1932

Abstract

Forbs are important contributors to species diversity and ecosystem functions in low-latitude grasslands, where they support diverse herbivore communities and millions of people. Native forb assemblages tolerate disturbances and physiological stressors (fire, herbivory, drought, and frost) that together have shaped their exceptional functional diversity. Yet, compared to trees and grasses, forbs have received much less attention in grassland studies until recently. Here, we review forb-centric literature to illustrate that land conversion and responsible management of fire and herbivory are crucial to maintaining forb diversity. Management practices promoting forb diversity offer () high-quality food items and medicinal resources that support rural livelihoods and animal diversity (from wild ungulates and livestock to fossorial rodents and insects), including their adaptive foraging patterns, and () carbon and nutrient inputs that regulate belowground processes. Improved understanding of the above- and belowground regeneration strategies of forbs is critical for restoration and conservation to secure their services in future old-growth tropical and subtropical grasslands.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-102722-022331
2024-11-04
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/55/1/annurev-ecolsys-102722-022331.html?itemId=/content/journals/10.1146/annurev-ecolsys-102722-022331&mimeType=html&fmt=ahah

Literature Cited

  1. Aguirre-Gutiérrez J, Stevens N, Berenguer E. 2023.. Valuing the functionality of tropical ecosystems beyond carbon. . Trends Ecol. Evol. 38:(12):110911
    [Crossref] [Google Scholar]
  2. Alahakoon AMDB, Pushpakumara EMAB, Ellepola G, Ranawana KB. 2014.. Food and feeding patterns of Asian elephants in Udawalawe National Park, Sri Lanka. . Gajah 41:(32):311
    [Google Scholar]
  3. Alves RJV, Da Silva NG, Fernandes Júnior AJ, Guimarães AR. 2013.. Longevity of the Brazilian underground tree Jacaranda decurrens Cham. . An. Acad. Bras. Cienc. 85:(2):67177
    [Crossref] [Google Scholar]
  4. Andersen DC. 1987.. Below-ground herbivory in natural communities: a review emphasizing fossorial animals. . Q. Rev. Biol. 62:(3):26185
    [Crossref] [Google Scholar]
  5. Anderson TM, Hepler SA, Holdo RM, Donaldson JE, Erhardt RJ, et al. 2024.. Interplay of competition and facilitation in grazing succession by migrant Serengeti herbivores. . Science 383:(6684):78288
    [Crossref] [Google Scholar]
  6. Appezzato-da-Glória B, Cury G, Soares MKM, Rocha R, Hayashi AHH. 2008.. Underground systems of Asteraceae species from the Brazilian Cerrado. . J. Torrey Bot. Soc. 135:(1):10313
    [Crossref] [Google Scholar]
  7. Archibald S, Hempson GP, Lehmann C. 2019.. A unified framework for plant life-history strategies shaped by fire and herbivory. . New Phytol. 224:(4):1490503
    [Crossref] [Google Scholar]
  8. Augustine DJ, Wigley BJ, Ratnam J, Kibet S, Nyangito M, Sankaran M. 2019.. Large herbivores maintain a two-phase herbaceous vegetation mosaic in a semi-arid savanna. . Ecol. Evol. 9:(22):1277988
    [Crossref] [Google Scholar]
  9. Bai Y-F, Cotrufo MF. 2022.. Grassland soil carbon sequestration: current understanding, challenges, and solutions. . Science 377::6038
    [Crossref] [Google Scholar]
  10. Bartušková A, Lubbe FC, Qian J, Herben T, Klimešová J. 2022.. The effect of moisture, nutrients and disturbance on storage organ size and persistence in temperate herbs. . Funct. Ecol. 36:(2):31425
    [Crossref] [Google Scholar]
  11. Belsky AJ, Mwonga SM, Duxbury JM. 1993.. Effects of widely spaced trees and livestock grazing on understory environments in tropical savannas. . Agrofor. Syst. 24:(1):120
    [Crossref] [Google Scholar]
  12. Bengtsson J, Bullock JM, Egoh B, Everson C, Everson T, et al. 2019.. Grasslands—more important for ecosystem services than you might think. . Ecosphere 10:(2):e02582
    [Crossref] [Google Scholar]
  13. Berasategui JA, Žerdoner Čalasan A, Zizka A, Kadereit G. 2023.. Global distribution, climatic preferences and photosynthesis-related traits of C4 eudicots and how they differ from those of C4 grasses. . Ecol. Evol. 13:(11):e10720
    [Crossref] [Google Scholar]
  14. Biro A, Wong MY, Zhou Y, Batterman SA, Staver AC. 2024.. Nitrogen and phosphorus availability alters tree-grass competition intensity in savannas. . J. Ecol. 112:(5):102638
    [Crossref] [Google Scholar]
  15. Bombo AB, Appezzato-da-Glória B, Fidelis A. 2022.. Fire exclusion changes belowground bud bank and bud-bearing organ composition jeopardizing open savanna resilience. . Oecologia 199:(1):15364
    [Crossref] [Google Scholar]
  16. Bond WJ. 2008.. What limits trees in C4 grasslands and savannas?. Annu. Rev. Ecol. Evol. Syst. 39::64159
    [Crossref] [Google Scholar]
  17. Bond WJ, Parr CL. 2010.. Beyond the forest edge: ecology, diversity and conservation of the grassy biomes. . Biol. Cons. 143:(10):2395404
    [Crossref] [Google Scholar]
  18. Bond WJ, Silander JA Jr., Ranaivonasy J, Ratsirarson J. 2008.. The antiquity of Madagascar's grasslands and the rise of C4 grassy biomes. . J. Biogeogr. 35:(10):174358
    [Crossref] [Google Scholar]
  19. Bond WJ, Stevens N, Midgley GF, Lehmann CER. 2019.. The trouble with trees: afforestation plans for Africa. . Trends Ecol. Evol. 34:(11):96365
    [Crossref] [Google Scholar]
  20. Botha M, Siebert SJ, van den Berg J. 2017.. Grass abundance maintains positive plant–arthropod diversity relationships in maize fields and margins in South Africa. . Agric. For. Entomol. 19:(2):15462
    [Crossref] [Google Scholar]
  21. Botha M, Siebert SJ, van den Berg J, Ellis S, Greyvenstein BM. 2018.. Diversity patterns of selected predaceous arthropod groups in maize fields and margins in South African Highveld grassland. . Agric. For. Entomol. 20:(4):46175
    [Crossref] [Google Scholar]
  22. Boutton TW, Tieszen LL, Imbamba SK. 1988.. Seasonal changes in the nutrient content of East African grassland vegetation. . Afr. J. Ecol. 26:(2):10315
    [Crossref] [Google Scholar]
  23. Bråthen KA, Pugnaire FI, Bardgett RD. 2021.. The paradox of forbs in grasslands and the legacy of the mammoth steppe. . Front. Ecol. Environ. 19:(10):58492
    [Crossref] [Google Scholar]
  24. Bredenkamp GJ, Spada F, Kazmierczak E. 2002.. On the origin of northern and southern hemisphere grasslands. . Plant Ecol. 163::20929
    [Crossref] [Google Scholar]
  25. Bremer LL, Farley KA. 2010.. Does plantation forestry restore biodiversity or create green deserts? A synthesis of the effects of land-use transitions on plant species richness. . Biodivers. Conserv. 19:(14):3893915
    [Crossref] [Google Scholar]
  26. Brooks KJ, Setterfield SA, Douglas MM. 2010.. Exotic grass invasions: applying a conceptual framework to the dynamics of degradation and restoration in Australia's tropical savannas. . Restor Ecol. 18:(2):18897
    [Crossref] [Google Scholar]
  27. Buisson E, Archibald S, Fidelis A, Suding KN. 2022.. Ancient grasslands guide ambitious goals in grassland restoration. . Science 377:(6606):59498
    [Crossref] [Google Scholar]
  28. Buisson E, Fidelis A, Overbeck GE, Schmidt IB, Durigan G, et al. 2021.. A research agenda for the restoration of tropical and subtropical grasslands and savannas. . Restor. Ecol. 29:(S1):e13292
    [Crossref] [Google Scholar]
  29. Carbutt C, Kirkman K. 2022.. Ecological grassland restoration—a South African perspective. . Land 11:(4):575
    [Crossref] [Google Scholar]
  30. Case MF, Nippert JB, Holdo RM, Staver AC. 2020.. Root-niche separation between savanna trees and grasses is greater on sandier soils. . J. Ecol. 108:(6):2298308
    [Crossref] [Google Scholar]
  31. Chamane S, Kirkman KP, Morris C, O'Connor T. 2017a.. What are the long-term effects of high-density, short-duration stocking on the soils and vegetation of mesic grassland in South Africa?. Afr. J. Range Forage Sci. 34:(2):11121
    [Crossref] [Google Scholar]
  32. Chamane S, Kirkman KP, Morris C, O'Connor T. 2017b.. Does high-density stocking affect perennial forbs in mesic grassland?. Afr. J. Range Forage Sci. 34:(2):13342
    [Crossref] [Google Scholar]
  33. Chamane S, Kirkman KP, Morris C, O'Connor TG. 2019.. Response of three mesic South African perennial grassland forbs to defoliation and competition. . Afr. J. Range Forage Sci. 36:(4):19195
    [Crossref] [Google Scholar]
  34. Cilliers SS, Siebert SJ, Du Toit MJ, Barthel S, Mishra S, et al. 2018.. Garden ecosystem services of Sub-Saharan Africa and the role of health clinic gardens as social-ecological systems. . Landsc. Urban Plan. 180::294307
    [Crossref] [Google Scholar]
  35. Clark VR, Burrows JE, Turpin BC, Balkwill K, Lötter M, Siebert SJ. 2022.. The Limpopo–Mpumalanga–Eswatini Escarpment—extra-ordinary endemic plant richness and extinction risk in a summer rainfall montane region of southern Africa. . Front. Ecol. Evol. 10::765854
    [Crossref] [Google Scholar]
  36. Coverdale TC, O'Connell RD, Hutchinson MC, Savagian A, Kartzinel TR, et al. 2021.. Large herbivores suppress liana infestation in an African savanna. . PNAS 118:(41):e2101676118
    [Crossref] [Google Scholar]
  37. Damasceno G, Souza L, Pivello VR, Gorgone-Barbosa E, Giroldo PZ, Fidelis A. 2018.. Impact of invasive grasses on Cerrado under natural regeneration. . Biol. Inv. 20:(12):362129
    [Crossref] [Google Scholar]
  38. Dayaram A, Witkowski ETF, Raimondo DC, Bamford MK. 2020.. Carbon-14 dating when there's no ring on it: age of four Pondoland grassland geoxyles and lessons learned. . S. Afr. J. Bot. 132::41522
    [Crossref] [Google Scholar]
  39. Dayrell RLC, Garcia QS, Negreiros D, Baskin CC, Baskin JM, Silveira FAO. 2017.. Phylogeny strongly drives seed dormancy and quality in a climatically buffered hotspot for plant endemism. . Ann. Bot. 119:(2):26777
    [Crossref] [Google Scholar]
  40. de Villiers MS. 1993.. A comparison of subterranean herbivory by fossorial and terrestrial mammals. . Trans. R. Soc. S. Afr. 48:(2):25764
    [Crossref] [Google Scholar]
  41. Dresseno ALP, Guido A, Balogianni V, Overbeck GE. 2018.. Negative effects of an invasive grass, but not of native grasses, on plant species richness along a cover gradient. . Aust. Ecol. 43:(8):94954
    [Crossref] [Google Scholar]
  42. du Toit JT. 2003.. Large herbivores and savanna heterogeneity. . In The Kruger Experience: Ecology and Management of Savanna Heterogeneity, ed. JT du Toit, KH Rogers, HC Biggs , pp. 292309. Washington, DC:: Island
    [Google Scholar]
  43. du Toit MJ, du Preez C, Cilliers SS. 2021.. Plant diversity and conservation value of wetlands along a rural–urban gradient. . Bothalia 51:(1). https://doi.org/10.38201/btha.abc.v51.i1.4
    [Crossref] [Google Scholar]
  44. Dubey NK, Kumar R, Tripathi P. 2004.. Global promotion of herbal medicine: India's opportunity. . Curr. Sci. 86:(1):3741
    [Google Scholar]
  45. Edwards E, Osborne C, Strömberg C, Smith S, C4 Grasses Consortium, et al. 2010.. The origins of C4 grasslands: integrating evolutionary and ecosystem science. . Science 328:(5978):58791
    [Crossref] [Google Scholar]
  46. Endress BA, Averett JP, Steinmetz S, Quaempts EJ. 2022.. Forgotten forbs: Standard vegetation surveys underrepresent ecologically and culturally important forbs in a threatened grassland ecosystem. . Conserv. Sci. Pract. 4:(10):e12813
    [Crossref] [Google Scholar]
  47. Entsminger ED, Jones JC, Guyton JW, Strickland BK, Leopold BD. 2017.. Evaluation of mowing frequency on right-of-way plant communities in Mississippi. . J. Fish Wildl. Manag. 8:(1):12539
    [Crossref] [Google Scholar]
  48. Eskelinen A, Harpole WS, Jessen MT, Virtanen R, Hautier Y. 2022.. Light competition drives herbivore and nutrient effects on plant diversity. . Nature 611:(7935):3015
    [Crossref] [Google Scholar]
  49. Fensham RJ, Silcock JL, Firn J. 2014.. Managed livestock grazing is compatible with the maintenance of plant diversity in semidesert grasslands. . Ecol. Appl. 24:(3):50317
    [Crossref] [Google Scholar]
  50. Ferraro A, Silva GS, Martins AR, de Stefano Piedade SM, Fidelis A, Appezzato-da-Glória B. 2022.. Seasonality affects the below-ground bud bank dynamics of the Cerrado. . J. Veg. Sci. 33:(6):e13165
    [Crossref] [Google Scholar]
  51. Ferreira PMA, Boldrini II. 2011.. Potential reflection of distinct ecological units in plant endemism categories. . Conserv. Biol. 25:(4):67279
    [Crossref] [Google Scholar]
  52. Fidelis A, Appezzato-da-Glória B, Pillar VD, Pfadenhauer J. 2014.. Does disturbance affect bud bank size and belowground structures diversity in Brazilian subtropical grasslands?. Flora Morphol. Distrib. Funct. Ecol. Plants. 209:(2):11016
    [Crossref] [Google Scholar]
  53. Fidelis A, Blanco C. 2014.. Does fire induce flowering in Brazilian subtropical grasslands?. Appl. Veg. Sci. 17:(4):69099
    [Crossref] [Google Scholar]
  54. Fidelis A, Blanco C, Müller S, Pillar VD, Pfadenhauer J. 2012.. Short-term changes caused by fire and mowing in Brazilian Campos grasslands with different long-term fire histories. . J. Veg. Sci. 23::55262
    [Crossref] [Google Scholar]
  55. Fidelis A, Zirondi HL. 2021.. And after fire, the Cerrado flowers: a review of post-fire flowering in a tropical savanna. . Flora 280::151849
    [Crossref] [Google Scholar]
  56. Forister ML, Novotny V, Panorska AK, Baje L, Basset Y, et al. 2015.. The global distribution of diet breadth in insect herbivores. . PNAS 112:(2):44247
    [Crossref] [Google Scholar]
  57. Fynn RWS, Morris CD, Edwards TJ. 2004.. Effect of burning and mowing on grass and forb diversity in a long-term grassland experiment. . Appl. Veg. Sci. 7:(1):110
    [Crossref] [Google Scholar]
  58. Fynn RWS, Morris CD, Edwards TJ. 2005.. Long-term compositional responses of a South African mesic grassland to burning and mowing. . Appl. Veg. Sci. 8:(1):512
    [Crossref] [Google Scholar]
  59. Fynn RWS, Provenza FD. 2023.. Functional adaptive resources for large herbivores in African savannas: an ecological-gradient based framework. . Front. Conserv. Sci. 4::1133329
    [Crossref] [Google Scholar]
  60. Gallaher TJ, Peterson PM, Soreng RJ, Zuloaga FO, Li DZ, et al. 2022.. Grasses through space and time: an overview of the biogeographical and macroevolutionary history of Poaceae. . J. Syst. Evol. 60:(3):52269
    [Crossref] [Google Scholar]
  61. Ganser D, Mayr B, Albrecht M, Knop E. 2018.. Wildflower strips enhance pollination in adjacent strawberry crops at the small scale. . Ecol. Evol. 8:(23):1177584
    [Crossref] [Google Scholar]
  62. Gerrits GM, Waenink R, Aradottir AL, Buisson E, Dutoit T, et al. 2023.. Synthesis on the effectiveness of soil translocation for plant community restoration. . J. Appl. Ecol. 60:(4):71424
    [Crossref] [Google Scholar]
  63. Gibson-Roy P. 2022.. Australian grassy community restoration: recognizing what is achievable and charting a way forward. . Ecol. Manag. Restor. 23:(1):1024
    [Crossref] [Google Scholar]
  64. Giles AL, de Britto Costa P, Rowland L, Abrahão A, Lobo L, et al. 2022.. How effective is direct seeding to restore the functional composition of neotropical savannas?. Restor. Ecol. 30:(1):e13474
    [Crossref] [Google Scholar]
  65. Gordijn PJ, Everson TM, O'Connor TG. 2018.. Resistance of Drakensberg grasslands to compositional change depends on the influence of fire-return interval and grassland structure on richness and spatial turnover. . Perspect. Plant Ecol. Evol. Syst. 34::2636
    [Crossref] [Google Scholar]
  66. Gordijn PJ, O'Connor TG. 2021.. Multidecadal effects of fire in a grassland biodiversity hotspot: Does pyrodiversity enhance plant diversity?. Ecol. Appl. 31:(6):e02391
    [Crossref] [Google Scholar]
  67. Gornish ES, Ambrozio dos Santos P. 2016.. Invasive species cover, soil type, and grazing interact to predict long-term grassland restoration success. . Restor. Ecol. 24:(2):22229
    [Crossref] [Google Scholar]
  68. Guy TJ, Hutchinson MC, Baldock KCR, Kayser E, Baiser B, et al. 2021.. Large herbivores transform plant-pollinator networks in an African savanna. . Curr. Biol. 31:(13):296471.e5
    [Crossref] [Google Scholar]
  69. Herben T, Chytrý M, Klimešová J. 2016.. A quest for species-level indicator values for disturbance. . J. Veg. Sci. 27:(3):62836
    [Crossref] [Google Scholar]
  70. Hitchmough J. 2009.. Diversification of grassland in urban greenspace with planted, nursery-grown forbs. . J. Landsc. Archit. 4:(1):1627
    [Crossref] [Google Scholar]
  71. Hobohm C, Janišová M, Vahle H-C. 2021.. Development and future of grassland ecosystems: Do we need a paradigm shift?. In Perspectives for Biodiversity and Ecosystems, ed. C Hobohm , pp. 32959. Cham, Switz:.: Springer
    [Google Scholar]
  72. Holdo RM, Nippert JB. 2023.. Linking resource- and disturbance-based models to explain tree–grass coexistence in savannas. . New Phytol. 237:(6):196679
    [Crossref] [Google Scholar]
  73. Howard CC, Landis JB, Beaulieu JM, Cellinese N. 2020.. Geophytism in monocots leads to higher rates of diversification. . New Phytol. 225:(2):102332
    [Crossref] [Google Scholar]
  74. Howard CC, Nanyeni L, Mollel N, Chuba D, Zuntini AR, et al. 2023.. From southern Africa and beyond: historical biogeography of a monocotyledonous bulbous geophyte. . J. Biogeogr. 50:(9):162338
    [Crossref] [Google Scholar]
  75. Hoyle H, Hitchmough J, Jorgensen A. 2017.. All about the ‘wow factor’? The relationships between aesthetics, restorative effect and perceived biodiversity in designed urban planting. . Landsc. Urban Plan 164::10923
    [Crossref] [Google Scholar]
  76. Iganci JRV, Heiden G, Miotto STS, Pennington RT. 2011.. Campos de Cima da Serra: The Brazilian Subtropical Highland Grasslands show an unexpected level of plant endemism. . Bot. J. Linn. Soc. 167:(4):37893
    [Crossref] [Google Scholar]
  77. Jaksic FM. 2023.. Historical ecology and current status of the European hare Lepus europaeus in South America: a new species in new countries. . Stud. Neotrop. Fauna Environ. 59:(2): 474:501
    [Crossref] [Google Scholar]
  78. James PB, Wardle J, Steel A, Adams J. 2018.. Traditional, complementary and alternative medicine use in Sub-Saharan Africa: a systematic review. . BMJ Glob. Health 3:(5):e000895
    [Crossref] [Google Scholar]
  79. Jaurena M, Durante M, Devincenzi T, Savian JV, Bendersky D, et al. 2021.. Native grasslands at the core: a new paradigm of intensification for the Campos of southern South America to increase economic and environmental sustainability. . Front. Sustain. Food Syst. 5::547834
    [Crossref] [Google Scholar]
  80. Johnson I, Curry C. 2017.. The story of Watsonia palustris: a new discovery from KwaZulu-Natal. . Veld Flora 103:(1):2023
    [Google Scholar]
  81. Kartzinel TR, Chen PA, Coverdale TC, Erickson DL, Kress WJ, et al. 2015.. DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. . PNAS 112:(26):801924
    [Crossref] [Google Scholar]
  82. Kemp ME, Boville AE, Carneiro CM, Jacisin JJ, Law CJ, et al. 2023.. Looking back for the future: the ecology of terrestrial communities through the lens of conservation paleobiology. . Annu. Rev. Ecol. Evol. Syst. 54::25982
    [Crossref] [Google Scholar]
  83. Kirkman KP, Fynn RWS, McGranahan D, O'Reagain PJ, Dugmore T. 2023.. Future-proofing extensive livestock production in subtropical grasslands and savannas. . Anim. Front. 13:(5):2332
    [Crossref] [Google Scholar]
  84. Klimešová J, Herben T. 2024.. Belowground morphology as a clue for plant response to disturbance and productivity in a temperate flora. . New Phytol. 242::6176
    [Crossref] [Google Scholar]
  85. Klimešová J, Martínková J, Bartušková A, Ott JP. 2023.. Belowground plant traits and their ecosystem functions along aridity gradients in grasslands. . Plant Soil. 487:(1–2):3948
    [Crossref] [Google Scholar]
  86. Krätli S, Schareika N. 2010.. Living off uncertainty: the intelligent animal production of dryland pastoralists. . Eur. J. Dev. Res. 22:(5):60522
    [Crossref] [Google Scholar]
  87. Kutt AS, Kemp JE. 2012.. Native plant diversity in tropical savannas decreases when exotic pasture grass cover increases. . Rangel J. 34:(2):18389
    [Crossref] [Google Scholar]
  88. Kutt AS, Woinarski JCZ. 2007.. The effects of grazing and fire on vegetation and the vertebrate assemblage in a tropical savanna woodland in north-eastern Australia. . J. Trop. Ecol. 23:(1):95106
    [Crossref] [Google Scholar]
  89. Lamont BB, Downes KS. 2011.. Fire-stimulated flowering among resprouters and geophytes in Australia and South Africa. . Plant Ecol. 212::211125
    [Crossref] [Google Scholar]
  90. Landen G, Wrangham R. 2005.. The rise of the hominids as an adaptive shift in fallback foods: plant underground storage organs (USOs) and australopith origins. . J. Hum. Evol. 49:(4):48298
    [Crossref] [Google Scholar]
  91. Landman M, Schoeman DS, Kerley GIH. 2013.. Shift in black rhinoceros diet in the presence of elephant: evidence for competition?. PLOS ONE 8:(7):e69771
    [Crossref] [Google Scholar]
  92. Lavorel S, Colloff MJ, Mcintyre S, Doherty MD, Murphy HT, et al. 2015.. Ecological mechanisms underpinning climate adaptation services. . Glob. Change Biol. 21:(1):1231
    [Crossref] [Google Scholar]
  93. Laycock WA. 1978.. Coevolution of poisonous plants and large herbivores on rangelands. . J. Range Manag. 31:(5):33542
    [Crossref] [Google Scholar]
  94. Linstädter A, Schellberg J, Brüser K, García CAM, Oomen RJ, et al. 2014.. Are there consistent grazing indicators in drylands? Testing plant functional types of various complexity in South Africa's grassland and savanna biomes. . PLOS ONE 9:(8):e104672
    [Crossref] [Google Scholar]
  95. Lubke R, Judd R. 1994.. The Potters Pass Nature Reserve, conserving the eastern Cape coastal grasslands. . Veld Flora 80:(1):1416
    [Google Scholar]
  96. Ludwig F, de Kroon H, Berendse F, Prins HH. 2004.. The influence of savanna trees on nutrient, water and light availability and the understorey vegetation. . Plant Ecol. 170::93105
    [Crossref] [Google Scholar]
  97. Ma S, He F, Tian D, Zou D, Yan Z, et al. 2018.. Variations and determinants of carbon content in plants: a global synthesis. . Biogeosciences 15:(3):693702
    [Crossref] [Google Scholar]
  98. Mander M. 1998.. Marketing of Indigenous Medicinal Plants in South Africa: A Case Study in Kwazulu-Natal. Rome:: Food Agric. Organ. U. N.
    [Google Scholar]
  99. Maurin O, Davies TJ, Burrows JE, Daru BH, Yessoufou K, et al. 2014.. Savanna fire and the origins of the “underground forests” of Africa. . New Phytol. 204:(1):20114
    [Crossref] [Google Scholar]
  100. Mega NO, Guimarães M, Costa MC, Caporale A, Paesi RA, et al. 2020.. Population biology and natural history of the grassland butterfly Euryades corethrus (Papilionidae: Troidini), an endangered species from South American Campos. . J. Insect Conserv. 24:(5):85365
    [Crossref] [Google Scholar]
  101. Mellado M, Villarreal JA, Medina-Morales MA, Arévalo JR, García JE, Meza-Herrera C. 2017.. Seasonal diet composition and forage selectivity of Boer goats in a semi-arid gypsophilous grassland. . Afr. J. Range Forage Sci. 34:(4):19199
    [Crossref] [Google Scholar]
  102. Meller P, Stellmes M, Fidelis A, Finckh M. 2022.. Correlates of geoxyle diversity in Afrotropical grasslands. . J. Biogeogr. 49:(2):33952
    [Crossref] [Google Scholar]
  103. Mokany K, Raison RJ, Prokushkin AS. 2006.. Critical analysis of root:shoot ratios in terrestrial biomes. . Glob. Change Biol. 12:(1):8496
    [Crossref] [Google Scholar]
  104. Moolman J, van den Berg J, Conlong D, Cugala D, Siebert S, Le Ru B. 2014.. Species diversity and distribution of lepidopteran stem borers in South Africa and Mozambique. . J. Appl. Entomol. 138:(1–2):5266
    [Crossref] [Google Scholar]
  105. Morris CD. 2021a.. Buried but unsafe – Defoliation depletes the underground storage organ (USO) of the mesic grassland geophyte, Hypoxis hemerocallidea. . S. Afr. J. Bot. 141::26572
    [Crossref] [Google Scholar]
  106. Morris CD. 2021b.. How biodiversity-friendly is regenerative grazing?. Front. Ecol. Evol. 9::816374
    [Crossref] [Google Scholar]
  107. Morris CD, Scott-Shaw R. 2019.. Potential grazing indicator forbs for two mesic grasslands in South Africa. . Ecol. Indic. 107::105611
    [Crossref] [Google Scholar]
  108. Müller FL, Samuels MI, Cupido CF, Swarts MBV, Amary NM, et al. 2019.. The impacts of season and livestock management strategy on the quality of diets selected by goats and sheep in the semi-arid rangelands of Namaqualand, South Africa. . Afr. J. Range Forage Sci. 36:(2):10514
    [Crossref] [Google Scholar]
  109. Muller M, Siebert SJ, Ntloko BR, Siebert F. 2021.. A floristic assessment of grassland diversity loss in South Africa. . Bothalia 51:(1). https://doi.org/10.38201/btha.abc.v51.i1.11
    [Crossref] [Google Scholar]
  110. Narango DL, Tallamy DW, Shropshire KJ. 2020.. Few keystone plant genera support the majority of Lepidoptera species. . Nat. Commun. 11::5751
    [Crossref] [Google Scholar]
  111. Nerlekar AN, Chorghe AR, Dalavi JV, Kusom RK, Karuppusamy S, et al. 2022.. Exponential rise in the discovery of endemic plants underscores the need to conserve the Indian savannas. . Biotropica 54:(2):40517
    [Crossref] [Google Scholar]
  112. Nerlekar AN, Munje A, Mhaisalkar P, Hiremath AJ, Veldman JW. 2024a.. Tillage agriculture and afforestation threaten tropical savanna plant communities across a broad rainfall gradient in India. . J. Ecol. 112:(1):98109
    [Crossref] [Google Scholar]
  113. Nerlekar AN, Sullivan LL, Brudvig LA. 2024b.. Grassland restorations must better foster forbs to facilitate high biodiversity. . Rest. Ecol. https://doi.org/10.1111/rec.14214
    [Google Scholar]
  114. Nerlekar AN, Veldman JW. 2020.. High plant diversity and slow assembly of old-growth grasslands. . PNAS 117:(31):1855056
    [Crossref] [Google Scholar]
  115. Nippert JB, Knapp AK. 2007.. Linking water uptake with rooting patterns in grassland species. . Oecologia 153:(2):26172
    [Crossref] [Google Scholar]
  116. Ntloko BR, Siebert SJ, Mokotjomela TM. 2022.. Rehabilitation of kimberlite tailings in the afro-alpine zone of Lesotho: seed germination and plant performance of native grassland species across different topsoil mixtures. . Restor. Ecol. 30:(3):e13528
    [Crossref] [Google Scholar]
  117. Ntuli NR. 2019.. Nutrient content of scarcely known wild leafy vegetables from northern KwaZulu-Natal, South Africa. . S. Afr. J. Bot. 127::1924
    [Crossref] [Google Scholar]
  118. O'Connor TG, Roux PW. 1995.. Vegetation changes (1949–71) in a semi-arid, grassy dwarf shrubland in the Karoo, South Africa: influence of rainfall variability and grazing by sheep. . J. Appl. Ecol. 32:(3):61226
    [Crossref] [Google Scholar]
  119. Odadi WO, Karachi MK, Abdulrazak SA, Young TP. 2013.. Protein supplementation reduces non-grass foraging by a primary grazer. . Ecol. Appl. 23:(2):45563
    [Crossref] [Google Scholar]
  120. Oleques SS, Vizentin-Bugoni J, Overbeck GE. 2019.. Influence of grazing intensity on patterns and structuring processes in plant–pollinator networks in a subtropical grassland. . Arthropod. Plant Interact. 13:(5):75770
    [Crossref] [Google Scholar]
  121. Olivier BW. 2020.. Surface footprint of mining in South African grasslands: proximity and threat to agriculture and biodiversity. PhD Thesis , Univ. Pretoria, Pretoria, S. Afr:.
    [Google Scholar]
  122. Ordóñez-Parra CA, Medeiros NF, Dayrell RLC, Le Stradic S, Negreiros D, et al. 2023.. Seed functional ecology in Brazilian rock outcrop vegetation: an integrative synthesis. . bioRxiv 2023.03.21.533674. https://doi.org/10.1101/2023.03.21.533674
  123. Orzell SL, Bitomský M, Bridges EL, Budach B, Klimešová J, et al. 2024.. Florida's fiery subtropical grasslands: growth forms, belowground organs, and post-fire recovery strategies. . Folia Geobot. 58::20930
    [Crossref] [Google Scholar]
  124. Osborne CP, Salomaa A, Kluyver TA, Visser V, Kellogg EA, et al. 2014.. A global database of C4 photosynthesis in grasses. . New Phytol. 204:(3):44146
    [Crossref] [Google Scholar]
  125. Ottaviani G, Klimešová J, Charles-Dominique T, Millan M, Harris T, Silveira FAO. 2024.. The underestimated global importance of plant belowground coarse organs in open biomes for ecosystem functioning and conservation. . Perspect. Ecol. Conserv. 22:(2):11821
    [Google Scholar]
  126. Overbeck GE, Pfadenhauer J. 2007.. Adaptive strategies in burned subtropical grassland in southern Brazil. . Flora 202:(1):2749
    [Crossref] [Google Scholar]
  127. Owen-Smith N, Cooper SM. 1989.. Nutritional ecology of a browsing ruminant, the kudu (Tragelaphus strepsiceros), through the seasonal cycle. . J. Zool. 219:(1):2943
    [Crossref] [Google Scholar]
  128. Pansu J, Guyton JA, Potter AB, Atkins JL, Daskin JH, et al. 2019.. Trophic ecology of large herbivores in a reassembling African ecosystem. . J. Ecol. 107:(3):135576
    [Crossref] [Google Scholar]
  129. Pansu J, Hutchinson MC, Anderson TM, te Beest M, Begg CM, et al. 2022.. The generality of cryptic dietary niche differences in diverse large-herbivore assemblages. . PNAS 119:(35):e2204400119
    [Crossref] [Google Scholar]
  130. Parr CL, Lehmann CER, Bond WJ, Hoffmann WA, Andersen AN. 2014.. Tropical grassy biomes: misunderstood, neglected, and under threat. . Trends Ecol. Evol. 24::20513
    [Crossref] [Google Scholar]
  131. Patel DK. 2015.. Diversity of underground medicinal and aromatic plants and their regeneration for further ex situ conservation in herbal garden. . J. Biodivers. Endanger. Species 3:(1):1000152
    [Google Scholar]
  132. Pausas JG, Lamont BB, Paula S, Appezzato-da-Glória B, Fidelis A. 2018.. Unearthing belowground bud banks in fire-prone ecosystems. . New Phytol. 217:(4):143548
    [Crossref] [Google Scholar]
  133. Pilon NAL, Campos BH, Durigan G, Cava MGB, Rowland L, et al. 2023.. Challenges and directions for open ecosystems biodiversity restoration: an overview of the techniques applied for Cerrado. . J. Appl. Ecol. 60:(5):84958
    [Crossref] [Google Scholar]
  134. Pilon NAL, Cava MGB, Hoffmann WA, Abreu RCR, Fidelis A, Durigan G. 2021.. The diversity of post-fire regeneration strategies in the cerrado ground layer. . J. Ecol. 109::15466
    [Crossref] [Google Scholar]
  135. Potter AB, Hutchinson MC, Pansu J, Wursten B, Long RA, et al. 2022.. Mechanisms of dietary resource partitioning in large-herbivore assemblages: a plant-trait-based approach. . J. Ecol. 110:(4):81732
    [Crossref] [Google Scholar]
  136. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 2010.. Global pollinator declines: trends, impacts and drivers. . Trends Ecol. Evol. 25:(6):34553
    [Crossref] [Google Scholar]
  137. Pryke JS, Roets F, Samways MJ. 2016.. Wild herbivore grazing enhances insect diversity over livestock grazing in an African grassland system. . PLOS ONE 11:(10):e0164198
    [Crossref] [Google Scholar]
  138. Reid AM, Murphy BP, Vigilante T, Wunambal Gaambera Aborig. Corp., Bowman DMJS. 2023.. Pyric herbivory and the nexus between forage, fire and native and introduced large grazing herbivores in Australian tropical savannas. . Ecosystems 26:(3):61026
    [Crossref] [Google Scholar]
  139. Ripley B, Visser V, Christin PA, Archibald S, Martin T, Osborne C. 2015.. Fire ecology of C3 and C4 grasses depends on evolutionary history and frequency of burning but not photosynthetic type. . Ecology 96:(10):267991
    [Crossref] [Google Scholar]
  140. Ripley BS, Bopape TM, Vetter S. 2022.. A doubling of atmospheric CO2 mitigates the effects of severe drought on maize through the preservation of soil water. . Ann. Bot. 129:(5):60718
    [Crossref] [Google Scholar]
  141. Rodrigues CA, Fidelis A. 2022.. Should we burn the Cerrado? Effects of fire frequency on open savanna plant communities. . J. Veg. Sci. 33:(6):e13159
    [Crossref] [Google Scholar]
  142. Rowe-Rowe DT. 1983.. Habitat preferences of five Drakensberg antelopes. . S. Afr. J. Wildl. Res. 13:(1):18
    [Google Scholar]
  143. Rozen-Rechels D, te Beest M, Dew LA, le Roux E, Druce DJ, Cromsigt JPGM. 2017.. Contrasting impacts of an alien invasive shrub on mammalian savanna herbivores revealed on a landscape scale. . Divers. Distrib. 23:(6):65666
    [Crossref] [Google Scholar]
  144. Sankaran M, Ratnam J, Hanan NP. 2004.. Tree–grass coexistence in savannas revisited – insights from an examination of assumptions and mechanisms invoked in existing models. . Ecol. Lett. 7:(6):48090
    [Crossref] [Google Scholar]
  145. Scheiter S, Pfeiffer M, Behn K, Ayisi K, Siebert F, Linstädter A. 2024.. Managing southern African rangeland systems in the face of drought: a synthesis of observation, experimentation, and modelling for policy and decision support. . In Sustainability of Southern African Ecosystems Under Global Change: Science for Management and Policy Interventions, ed. GP von Maltitz, GF Midgley, J Veitch, C Brümmer, RP Rötter, et al. , pp. 43970. Ecol. Stud. 248 . Cham, Switz:.: Springer
    [Google Scholar]
  146. Scholes RJ, Archer SR. 1997.. Tree-grass interactions in savannas. . Annu. Rev. Ecol. Syst. 28::51744
    [Crossref] [Google Scholar]
  147. Schröder R, Kiehl K. 2020.. Ecological restoration of an urban demolition site through introduction of native forb species. . Urban For. Urban Green. 47::126509
    [Crossref] [Google Scholar]
  148. Scott-Shaw R, Morris CD. 2015.. Grazing depletes forb species diversity in the mesic grasslands of KwaZulu-Natal, South Africa. . Afr. J. Range Forage Sci. 32:(1):2131
    [Crossref] [Google Scholar]
  149. Shackleton SE, Dzerefos CM, Shackleton CM, Mathabela FR. 1998.. Use and trading of wild edible herbs in the central Lowveld Savanna Region, South Africa. . Econ. Bot. 52:(3):25159
    [Crossref] [Google Scholar]
  150. Siebert F, Dreber N. 2019.. Forb ecology research in dry African savannas: knowledge, gaps, and future perspectives. . Ecol. Evol. 9:(13):787591
    [Crossref] [Google Scholar]
  151. Siebert F, Klem J, van Coller H. 2020.. Forb community responses to an extensive drought in two contrasting land-use types of a semi-arid Lowveld savanna. . Afr. J. Range Forage Sci. 37:(1):5364
    [Crossref] [Google Scholar]
  152. Siebert F, Scogings P. 2015.. Browsing intensity of herbaceous forbs across a semi-arid savanna catenal sequence. . S. Afr. J. Bot. 100::6974
    [Crossref] [Google Scholar]
  153. Siebert F, van Staden N, Komape DM, Swemmer AM, Siebert SJ. 2021.. Effects of land-use change on herbaceous vegetation in a semi-arid Mopaneveld savanna. . Bothalia 51:(1). https://doi.org/10.38201/btha.abc.v51.i1.8
    [Google Scholar]
  154. Silveira FAO, Arruda AJ, Bond W, Durigan G, Fidelis A, et al. 2020.. Myth-busting tropical grassy biome restoration. . Restor. Ecol. 28:(5):106773
    [Crossref] [Google Scholar]
  155. Skaldina O. 2020.. Insects associated with sweet fennel: beneficial visitors attracted by a generalist plant. . Arthropod. Plant Interact. 14:(3):399407
    [Crossref] [Google Scholar]
  156. Slooten E, Jordaan E, White JDM, Archibald S, Siebert F. 2023.. South African grasslands and ploughing: outlook for agricultural expansion in Africa. . S. Afr. J. Sci. 119:(9–10). https://doi.org/10.17159/sajs.2023/15540
    [Google Scholar]
  157. Smith RJ, Goodman PS, Matthews WS. 2006.. Systematic conservation planning: a review of perceived limitations and an illustration of the benefits, using a case study from Maputaland, South Africa. . Oryx 40:(4):40010
    [Crossref] [Google Scholar]
  158. Staver AC, Abraham JO, Hempson GP, Karp AT, Faith JT. 2021.. The past, present, and future of herbivore impacts on savanna vegetation. . J. Ecol. 109::280422
    [Crossref] [Google Scholar]
  159. Stein C, Unsicker SS, Kahmen A, Wagner M, Audorff V, et al. 2010.. Impact of invertebrate herbivory in grasslands depends on plant species diversity. . Ecology 91:(6):163950
    [Crossref] [Google Scholar]
  160. Stevens N, Bond W. 2024.. A trillion trees: carbon capture or fuelling fires?. Trends Ecol. Evol. 39:(1):14
    [Crossref] [Google Scholar]
  161. Stevens N, Bond W, Feurdean A, Lehmann CER. 2022.. Grassy ecosystems in the Anthropocene. . Annu. Rev. Environ. Resour. 47::26189
    [Crossref] [Google Scholar]
  162. Strassburg BBN, Brooks T, Feltran-Barbieri R, Iribarrem A, Crouzeilles R, et al. 2017.. Moment of truth for the Cerrado hotspot. . Nat. Ecol. Evol. 1::0099
    [Crossref] [Google Scholar]
  163. te Beest M, Cromsigt JPGM, Ngobese J, Olff H. 2012.. Managing invasions at the cost of native habitat? An experimental test of the impact of fire on the invasion of Chromolaena odorata in a South African savanna. . Biol. Invasions. 14:(3):60718
    [Crossref] [Google Scholar]
  164. te Beest M, Esler KJ, Richardson DM. 2015.. Linking functional traits to impacts of invasive plant species: a case study. . Plant Ecol. 216:(2):293305
    [Crossref] [Google Scholar]
  165. Teixeira J, Souza L, Le Stradic S, Fidelis A. 2022.. Fire promotes functional plant diversity and modifies soil carbon dynamics in tropical savanna. . Sci. Total Environ. 812::152317
    [Crossref] [Google Scholar]
  166. Temme AA, Liu JC, van Hal J, Cornwell WK, Cornelissen JHC, Aerts R. 2017.. Increases in CO2 from past low to future high levels result in “slower” strategies on the leaf economic spectrum. . Perspect. Plant Ecol. Evol. Syst. 29::4150
    [Crossref] [Google Scholar]
  167. Twilley D, Rademan S, Lall N. 2020.. A review on traditionally used South African medicinal plants, their secondary metabolites and their potential development into anticancer agents. . J. Ethnopharmacol. 261::13101
    [Crossref] [Google Scholar]
  168. Uys RG, Bond WJ, Everson TM. 2004.. The effect of different fire regimes on plant diversity in southern African grasslands. . Biol. Cons. 118:(4):48999
    [Crossref] [Google Scholar]
  169. van Coller H, Klem J, Siebert F. 2021.. Drought tolerant forb flora of a semi-arid protected savanna in the Lowveld of South Africa. . Bothalia 51:(1). https://doi.org/10.38201/btha.abc.v51.i1.10
    [Crossref] [Google Scholar]
  170. van Coller H, Siebert F, Scogings PF, Ellis S. 2018.. Herbaceous responses to herbivory, fire and rainfall variability differ between grasses and forbs. . S. Afr. J. Bot. 119::94103
    [Crossref] [Google Scholar]
  171. Van der Walt L, Cilliers SS, Du Toit MJ, Kellner K. 2015.. Conservation of fragmented grasslands as part of the urban green infrastructure: How important are species diversity, functional diversity and landscape functionality?. Urban Ecosyst. 18::87113
    [Crossref] [Google Scholar]
  172. van Wyk BE, van Staden J. 2002.. A review of ethnobotanical research in southern Africa. . S. Afr. J. Bot. 68:(1):113
    [Crossref] [Google Scholar]
  173. Veldman JW, Buisson E, Durigan G, Fernandes GW, Le Stradic S, et al. 2015.. Toward an old-growth concept for grasslands, savannas, and woodlands. . Front. Ecol. Env. 13:(3):15462
    [Crossref] [Google Scholar]
  174. Volenec ZM, Dobson AP. 2020.. Conservation value of small reserves. . Cons. Biol. 34:(1):6679
    [Crossref] [Google Scholar]
  175. Wadley L, Backwell L, D'Errico F, Sievers C. 2020.. Cooked starchy rhizomes in Africa 170 thousand years ago. . Science 367:(6473):8791
    [Crossref] [Google Scholar]
  176. Watson LH, Owen-Smith N. 2000.. Diet composition and habitat selection of eland in semi-arid shrubland. . Afr. J. Ecol. 38:(2):13037
    [Crossref] [Google Scholar]
  177. Wigley BJ, Charles-Dominique T, Hempson GP, Stevens N, te Beest M, et al. 2020.. A handbook for the standardised sampling of plant functional traits in disturbance-prone ecosystems, with a focus on open ecosystems. . Aust. J. Bot. 68:(8):473531
    [Crossref] [Google Scholar]
  178. Wijesooriya SM, Perera GA. 2007.. Ecology and dynamics of the grassland vegetation at Pitawala Patana of the Knuckles Conservation Area, Sri Lanka. . Ceylon J. Sci. 36:(1):3552
    [Google Scholar]
  179. Wilcox KR, Chen A, Avolio ML, Butler EE, Collins S, et al. 2023.. Accounting for herbaceous communities in process-based models will advance our understanding of “grassy” ecosystems. . Glob. Change Biol. 29:(23):645377
    [Crossref] [Google Scholar]
  180. Woodcock BA, Potts SG, Tscheulin T, Pilgrim E, Ramsey AJ, et al. 2009.. Responses of invertebrate trophic level, feeding guild and body size to the management of improved grassland field margins. . J. Appl. Ecol. 46:(4):92029
    [Crossref] [Google Scholar]
  181. Zaloumis NP, Bond WJ. 2011.. Grassland restoration after afforestation: no direction home?. Aust. Ecol. 36:(4):35766
    [Crossref] [Google Scholar]
  182. Zaloumis NP, Bond WJ. 2016.. Reforestation or conservation? The attributes of old growth grasslands in South Africa. . Philos. Trans. R. Soc. B 371:(1703):20150310
    [Crossref] [Google Scholar]
  183. Zanzarini V, Andersen AN, Fidelis A. 2022.. Flammability in tropical savannas: variation among growth forms and seasons in Cerrado. . Biotropica 54:(4):97987
    [Crossref] [Google Scholar]
  184. Zhao Y, Zhang R, Jiang KW, Qi J, Hu Y, et al. 2021.. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. . Mol. Plant 14:(5):74873
    [Crossref] [Google Scholar]
  185. Zhou Y, Bomfim B, Bond WJ, Boutton TW, Case MF, et al. 2023.. Soil carbon in tropical savannas mostly derived from grasses. . Nat. Geosci. 16:(8):71016
    [Crossref] [Google Scholar]
  186. Zirondi HL, Ooi MKJ, Fidelis A. 2021.. Fire-triggered flowering is the dominant post-fire strategy in a tropical savanna. . J. Veg. Sci. 32:(2):e12995
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-102722-022331
Loading
/content/journals/10.1146/annurev-ecolsys-102722-022331
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error