. Vermeij GJ. 2016. Gigantism and its implications for the history of life. PLOS ONE 11:e0146092
    [Google Scholar]
  109. Videsen SKA, Simon M, Christiansen F, Friedlaender AS, Goldbogen JA et al. 2023. Cheap gulp foraging of a giga-predator enables efficient exploitation of sparse prey. Sci. Adv. 9:eade3889
    [Google Scholar]
  110. Watanabe YY, Goldman KJ, Caselle JE, Chapman DD, Papastamatiou YP. 2015. Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes. PNAS 112:6104–9
    [Google Scholar]
  111. Werth AJ, Potvin J, Shadwick RE, Jensen MM, Cade DE, Goldbogen JA. 2018. Filtration area scaling and evolution in mysticetes: trophic niche partitioning and the curious cases of sei and pygmy right whales. Biol. J. Linn. Soc. 125:264–79
    [Google Scholar]
  112. Whitehead H. 2003. Sperm Whales: Social Evolution in the Ocean Chicago: Univ. Chicago Press
    [Google Scholar]
  113. Whitehead H, McGill B, Worm B. 2008. Diversity of deep-water cetaceans in relation to temperature: implications for ocean warming. Ecol. Lett. 11:1198–207
    [Google Scholar]
  114. Williams TM. 1999. The evolution of cost efficient swimming in marine mammals: limits to energetic optimization. Philos. Trans. R. Soc. B 354:193–201
    [Google Scholar]
  115. Williams TM. 2006. Physiological and ecological consequences of extreme body size in whales. In Whales, Whaling, and Ocean Ecosystems JA Estes, DP DeMaster, DF Doak, TM Williams, RL Brownell, pp. 191–201 Berkeley: Univ. Calif. Press
    [Google Scholar]
  116. Williams TM, Haun J, Davis RW, Fuiman LA, Kohin S. 2001. A killer appetite: metabolic consequences of carnivory in marine mammals. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 129:785–96
    [Google Scholar]
  117. Williams TM, Maresh JL 2015. Exercise energetics. Marine Mammal Physiology: Requisites for Ocean Living MA Castellini, J-A Mellish 47–68. Boca Raton, FL: CRC Press
    [Google Scholar]
  118. Williams TM, Peter-Heide Jørgensen M, Pagano AM, Bryce CM. 2020. Hunters versus hunted: new perspectives on the energetic costs of survival at the top of the food chain. Funct. Ecol. 34:2015–29
    [Google Scholar]
  119. Winfield ZC, Mansouri F, Potter CW, Sabin R, Trumble SJ, Usenko S. 2020. Eighty years of chemical exposure profiles of persistent organic pollutants reconstructed through baleen whale earplugs. Sci. Total Environ. 737:139564
    [Google Scholar]
  120. Wisniewska DM, Johnson M, Teilmann J, Rojano-Doñate L, Shearer J et al. 2016. Ultra-high foraging rates of harbor porpoises make them vulnerable to anthropogenic disturbance. Curr. Biol. 26:1441–46
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102220-025458
Loading
/content/journals/10.1146/annurev-ecolsys-102220-025458
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error