1932

Abstract

Phosphorus (P) limits productivity in many ecosystems and has the potential to constrain the global carbon sink. The magnitude of these effects depends on how climate change and rising CO affect P cycling. Some effects are well established. First, P limitation often constrains CO fertilization, and rising CO often exacerbates P limitation. Second, P limitation and P constraints to CO fertilization are more common in warmer and wetter sites. Models that couple P cycling to vegetation generally capture these outcomes. However, due largely to differences between short-term and long-term dynamics, the patterns observed across climatic gradients do not necessarily indicate how climate change over years to decades will modify P limitation. These annual-to-decadal effects are not well understood. Furthermore, even for the well-understood patterns, much remains to be learned about the quantitative details, mechanisms, and drivers of variability. The interface between empirical and modeling work is particularly ripe for development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ecolsys-110421-102458
2023-11-02
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ecolsys/54/1/annurev-ecolsys-110421-102458.html?itemId=/content/journals/10.1146/annurev-ecolsys-110421-102458&mimeType=html&fmt=ahah

Literature Cited

  1. Achat DL, Pousse N, Nicolas M, Brédoire F, Augusto L 2016. Soil properties controlling inorganic phosphorus availability: general results from a national forest network and a global compilation of the literature. Biogeochemistry 127:2255–72
    [Google Scholar]
  2. Augusto L, Achat DL, Jonard M, Vidal D, Ringeval B. 2017. Soil parent material—a major driver of plant nutrient limitations in terrestrial ecosystems. Glob. Chang. Biol. 23:93808–24
    [Google Scholar]
  3. Austin AT, Vitousek PM. 1998. Nutrient dynamics on a precipitation gradient in Hawai'i. Oecologia 113:4519–29
    [Google Scholar]
  4. Barkley AE, Prospero JM, Mahowald N, Hamilton DS, Popendorf KJ et al. 2019. African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. PNAS 116:3316216–21
    [Google Scholar]
  5. Barrow N. 1983. A mechanistic model for describing the sorption and desorption of phosphate by soil. J. Soil Sci. 34:733–50
    [Google Scholar]
  6. Bateman JB, Chadwick OA, Vitousek PM. 2019. Quantitative analysis of pedogenic thresholds and domains in volcanic soils. Ecosystems 22:71633–49
    [Google Scholar]
  7. Berhe AA, Barnes RT, Six J, Marin-Spiotta E. 2018. Role of soil erosion in biogeochemical cycling of essential elements: carbon, nitrogen, and phosphorus. Annu. Rev. Earth Planet Sci. 46:521–48
    [Google Scholar]
  8. Buendía C, Arens S, Hickler T, Higgins SI, Porada P, Kleidon A. 2014. On the potential vegetation feedbacks that enhance phosphorus availability – insights from a process-based model linking geological and ecological timescales. Biogeosciences 11:3661–83
    [Google Scholar]
  9. Cederholm CJ, Kunze MD, Murota T, Sibatani A. 1999. Pacific salmon carcasses: essential contributions of nutrients and energy for aquatic and terrestrial ecosystems. Fisheries 24:106–15
    [Google Scholar]
  10. Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO. 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397:6719491–97
    [Google Scholar]
  11. Chadwick OA, Gavenda RT, Kelly EF, Ziegler K, Olson CG et al. 2003. The impact of climate on the biogeochemical functioning of volcanic soils. Chem. Geol. 202:3–4195–223
    [Google Scholar]
  12. Chapin FS III, Barsdate RJ, Barel D 1978. Phosphorus cycling in Alaskan coastal tundra: a hypothesis for the regulation of nutrient cycling. Oikos 1:189–99
    [Google Scholar]
  13. Cleveland CC, Houlton BZ, Smith WK, Marklein AR, Reed SC et al. 2013. Patterns of new versus recycled primary production in the terrestrial biosphere. PNAS 110:3112733–37
    [Google Scholar]
  14. Cleveland CC, Townsend AR, Taylor P, Alvarez-Clare S, Bustamante MM et al. 2011. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecol. Lett. 14:9939–47
    [Google Scholar]
  15. Cowie SM, Knippertz P, Marsham JH. 2013. Are vegetation-related roughness changes the cause of the recent decrease in dust emission from the Sahel?. Geophys. Res. Lett. 40:91868–72
    [Google Scholar]
  16. Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA et al. 1995. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76:51407–24
    [Google Scholar]
  17. Cunha HF, Andersen KM, Lugli LF, Santana FD, Aleixo IF et al. 2022. Direct evidence for phosphorus limitation on Amazon forest productivity. Nature 608:7923558–62
    [Google Scholar]
  18. Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD et al. 2013. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:7473672–76
    [Google Scholar]
  19. Deng Q, Hui D, Dennis S, Reddy KC. 2017. Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis. Glob. Ecol. Biogeogr. 26:6713–28
    [Google Scholar]
  20. Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM, Carrillo Y et al. 2012. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytol 196:3807–15
    [Google Scholar]
  21. Du C, Wang X, Zhang M, Jing J, Gao Y. 2019. Effects of elevated CO2 on plant CNP stoichiometry in terrestrial ecosystems: a meta-analysis. Sci. Total Environ. 650:697–708
    [Google Scholar]
  22. Du E, Terrer C, Pellegrini AF, Ahlström A, van Lissa CJ et al. 2020. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13:3221–26Meta-analysis and model analysis of how N and P limitation varies across climate.
    [Google Scholar]
  23. Dukes JS, Chiariello NR, Cleland EE, Moore LA, Shaw MR et al. 2005. Responses of grassland production to single and multiple global environmental changes. PLOS Biol 3:10e319
    [Google Scholar]
  24. Ebersberger D, Niklaus PA, Kandeler E. 2003. Long term CO2 enrichment stimulates N-mineralisation and enzyme activities in calcareous grassland. Soil Biol. Biochem. 35:7965–72
    [Google Scholar]
  25. Ellsworth DS, Anderson IC, Crous KY, Cooke J, Drake JE et al. 2017. Elevated CO2 does not increase Eucalypt forest productivity on a low-phosphorus soil. Nat. Clim. Chang. 7:4279–82CO2 fertilization and P fertilization field experiment in Eucalypt forest.
    [Google Scholar]
  26. Ellsworth DS, Crous KY, De Kauwe MG, Verryckt LT, Goll D et al. 2022. Convergence in phosphorus constraints to photosynthesis in forests around the world. Nat. Commun. 13:15005
    [Google Scholar]
  27. Fay PA, Prober SM, Harpole WS, Knops JM, Bakker JD et al. 2015. Grassland productivity limited by multiple nutrients. Nat. Plants 1:715080
    [Google Scholar]
  28. Finzi AC, DeLucia EH, Schlesinger WH. 2004. Canopy N and P dynamics of a southeastern US pine forest under elevated CO2. Biogeochemistry 69:3363–78
    [Google Scholar]
  29. Finzi AC, Sinsabaugh RL, Long TM, Osgood MP. 2006. Microbial community responses to atmospheric carbon dioxide enrichment in a warm-temperate forest. Ecosystems 9:2215–26
    [Google Scholar]
  30. Fisher JB, Huntzinger DN, Schwalm CR, Sitch S. 2014. Modeling the terrestrial biosphere. Annu. Rev. Environ. Resour. 39:91–123
    [Google Scholar]
  31. Fleischer K, Rammig A, De Kauwe MG, Walker AP, Domingues TF et al. 2019. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 12:973641Multi-model analysis of P constraints on CO2 fertilization in Amazon forest; prelude to Amazon-FACE.
    [Google Scholar]
  32. Forber KJ, Withers PJ, Ockenden MC, Haygarth PM. 2018. The phosphorus transfer continuum: a framework for exploring effects of climate change. Agric. Environ. Lett. 3:1180036
    [Google Scholar]
  33. Frank D, Reichstein M, Bahn M, Thonicke K, Frank D et al. 2015. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Chang. Biol. 21:82861–80
    [Google Scholar]
  34. Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Gregor L et al. 2022. Global carbon budget 2022. Earth Syst. Sci. Data 14:14811–900
    [Google Scholar]
  35. Gao D, Bai E, Li M, Zhao C, Yu K, Hagedorn F. 2020. Responses of soil nitrogen and phosphorus cycling to drying and rewetting cycles: a meta-analysis. Soil Biol. Biochem. 148:107896
    [Google Scholar]
  36. Gao D, Bai E, Yang Y, Zong S, Hagedorn F. 2021. A global meta-analysis on freeze-thaw effects on soil carbon and phosphorus cycling. Soil Biol. Biochem. 159:108283
    [Google Scholar]
  37. Ginoux P, Chin M, Tegen I, Prospero JM, Holben B et al. 2001. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. 106:D1720255–73
    [Google Scholar]
  38. Goll DS, Bauters M, Zhang H, Ciais P, Balkanski Y et al. 2022. Atmospheric phosphorus deposition amplifies carbon sinks in simulations of a tropical forest in Central Africa. New Phytol 237:62054–68
    [Google Scholar]
  39. Goll DS, Brovkin V, Parida BR, Reick CH, Kattge J et al. 2012. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9:93547–69
    [Google Scholar]
  40. Goll DS, Moosdorf N, Hartmann J, Brovkin V. 2014. Climate-driven changes in chemical weathering and associated phosphorus release since 1850: implications for the land carbon balance. Geophys. Res. Lett. 41:103553–58
    [Google Scholar]
  41. Goll DS, Vuichard N, Maignan F, Jornet-Puig A, Sardans J et al. 2017. A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geosci. Model Dev. 10:103745–70
    [Google Scholar]
  42. Goswami S, Fisk MC, Vadeboncoeur MA, Garrison-Johnston M, Yanai RD, Fahey TJ. 2018. Phosphorus limitation of aboveground production in northern hardwood forests. Ecology 99:2438–49
    [Google Scholar]
  43. Hamilton DS, Perron MMG, Bond TC, Bowie AR, Buchholz RR et al. 2022. Earth, wind, fire and pollution: aerosol nutrient sources and impacts on ocean biogeochemistry. Annu. Rev. Mar. Sci. 14:303–30
    [Google Scholar]
  44. Hattas D, Stock WD, Mabusela WT, Green IR. 2005. Phytochemical changes in leaves of subtropical grasses and fynbos shrubs at elevated atmospheric CO2 concentrations. Glob. Planet. Chang. 47:2–4181–92
    [Google Scholar]
  45. He M, Dijkstra FA. 2014. Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytol 204:4924–31
    [Google Scholar]
  46. Helfenstein J, Tamburini F, von Sperber C, Massey MS, Pistocchi C et al. 2018. Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil. Nat. Commun. 9:13226Novel multi-technique analysis of P cycling along a precipitation gradient; new insights into standard measurements.
    [Google Scholar]
  47. Henry HA, Juarez JD, Field CB, Vitousek PM. 2005. Interactive effects of elevated CO2, N deposition and climate change on extracellular enzyme activity and soil density fractionation in a California annual grassland. Glob. Chang. Biol. 11:101808–15
    [Google Scholar]
  48. Herndon EM, Kinsman-Costello L, Duroe KA, Mills J, Kane ES et al. 2019. Iron (oxyhydr)oxides serve as phosphate traps in tundra and boreal peat soils. J. Geophys. Res. 124:2227–46
    [Google Scholar]
  49. Hou E, Chen C, Luo Y, Zhou G, Kuang Y et al. 2018. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Glob. Chang. Biol. 24:83344–56Meta-analysis of temperature and precipitation effects on soil P cycling.
    [Google Scholar]
  50. Hou E, Wen D, Jiang L, Luo X, Kuang Y et al. 2021. Latitudinal patterns of terrestrial phosphorus limitation over the globe. Ecol. Lett. 24:71420–31
    [Google Scholar]
  51. Hu W, Tan J, Shi X, Lock TR, Kallenbach RL, Yuan Z. 2022. Nutrient addition and warming alter the soil phosphorus cycle in grasslands: a global meta-analysis. J. Soils Sediments 22:2608–19
    [Google Scholar]
  52. Huang W, Houlton BZ, Marklein AR, Liu J, Zhou G. 2015. Plant stoichiometric responses to elevated CO2 vary with nitrogen and phosphorus inputs: evidence from a global-scale meta-analysis. Sci. Rep. 5:118225
    [Google Scholar]
  53. Jenny H. 1941. Factors of Soil Formation: A System of Pedology New York: Dover Publ. Inc.
    [Google Scholar]
  54. Jiang M, Caldararu S, Zhang H, Fleischer K, Crous KY et al. 2020. Low phosphorus supply constrains plant responses to elevated CO2: a meta-analysis. Glob. Chang. Biol. 26:105856–73Meta-analysis of combined CO2 and P fertilization experiments in pots.
    [Google Scholar]
  55. Kiedrzyńska E, Kiedrzyński M, Zalewski M. 2008. Flood sediment deposition and phosphorus retention in a lowland river floodplain: impact on water quality of a reservoir, Sulejów, Poland. Ecohydrol. Hydrobiol. 8:2–4281–89
    [Google Scholar]
  56. Kou-Giesbrecht S, Arora V, Seiler C, Arneth A, Falk S et al. 2023. Evaluating nitrogen cycling in terrestrial biosphere models: a disconnect between the carbon and nitrogen cycles. Earth Syst. Dynam 14:476795
    [Google Scholar]
  57. Lambers H, Bishop JG, Hopper SD, Laliberté E, Zúñiga-Feest A. 2012. Phosphorus-mobilization ecosystem engineering: the roles of cluster roots and carboxylate exudation in young P-limited ecosystems. Ann. Bot. 110:2329–48
    [Google Scholar]
  58. Lombardozzi DL, Smith NG, Cheng SJ, Dukes JS, Sharkey TD et al. 2018. Triose phosphate limitation in photosynthesis models reduces leaf photosynthesis and global terrestrial carbon storage. Environ. Res. Lett. 13:7074025
    [Google Scholar]
  59. Lun F, Liu J, Ciais P, Nesme T, Chang J et al. 2018. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth Syst. Sci. Data 10:1–18
    [Google Scholar]
  60. Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR et al. 2008. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Glob. Biogeochem. Cycles 22:4GB4026
    [Google Scholar]
  61. McGroddy ME, Baisden WT, Hedin LO. 2008. Stoichiometry of hydrological C, N, and P losses across climate and geology: an environmental matrix approach across New Zealand primary forests. Glob. Biogeochem. Cycles 22:1GB1026
    [Google Scholar]
  62. McLaren JR, Buckeridge KM. 2021. Enhanced plant leaf P and unchanged soil P stocks after a quarter century of warming in the arctic tundra. Ecosphere 12:11e03838Plant and soil P responses to long-term warming of tundra.
    [Google Scholar]
  63. Mellett T, Selvin C, Defforey D, Roberts K, Lecher AL et al. 2018. Assessing cumulative effects of climate change manipulations on phosphorus limitation in a Californian grassland. Environ. Sci. Technol. 52:198–106
    [Google Scholar]
  64. Menge DNL, Field CB. 2007. Simulated global changes alter phosphorus demand in annual grassland. Glob. Chang. Biol. 13:122582–91
    [Google Scholar]
  65. Menge DNL, Hedin LO, Pacala SW. 2012. Nitrogen and phosphorus limitation over long-term ecosystem development in terrestrial ecosystems. PLOS ONE 7:8e42045
    [Google Scholar]
  66. Miller AJ, Schuur EA, Chadwick OA. 2001. Redox control of phosphorus pools in Hawaiian montane forest soils. Geoderma 102:3–4219–37
    [Google Scholar]
  67. Moorhead DL, Linkins AE. 1997. Elevated CO2 alters belowground exoenzyme activities in tussock tundra. Plant Soil 189:2321–29
    [Google Scholar]
  68. Nakhavali MA, Mercado LM, Hartley IP, Sitch S, Cunha FV et al. 2022. Representation of the phosphorus cycle in the Joint UK Land Environment Simulator (vn5. 5_JULES-CNP). Geosci. Model Dev. 15:135241–69
    [Google Scholar]
  69. Newman EI. 1995. Phosphorus inputs to terrestrial ecosystems. J. Ecol. 1:713–26
    [Google Scholar]
  70. Niklaus PA, Leadley PW, Stöcklin J, Körner C. 1998. Nutrient relations in calcareous grassland under elevated CO2. Oecologia 116:167–75
    [Google Scholar]
  71. Okin GS, Mahowald N, Chadwick OA, Artaxo P. 2004. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Glob. Biogeochem. Cycles 18:2GB2005
    [Google Scholar]
  72. Peñuelas J, Matamala R. 1993. Variations in the mineral composition of herbarium plant species collected during the last three centuries. J. Exp. Bot. 44:91523–25
    [Google Scholar]
  73. Peñuelas J, Poulter B, Sardans J, Ciais P, Van Der Velde M et al. 2013. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4:12934
    [Google Scholar]
  74. Porder S, Ramachandran S. 2013. The phosphorus concentration of common rocks—a potential driver of ecosystem P status. Plant Soil 367:141–55
    [Google Scholar]
  75. Porder S, Vitousek PM, Chadwick OA, Chamberlain CP, Hilley GE. 2007. Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems 10:1159–71
    [Google Scholar]
  76. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE. 2002. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40:11002
    [Google Scholar]
  77. Prospero JM, Lamb PJ. 2003. African droughts and dust transport to the Caribbean: climate change implications. Science 302:56471024–27
    [Google Scholar]
  78. Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR et al. 2012. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9:62203–46
    [Google Scholar]
  79. Reed SC, Yang X, Thornton PE. 2015. Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor. New Phytol 208:2324–29
    [Google Scholar]
  80. Sardans J, Peñuelas J. 2012. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiol 160:41741–61
    [Google Scholar]
  81. Sardans J, Peñuelas J, Estiarte M. 2006. Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland. Plant Soil 289:227–38
    [Google Scholar]
  82. Shao Y. 2008. Physics and Modelling of Wind Erosion Dordrecht, Neth.: Springer
    [Google Scholar]
  83. Smil V. 2000. Phosphorus in the environment: natural flows and human interferences. Annu. Rev. Energy Env. 25:53–88
    [Google Scholar]
  84. Sollins P, Robertson GP, Uehara G. 1988. Nutrient mobility in variable- and permanent-charge soils. Biogeochemistry 6:3181–99
    [Google Scholar]
  85. Steinweg JM, Dukes JS, Wallenstein MD. 2012. Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data. Soil Biol. Biochem. 55:85–92
    [Google Scholar]
  86. Sun F, Song C, Wang M, Lai DY, Tariq A et al. 2020. Long-term increase in rainfall decreases soil organic phosphorus decomposition in tropical forests. Soil Biol. Biochem. 151:108056
    [Google Scholar]
  87. Sun Y, Goll DS, Chang J, Ciais P, Guenet B et al. 2021. Global evaluation of the nutrient-enabled version of the land surface model ORCHIDEE-CNP v1.2 (r5986). Geosci. Model Dev. 14:41987–2010
    [Google Scholar]
  88. Sun Y, Peng S, Goll DS, Ciais P, Guenet B et al. 2017. Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models. Earth's Futur 5:7730–49
    [Google Scholar]
  89. Swap R, Garstang M, Greco S, Talbot R, Kållberg P. 1992. Saharan dust in the Amazon Basin. Tellus B 44:2133–49
    [Google Scholar]
  90. Tamburini F, Pfahler V, Bünemann EK, Guelland K, Bernasconi SM, Frossard E. 2012. Oxygen isotopes unravel the role of microorganisms in phosphate cycling in soils. Environ. Sci. Technol. 45:5956–62
    [Google Scholar]
  91. Tan Z, Leung LR, Li H-Y, Tesfa T, Zhu Q et al. 2021. Increased extreme rains intensify erosional nitrogen and phosphorus fluxes to the northern Gulf of Mexico in recent decades. Environ. Res. Lett. 16:054080
    [Google Scholar]
  92. Terrer C, Jackson RB, Prentice IC, Keenan TF, Kaiser C et al. 2019. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Chang. 9:9684–89Meta-analysis of N and P constraints to CO2 fertilization.
    [Google Scholar]
  93. Treseder KK, Vitousek PM. 2001. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82:4946–54
    [Google Scholar]
  94. Unger M, Leuschner C, Homeier J. 2010. Variability of indices of macronutrient availability in soils at different spatial scales along an elevation transect in tropical moist forests (NE Ecuador). Plant Soil 336:1443–58
    [Google Scholar]
  95. Vance CP, Uhde-Stone C, Allan DL. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:3423–47
    [Google Scholar]
  96. Vincent AG, Sundqvist MK, Wardle DA, Giesler R. 2014. Bioavailable soil phosphorus decreases with increasing elevation in a subarctic tundra landscape. PLOS ONE 9:3e92942
    [Google Scholar]
  97. Vitousek PM. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:1285–98
    [Google Scholar]
  98. Vitousek PM, Chadwick OA. 2013. Pedogenic thresholds and soil process domains in basalt-derived soils. Ecosystems 16:81379–95
    [Google Scholar]
  99. Walker AP, Beckerman AP, Gu L, Kattge J, Cernusak LA et al. 2014. The relationship of leaf photosynthetic traits – Vcmax and Jmax – to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. BMC Ecol. Evol. 4:163218–35
    [Google Scholar]
  100. Walker TW, Syers JK. 1976. The fate of phosphorus during pedogenesis. Geoderma 15:11–9
    [Google Scholar]
  101. Wanek W, Zezula D, Wasner D, Mooshammer M, Prommer J. 2019. A novel isotope pool dilution approach to quantify gross rates of key abiotic and biological processes in the soil phosphorus cycle. Biogeosciences 16:153047–68
    [Google Scholar]
  102. Wang Y, Ciais P, Goll D, Huang Y, Luo Y et al. 2018. GOLUM-CNP v1. 0: a data-driven modeling of carbon, nitrogen and phosphorus cycles in major terrestrial biomes. Geosci. Model Dev. 11:93903–28
    [Google Scholar]
  103. Wang YP, Law RM, Pak B. 2010. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7:72261–82
    [Google Scholar]
  104. Wang Z, Tian H, Yang J, Shi H, Pan S et al. 2020. Coupling of phosphorus processes with carbon and nitrogen cycles in the dynamic land ecosystem model: model structure, parameterization, and evaluation in tropical forests. J. Adv. Model. Earth Syst. 12:10e2020MS002123
    [Google Scholar]
  105. Weil RR, Brady NC. 2017. The Nature and Property of Soils New York: Pearson. , 15th ed..
    [Google Scholar]
  106. Wieder WR, Cleveland CC, Smith WK, Todd-Brown K. 2015. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8:6441–44
    [Google Scholar]
  107. Williams AP, Abatzoglou JT. 2016. Recent advances and remaining uncertainties in resolving past and future climate effects on global fire activity. Curr. Clim. Chang. Rep. 2:11–14
    [Google Scholar]
  108. Wright SJ. 2019. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89:4e01382
    [Google Scholar]
  109. Yang G, Peng Y, Abbott BW, Biasi C, Wei B et al. 2021. Phosphorus rather than nitrogen regulates ecosystem carbon dynamics after permafrost thaw. Glob. Chang. Biol. 27:225818–30
    [Google Scholar]
  110. Yang X, Ricciuto DM, Thornton PE, Shi X, Xu M et al. 2019. The effects of phosphorus cycle dynamics on carbon sources and sinks in the Amazon region: a modeling study using ELM v1. J. Geophys. Res. Biogeosci. 124:123686–98
    [Google Scholar]
  111. Yang X, Thornton PE, Ricciuto DM, Post WM. 2014. The role of phosphorus dynamics in tropical forests – a modeling study using CLM-CNP. Biogeosciences 11:61667–81
    [Google Scholar]
  112. Yang X, Thornton PE, Ricciuto DM, Hoffman FM. 2016. Phosphorus feedbacks constraining tropical ecosystem responses to changes in atmospheric CO2 and climate. Geophys. Res. Lett. 43:137205–14
    [Google Scholar]
  113. Yu L, Caldararu S, Ahrens B, Wutzler T, Schrumpf M et al. 2023. Improved representation of phosphorus exchange on soil mineral surfaces reduces estimates of phosphorus limitation in temperate forest ecosystems. Biogeosciences 20:157–73
    [Google Scholar]
  114. Yu Y, Notaro M, Liu Z, Wang F, Alkolibi F et al. 2015. Climatic controls on the interannual to decadal variability in Saudi Arabian dust activity: toward the development of a seasonal dust prediction model. J. Geophys. Res. 120:51739–58
    [Google Scholar]
  115. Yuan ZY, Chen HY. 2015. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat. Clim. Chang. 5:5465–69
    [Google Scholar]
/content/journals/10.1146/annurev-ecolsys-110421-102458
Loading
/content/journals/10.1146/annurev-ecolsys-110421-102458
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error